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Abstract
The ASPIC+ framework is intermediate in abstrac-
tion between Dung’s argumentation framework and
concrete instantiating logics. This paper gener-
alises ASPIC+ to accommodate classical logic in-
stantiations, and adopts a new proposal for evalu-
ating extensions: attacks are used to define the no-
tion of conflict-free sets, while the defeats obtained
by applying preferences to attacks, are exclusively
used to determine the acceptability of arguments.
Key properties and rationality postulates are then
shown to hold for the new framework.

1 Introduction
A Dung argumentation framework (AF) [Dung, 1995] con-
sists of a binary attack relation on a set of arguments. The jus-
tified arguments are then evaluated based on the framework’s
extensions: conflict-free sets of arguments (sets that do not
contain arguments that attack) that can be defended against
attacks (and so are said to be acceptable). The abstract nature
of Dung’s theory provides for a general and intuitive seman-
tics for the consequence notions of argumentation logics and
for nonmonotonic logics in general: an AF can be instanti-
ated by the arguments and conflict-based attacks defined by a
theory in a logic, and the theory’s inferences are then defined
in terms of the claims of the justified arguments.

Several works augment AFs with preferences and/or values
[Amgoud and Cayrol, 2002; Bench-Capon, 2003; Modgil,
2009], so that the conflict-free and acceptable sets of argu-
ments are evaluated only w.r.t the successful attacks (defeats),
where an argument X’s attack on Y is successful only if Y
is not preferred to X . However, we argue in this paper that it
is conceptually more intuitive to continue to define conflict-
free sets in terms of those that do not contain attacking argu-
ments. Defeats then encode the preference-dependent success
of attacks as they are deployed in the dialectical evaluation of
arguments, and so should only be used to determine the ac-
ceptability of arguments.

We explore this proposal in the context of the ASPIC
framework [Amgoud et al., 2006]. The very abstract nature
of Dung’s framework precludes giving guidance to ensure
that the instantiating theory’s defined inferences satisfy in-
tuitively rational properties, and so ASPIC provided abstract

accounts of the structure of arguments, the nature of attack,
and the use of preferences. [Caminada and Amgoud, 2007]
then formulated consistency and closure postulates that can-
not be formulated at Dung’s fully abstract level, and showed
these postulates to hold for a special case of ASPIC; one in
which preferences were not accounted for. More recently, AS-
PIC+ [Prakken, 2010] generalised ASPIC and showed that
the postulates were satisfied when applying preferences and
evaluating the justified arguments on the basis of the derived
defeat relation.

This paper makes the following contributions. Firstly, we
redefine evaluation of the justified arguments of the ASPIC+

framework under our proposed distinct use of attacks and de-
feats, and show satisfaction of the key properties of Dung
frameworks, and [Caminada and Amgoud, 2007]’s rational-
ity postulates. This is significant given that ASPIC+ captures
a broad range of instantiating logics and argumentation sys-
tems, extending those captured by ASPIC (e.g., to include
assumption-based argumentation [Bondarenko et al., 1997]
and systems using argument schemes). However, ASPIC+’s
generality is compromised in that it does not capture clas-
sical logic approaches to argumentation [Amgoud and Cay-
rol, 2002; Besnard and Hunter, 2008; Amgoud and Besnard,
2009], since it does not require that the premises of an argu-
ment are consistent. This paper’s second contribution is to
therefore adapt ASPIC+ so as to capture these approaches,
and so demonstrate satisfaction of the rationality postulates
for classical logic approaches that accommodate preferences;
a result that to the best of our knowledge has hitherto not been
shown for the full range of Dung’s original semantics.

The paper is organised as follows. Section 2 reviews back-
ground concepts. Section 3 adapts ASPIC+ to include clas-
sical logic approaches, and defines extensions under the new
proposal outlined above. Section 4 shows that key properties
of Dung frameworks and the rationality postulates are satis-
fied 1. Section 5 discusses related and future work.

2 Background
A Dung argumentation framework (AF) [Dung, 1995] is a
tuple (A, C), where C ⊆ A × A is an attack relation on the
arguments A. S ⊆ A is conflict free iff ∀X,Y ∈ S, (X,Y )

1Only proofs of the main results are shown in the paper. Proofs
not given here can be found in [Modgil and Prakken, 2011].



/∈ C. An argument X ∈ A is acceptable w.r.t. some S ⊆ A
iff ∀Y s.t. (Y,X) ∈ C implies ∃Z ∈ S s.t. (Z, Y ) ∈ C. Then:

Definition 1 Let (A, C) be a AF. Then a conflict free S ⊆ A
is : an admissible extension iff X ∈ S implies X is accept-
able w.r.t. S; a complete extension iff X ∈ S iff X is ac-
ceptable w.r.t. S; a preferred extension iff it is a set inclusion
maximal complete extension; the grounded extension iff it is
the set inclusion minimal complete extension; a stable exten-
sion iff it is preferred and ∀Y /∈ S, ∃X ∈ S s.t. (X,Y ) ∈ C.
For s ∈ {complete, preferred, grounded, stable}, X is scep-
tically or credulously justified under the s semantics if X be-
longs to all, respectively at least one, s extension.

Preference-based AFs (PAFs) [Amgoud and Cayrol, 2002]
are tuples(A, C,P), where the preference pre-ordering P ⊆
A × A determines which attacks succeed as defeats. With
the corresponding strict ordering – Y >P X iff (Y,X) ∈ P
and (X,Y ) /∈ P) – then (X,Y ) ∈ D (i.e., X defeats Y ) iff
(X,Y ) ∈ C and Y ≯P X . The extensions of (A, C,P) are
then defined as the extensions of the Dung framework (A,D).

[Prakken, 2010]’s ASPIC+ framework instantiates Dung’s
abstract approach by assuming an unspecified logical lan-
guageL, and by defining arguments as inference trees formed
by applying strict or defeasible inference rules of the form
ϕ1, . . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ, interpreted as ‘if the
antecedents ϕ1, . . . , ϕn hold, then without exception, respec-
tively presumably, the consequent ϕ holds’. There are two
ways to use these rules: they could encode domain-specific
information (as in e.g. default logic) but they could also ex-
press general laws of reasoning. For example, the defeasi-
ble rules could express argument schemes and the strict rules
could consist of all classically valid inferences or could more
generally conform to any Tarskian consequence notion (cf.
[Amgoud and Besnard, 2009]). In order to define attacks,
some minimal assumptions on L are made; namely that cer-
tain wff (well formed formulae) are a contrary or contradic-
tory of certain other wff. Apart from this the framework is
still abstract: it applies to any set of strict and defeasible in-
ference rules, and to any logical language with a defined con-
trary relation.

The basic notion of ASPIC+ is that of an argumentation
system. Arguments are then constructed w.r.t a knowledge
base that is assumed to contain three kinds of formulas.

Definition 2 An argumentation system is a tuple AS =
(L,−,R,≤) where:
• L is a logical language.
• − is a contrariness function from L to 2L , such that:
• ϕ is a contrary of ψ if ϕ ∈ ψ, ψ 6∈ ϕ;
• ϕ is a contradictory of ψ (denoted by ‘ϕ = −ψ’), if
ϕ ∈ ψ, ψ ∈ ϕ.

• R = Rs ∪Rd is a set of strict (Rs) and defeasible (Rd)
inference rules such thatRs ∩Rd = ∅.
• ≤ is a preordering onRd.

Henceforth, a set S ⊆ L is said to be consistent iff @ ψ, ϕ ∈
S such that ψ ∈ ϕ, otherwise it is inconsistent.
A knowledge base in an argumentation system (L,−,R,≤)
is a pair (K,≤′) where K ⊆ L and ≤′ is a preordering on

K \ Kn. Here, K = Kn ∪ Kp ∪ Ka where these subsets
of K are disjoint: Kn is the (necessary) axioms (which can-
not be attacked); Kp is the ordinary premises (on which at-
tacks succeed contingent upon preferences), and; Ka is the
assumptions (on which attacks are always successful, c.f. as-
sumptions in [Bondarenko et al., 1997]).

The orderings on defeasible rules and non-axiom premises
(we assume their strict counterparts defined in the usual way,
i.e., l < l′ iff l ≤ l′ and l′ � l) are assumed to be used
in defining an ordering � on the constructed arguments (see
Section 4). Henceforth, we assume the strict counterpart ≺
of � defined in the usual way. Arguments are now defined,
where for any argument A, Prem returns all the formulas of
K (premises) used to build A, Conc returns A’s conclusion,
Sub returns all of A’s sub-arguments, and DefRules returns
all defeasible rules in A.
Definition 3 An argument A on the basis of a knowledge
base (K,≤′) in an argumentation system (L,−,R,≤) is:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ;
Sub(A) = {ϕ}; Rules(A) = ∅; TopRule(A) = unde-
fined.

2. A1, . . . An →/⇒ ψ if A1, . . . , An are argu-
ments such that there exists a strict/defeasible rule
Conc(A1), . . . , Conc(An)→/⇒ ψ inRs/Rd.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
Rules(A) = Rules(A1) ∪ . . . ∪ Rules(An) ∪
{Conc(A1), . . . , Conc(An)→/⇒ ψ}
DefRules(A) = {r|r ∈ Rules(A), r ∈ Rd}
TopRule(A) = Conc(A1), . . . Conc(An)→/⇒ ψ

Furthermore, A is: strict if DefRules(A) = ∅; defeasible
if DefRules(A) 6= ∅; firm if Prem(A) ⊆ Kn; plausible if
Prem(A) 6⊆ Kn.

For any P ⊆ L, the closure of P under strict rules, denoted
ClRs(P ), is the smallest set containing P and the consequent
of any strict rule in Rs whose antecedents are in ClRs(P ).
Also, we write S ` ϕ if there is a strict argument A such that
Conc(A) = ϕ, with all premises taken from S. Given the
intuitive meaning of strict rules, axioms and assumptions, we
think that any argumentation system should:
• be closed under contraposition or transposition (as in
[Caminada and Amgoud, 2007]). The former implies that for
all S ⊆ L, s ∈ S and φ, if S ` φ, then S\{s} ∪ {−φ} ` −s.
The latter implies that if φ1, . . . , φn → ψ ∈ Rs, then for
i = 1 . . . n, φ1, φi−1,−ψ, φi+1, . . . , φn → −φi ∈ Rs;
• be axiom consistent, i.e., ClRs(Kn) is consistent.
• be well formed, i.e., if ϕ is a contrary of ψ then ψ /∈ Kn and
ψ is not the consequent of a strict rule (since as we will see,
attacks by contraries characterise attacks that always succeed;
e.g, when ψ is of the from not ϕ in logic programming).
Henceforth, argumentation systems are assumed to satisfy
these properties. It should be obvious to see that if the strict
rules conform to a Tarskian consequence operator (cf. [Am-
goud and Besnard, 2009]), for example, if they consist of all
valid propositional or first-order inferences over L, then the
first property is always satisfied.



When arguments are inference trees, three syntactic forms
of attack from an argument B to an argument A are possible:
attacking a premise of A, a conclusion of A, or an inference
step in A, respectively called undermining, rebutting and un-
dercutting attacks. To model undercutting attacks on infer-
ences, it is assumed that applications of inference rules can
be expressed in the object language; the precise nature of this
naming convention will be left implicit. Apart from under-
cut attacks and attacks on contraries, the success of attacks as
defeats is contingent upon preferences.

Definition 4 A attacks B iff A undercuts, rebuts or under-
mines B, where:
• A undercuts argument B (on B′) iff Conc(A) ∈ B′ for
some B′ ∈ Sub(B) of the form B′′1 , . . . , B

′′
n ⇒ ψ.

• A rebuts argument B (on B′) iff Conc(A) ∈ ϕ for some B′
∈ Sub(B) of the form B′′1 , . . . , B

′′
n ⇒ ϕ. In such a case A

contrary-rebuts B iff Conc(A) is a contrary of ϕ.
• Argument A undermines B (on B′) iff Conc(A) ∈ ϕ for
some B′ = ϕ, ϕ ∈ Prem(B) \Kn. In such a case A contrary-
undermines B iff Conc(A) is a contrary of ϕ or if ϕ ∈ Ka.
A defeats B iff A undercuts B or A rebuts/undermines B on
B′ and either A contrary rebuts/undermines B, or A ⊀ B′.

3 Argumentation, Logic and Preferences:
Revisiting and Generalising ASPIC+

As with other works augmenting AFs with preferences and/or
values, ASPIC+ evaluates the notions of conflict free and
acceptability on the basis of the arguments and defeats.
[Prakken, 2010] then shows that [Caminada and Amgoud,
2007]’s closure and consistency postulates are satisfied un-
der a number of assumptions. In particular, direct consis-
tency is shown by proving that no complete extension yields
arguments with conclusions that are the contraries of other
arguments. Essentially, this amounts to showing that no com-
plete extension contains arguments that attack. This then
begs the question as to why one should not define conflict-
free sets as those that do not contain attacking arguments.
Intuitively, the success of an attack as a defeat, contingent
upon the preference relation, has no bearing on whether an
attacking argument is incompatible with the attacked argu-
ment, but rather on the dialectical relationship of the former
to the latter. Defeats should therefore be reserved for deter-
mining whether an attacking argument can be successfully
deployed as a counter-argument. That is, they should only be
used when determining the acceptability of arguments.

Adopting this new distinct use of attacks and defeats, we
now link Section 2’s ASPIC+ concepts to abstract argumen-
tation frameworks, and define their extensions:

Definition 5 LetA be a set of arguments as defined in Defini-
tion 3. A structured abstract argumentation framework (SAF)
is a tuple 〈A, C, � 〉 such that (X,Y ) ∈ C iff X attacks Y as
defined in Definition 4, and � is a preordering on A.
• Let D ⊆ A × A, where (X,Y ) ∈ D iff X defeats Y as
defined in Definition 4
• S ⊆ A is conflict free iff ∀X,Y ∈ S, (X,Y ) /∈ C.

• The extensions of a SAF 〈A, C, � 〉 are the extensions of
the Dung framework (A, D) as defined in Definition 1.

We now also adapt ASPIC+ to accommodate classical
logic approaches to argumentation [Amgoud and Cayrol,
2002; Besnard and Hunter, 2008]. These assume a propo-
sitional or first-order predicate logic and arguments as pairs
(S, ϕ) where S is a consistent and minimal set of wffs that
classically entails ϕ. We therefore identify a class of SAF
that places restrictions on the instantiating arguments:

Definition 6 A set S ⊆ L is c-consistent if for no ϕ it holds
that S ` ϕ,−ϕ (i.e., no strict arguments with contradictory
conclusions can be built from premises S). Otherwise S is
c-inconsistent.
A SAF 〈A, C, � 〉 is said to be c-consistent if the arguments
A are as defined in Definition 3, with the added condition that
for any A ∈ A, Prem(A) is c-consistent.

Note that we use the term ‘c-consistent’ to distinguish the
notion of consistency in Definition 2. We can now instanti-
ate c-consistent SAFs (c-SAFs for short) with arguments de-
fined by classical approaches (we don’t need a minimality
condition on arguments since Definition 3 guarantees that an
argument has no unused premises). The language L is a first-
order language, the contrariness function corresponds to clas-
sical negation, and Rd is empty while Rs consists of all valid
first-order inferences over L. Furthermore, all elements of a
knowledge base are in Kp. Both [Amgoud and Cayrol, 2002;
Besnard and Hunter, 2008] consider several notions of attack,
one of which corresponds to the present notion of undermin-
ing attack.

Henceforth, we assume c-SAFs are c-classical:

Definition 7 Let S ⊆ L be a minimal c-inconsistent set iff
∀S′ ⊂ S, S′ is c-consistent. A c-SAF is c-classical iff for
any minimal c-inconsistent S and any ϕ ∈ S it holds that
S\{ϕ} ` −ϕ (i.e., amongst all arguments defined there exists
a strict argument with conclusion −ϕ with all premises taken
from S \ {ϕ}).

If the strict rules in a c-SAF conform to a Tarskian con-
sequence operator (cf. [Amgoud and Besnard, 2009]) then it
should be obvious to see that the cSAF is c-classical.

4 Properties of SAFs
4.1 Properties of Dung Frameworks
We now prove some fundamental results for SAFs and c-
SAFs. Retaining attacks when defining conflict-free sets po-
tentially undermines some key results shown for Dung frame-
works. It may be that A is acceptable w.r.t. an admissible set
S, but S ∪ {A} is not conflict free, so that the fundamental
lemma [Dung, 1995] does not hold. To illustrate, suppose a
SAF containing A,B, where B attacks A and B ≺ A. Then
{B} is admissible, A is acceptable w.r.t. {B}, but {A,B} is
not conflict free. However, under intuitive assumptions on the
argument ordering, we show that the result holds. Prior to this
we recall some notation from [Prakken, 2010] and then define
here the notion of a strict extension of a set of arguments.

Notation 1 Let M(B) denotes the maximal fallible sub-
arguments of B, where for any B′ ∈ Sub(B), B′ ∈ M(B)



iff: 1) B′ final inference is defeasible or B′ is a non-axiom
premise, and; 2) there is no B′′ ∈ Sub(B) s.t. B′′ 6= B and
B′ ∈ Sub(B′′) and B′′ satisfies 1).

E.g., M([⇒ r; q; r, q → ¬p]) = [⇒ r] and [q] (assuming
q ∈ KP and⇒ r is a defeasible rule with empty antecedent).

Definition 8 Let A be as defined in Definition 3 or 6. For
any {A1, . . . , An} ⊆ A, A ∈ A is a strict extension of
{A1, . . . , An} iff:
- the ordinary and assumption premises inA are exactly those
in {A1, . . . , An};
- the defeasible rules in A are exactly those in {A1, . . . , An};
- the strict rules and axiom premises ofA are a superset of the
strict rules and axiom premises in {A1, . . . , An}.

Notice that if B defeats some strict extension A of
{A1, . . . , An} then the defeat must be on some Ai. Hence:

Lemma 2 Let (A, C, �) be a SAF or c-SAF. Let A ∈ A be
a strict extension of {A1, . . . , An} ⊆ A, and for i = 1 . . . n,
Ai is acceptable w.r.t. E ⊆ A. Then A is acceptable w.r.t. E.

We now state under what assumptions a preordering on ar-
guments is said to be reasonable.

Definition 9 � is said to be reasonable iff:
1. i) ∀A,B, if A is strict and firm and B is plausible or

defeasible, then B ≺ A;
ii) ∀A,B, if B is strict and firm then B ⊀ A;
ii) ∀A,A′, B,C such that A ≺ B, C ≺ A, and A′ is
a strict extension of A, then A′ ≺ B, C ≺ A′ (i.e.,
strict inferences and axiom premises do not change the
strength of arguments)

2. Let {C1, . . . , Cn} be a finite subset of A, and:
for i = 1 . . . n, let C+/i be some strict exten-
sion of {C1, . . . , Ci−1, Ci+1, . . . , Cn}.

Then it is not the case that: ∀i, C+/i ≺ Ci.

The second condition is essentially a weaker form of the
property satisfied by any partial ordering defined over a finite
set, viz. that there exists a minimal element.

In [Prakken, 2010], an ordering ≺s is defined over sets:
Γ ≺s Γ′ iff there is a member of Γ that is strictly less than (<)
all members of Γ′, where< is the strict counterpart of the pre-
ordering ≤ on the defeasible rules or non-axiom premises.
Based on ≺s, the commonly used last and weakest link prin-
ciples are then used to define example argument orderings �.
Essentially, B ≺ A by the last link principle if the set of
top defeasible rules in B is ≺s the set of top defeasible rules
in A, and if both these sets are empty, then the set of non-
axiom premises in B is ≺s the set of non-axiom premises in
A. B ≺ A by the weakest link principle if the set of defeasi-
ble rules in B is ≺s the set of defeasible rules in A, and the
set of non-axiom premises in B is ≺s the set of non-axiom
premises in A. We can then show that:

Proposition 3 Let � be defined according to the last or
weakest link principle. Then � is reasonable.

Observe now that given arguments A = [⇒ p], B1 = [⇒ r],
B2 = [⇒ q], B = [B1;B2; r, q → ¬p], thenB asymmetrically
attacks A, so that if B ≺ A then neither argument defeats

the other. However, since we assume closure of the strict
rules under transposition or contraposition, one can construct
strict extensions A+

1 = [⇒ p;⇒ q; p, q → ¬r] of {A,B2}
and A+

2 = [⇒ p;⇒ r; p, r → ¬q] of {A,B1}, where A+
1

attacks B on B1, and A+
2 attacks B on B2. Given that � is

reasonable, and that B is a strict extension of {B1, B2}, then
it cannot be that A+

1 ≺ B1, A+
2 ≺ B2 and B ≺ A. Since

by assumption B ≺ A, then it must be that A+
1 ⊀ B1 or

A+
2 ⊀ B2, and so either A+

1 or A+
2 ’s attack on B succeeds as

a defeat. In fact, the following general result can be shown:

Proposition 4 Let A and B be arguments where B is plau-
sible or defeasible and A and B have contradictory conclu-
sions, and if A and B are defined as in Definition 6, then
Prem(A) ∪ Prem(B) is c-consistent. Then:

1. For all B′ ∈ M(B), there exists a strict extension A+
B′

of (M(B)\{B′}) ∪M(A) such that A+
B′ rebuts or un-

dermines B on B′.
2. If B ≺ A, and � is reasonable, then for some B′ ∈
M(B), A+

B′ defeats B.

We now state some useful results (henceforth X ⇀ Y de-
notes X attacks Y and X ↪→ Y denotes X defeats Y ).

Lemma 5 Let (A, C, �) be a SAF or c-SAF:
1. If A is acceptable w.r.t. S ⊆ A then A is acceptable

w.r.t. any superset of S.
2. If A
 B then A ↪→ B or B ↪→ A.
3. If A ↪→ B, then A ↪→ B′ for some B′ ∈ Sub(B), and if
A ↪→ B′, B′ ∈ Sub(B), then A ↪→ B.

4. If A is acceptable w.r.t. S ⊆ A, A′ ∈ Sub(A), then A′
is acceptable w.r.t. S.

Lemma 6 Suppose B ⇀ A, and not A ⇀ B. If not B ↪→ A
then either:

1. ∃A′ ∈ Sub(A) s.t. A′ ↪→ B, or;
2. There is a strict extension A+

B′ of (M(B)\{B′}) ∪
M(A) s.t. A+

B′ ↪→ B, given that if A and B are defined
as in Def. 6, then Prem(A) ∪ Prem(B) is c-consistent.

Lemma 7 Let (A, C, �) be a c-SAF. If A1, . . . , An

are acceptable w.r.t. some conflict-free E ⊆ A, then⋃n
i=1 Prem(Ai) is c-consistent.

Lemma 8 Let A be acceptable w.r.t an admissible extension
S of (A, C, �). Then ∀B ∈ S ∪ {A}, neither B ↪→ A or
A ↪→ B.

We now state the two main results of this section:

Proposition 9 LetA be acceptable w.r.t an admissible exten-
sion S of (A, C, �). Then S′ = S ∪ {A} is conflict free.

PROOF. Firstly, since for any B ∈ S, B is acceptable w.r.t.
S, then by Lemma 7, Prem(A) ∪ Prem(B) is c-consistent.
Now, suppose for contradiction that S′ is not conflict free.
If ∃B ∈ S′ s.t. A 
 B (this accounts for the case that B =
A), then by Lemma 5-2, either A ↪→ B or B ↪→ A, contra-
dicting Lemma 8. Else:
1) ∃B ∈ S, B ⇀ A, B ≺ A, and not A ⇀ B. By Lemma 6
either:



1.1) some sub-argumentA′ ofA defeatsB, hence (by accept-
ability of B) ∃C ∈ S s.t. C ↪→ A′, and so (by Lemma 5-3)
C ↪→ A, contradicting Lemma 8, or;
1.2) ∃ A+

B′ A
+
B′ ↪→ B, hence ∃C ∈ S s.t. C ↪→ A+

B′ .
By construction of A+

B′ , it must be that C ↪→ Z, Z ∈
Sub(A) ∪ Sub(B). Hence, (by Lemma 5-3) either C ↪→ B,
contradicting S is conflict free, or C ↪→ A, contradicting
Lemma 8.
2) ∃B ∈ S, A ⇀ B, A ≺ B, and not B ⇀ A. By Lemma 6
either:
2.1) some sub-argumentB′ ofB defeatsA, hence (by accept-
ability of A) ∃C ∈ S s.t. C ↪→ B′ and so (by Lemma 5-3)
C ↪→ B, contradicting S is conflict free, or;
2.2) ∃B+

A′ B
+
A′ ↪→ A, hence ∃C ∈ S s.t. C ↪→ B+

A′ .
By construction of B+

A′ , it must be that C ↪→ Z, Z ∈
Sub(A) ∪ Sub(B), leading to a contradiction as in 1.2). QED

Proposition 10 Let A,A′ be acceptable w.r.t an admissible
extension S of (A, C, �). Then:

1. S′ = S ∪ {A} is admissible
2. A′ is acceptable w.r.t. S′.

PROOF. 1) By Lemma 5-1, all arguments in S′ are acceptable
w.r.t. S′. By Proposition 9, S′ is conflict free, and hence
admissible. 2) By Lemma 5-1, A′ is acceptable w.r.t. S′.QED

We have shown that under intuitive assumptions on argu-
ment orderings (satisfied by the commonly used weakest and
last link principles), and closure of strict rules under trans-
position or contraposition, SAFs and c-SAFs satisfy Dung’s
fundamental lemma (implying, for example, that every ad-
missible extension is a subset of a preferred extension). Also,
note that Lemma 5-1 implies monotonicity of the character-
istic function, so that a SAF’s (c-SAF’s) grounded extension
can be identified by the function’s least fixed point.

4.2 Rationality Postulates
We now show that SAFs and c-SAFs satisfy [Caminada and
Amgoud, 2007]’s rationality postulates for the semantics de-
fined in Definition 1 (it suffices to show they are satisfied by
complete extensions).

Theorem 11 [Sub-argument Closure] Let ∆ = (A, C,�) be
a SAF or c-SAF and E a complete extension of ∆. Then for
all A ∈ E: if A′ ∈ Sub(A) then A′ ∈ E.

PROOF. A′ is acceptable w.r.t. E by Lemma 5-4, E ∪ {A′}
is conflict free by Prop.9, and so A′ ∈ E. QED

Theorem 12 [Closure under Strict Rules] Let ∆ = (A, C,�)
be a SAF or c-SAF and E a complete extension of ∆. Then
{Conc(A)|A ∈ E} = ClRs({Conc(A)|A ∈ E}).

PROOF. Follows from Lemma 2 and Prop. 9, where if ∆ is a
c-SAF, Lemma 7 guarantees that A is a valid argument in the
sense that its premises are c-consistent. QED

Theorem 13 [Direct Consistency] Let ∆ = (A, C,�) be a
SAF or c-SAF and E a complete extension of ∆. Then
{Conc(A)|A ∈ E} is consistent.

PROOF. We show that if A,B ∈ E, Conc(A) ∈ Conc(B),
then this leads to a contradiction:

1. A is firm and strict, and:
1.1 if B is firm and strict then this contradicts assumption of
axiom consistency;
1.2 if B is plausible or defeasible, and 1.2.1 B is an ordi-
nary/assumption premise or has a defeasible top rule, then
A ⇀ B, contradicting E is conflict free, or 1.2.2 B has a
strict top rule (see 3 below).
2. A is plausible or defeasible, and:
2.1 if B is firm and strict then under the well-formed assump-
tion Conc(A) cannot be a contrary of Conc(B), and so they
are contradictory (i.e., a contrary of each other), and 2.1.1
A is an ordinary/assumption premise or has a defeasible top
rule, in which case B ⇀ A, contradicting E is conflict free,
or 2.1.2 A has a strict top rule (see 3 below);
2.2 if B is plausible or defeasible and 2.2.1 B is an ordi-
nary/assumption premise or has a defeasible top rule then
A ⇀ B, contradicting E is conflict free, or 2.2.2 B has a
strict top rule (see 3 below).
3. Each of 1.2.2, 2.1.2 and 2.2.2 describes the case where
X,Y ∈ E, Conc(X) ∈ Conc(Y ), Y is defeasible or plau-
sible and has a strict top rule, and by the well-formed as-
sumption Conc(X) and Conc(Y ) must be contradictory. In
the case that ∆ is a c-SAF, since X,Y ∈ E, X,Y are ac-
ceptable w.r.t. E, and so by Lemma 7, Prem(A) ∪ Prem(B)
is c-consistent. By Prop 4 there is a strict extension X+

Y ′ of
M(Y )\{Y ′} ∪M(X) s.t. X+

Y ′ ⇀ Y . By Lemma 2 X+
Y ′ is

acceptable w.r.t. E, and by Prop. 9, E ∪ {X+
Y ′} is conflict

free, contradicting X+
Y ′ ⇀ Y . QED

Theorem 14 [Indirect Consistency] Let ∆ = (A, C,�) be
a SAF or c-SAF and E a complete extension of ∆. Then
ClRs

({Conc(A)|A ∈ E}) is consistent.

PROOF. Follows from Theorems 12 and 13. QED

5 Conclusions
This paper has proposed that in contrast with existing works
that obtain defeats by application of preferences, one should
retain the attack-based definition of conflict-free sets, given
that attacks between arguments indicate the mutual incon-
sistency of the logical instantiations of the attacking argu-
ments; defeats encode the preference dependent use of at-
tacks in a dialectical context, and so should only be deployed
when evaluating the acceptability of arguments. We have re-
formulated the ASPIC+ framework under the new proposal,
and generalised ASPIC+, thus obtaining structured argumen-
tation frameworks that not only subsume argumentation sys-
tems such as [Bondarenko et al., 1997], but also now captures
classical logic approaches to argumentation. We have then
shown that under some intuitive assumptions, key properties
of Dung frameworks, and [Caminada and Amgoud, 2007]’s
rationality postulates are satisfied. We are thus the first to
demonstrate the consistency of extensions (under any seman-
tics subsumed by the complete semantics) obtained by clas-
sical logic approaches augmented with preferences 2. This is

2Note that [Amgoud and Vesic, 2010] apply preferences to sets
of arguments, rather than to individual attacks, and then show con-
sistency under a variant of stable semantics



of particular importance given that classical-logic approaches
without preferences yield (stable/preferred) extensions that
simply correspond to the maximal consistent subsets of the
instantiating classical logic theories [Cayrol, 1995] (in clas-
sical logic preferences thus play a particularly important role
in arbitrating between conflicts).

This paper’s generalisation and reformulation of ASPIC+

treats unsuccessful asymmetric attacks in a different way to
[Prakken, 2010]. Such attacks occur when a defeasible or
plausible B with strict top rule, rebuts a defeasible A with
defeasible top rule, and B ≺ A. Note that given the intended
meaning of strict rules as deductive inferences, it is entirely
intuitive that A does not rebut B on the conclusion of B’s
strict top rule: a basic principle of deductive reasoning is that
if one does not like the conclusion of a deductively derived
inference, one must give up (which in a dialectical setting
equates with deploy an attack against) one of the defeasible
premises. In [Prakken, 2010], the set {A,B} is conflict-free,
although {A,B} cannot be the subset of a complete exten-
sion since such an extension would necessarily contain an ar-
gumentA+

B′ that defeatsB (as described in Proposition 4). In
this paper’s version of ASPIC+, {A,B} is not conflict-free,
which is conceptually more satisfactory given the logical in-
compatibility of the information in the arguments.

[Kaci, 2010] argues that to ensure that the use of defeats
does not violate consistency, all attack relations should be
symmetric, but we agree with [Amgoud and Besnard, 2009]
that this would lead to problems. [Amgoud and Vesic, 2009;
2010] claim that unsuccessful asymmetric attacks should re-
sult in rejection of the attacker, so that in our example only
{A} would be admissible. However, our consistency results
obviate the need for this. [Amgoud and Vesic, 2010] also mo-
tivate their approach by a counterexample to extension con-
sistency but this does not apply to ASPIC+ because of its dif-
ferent definition of undermining defeat. Moreover, unlike in
PAFs [Amgoud and Cayrol, 2002], where all attacks require
preferences to be successful, we can make undercutting attack
successful irrespective of preferences. This is desirable since
unlike with asymmetric rebutting attack, with undercutting
attack the attacked argument can, even if Rs is closed, never
be extended to yield an attacker of the undercutter, so there is
no intuitive sense in which an undercut argument attacks its
undercutter. Thus we can, unlike [Amgoud and Vesic, 2009;
2010], preserve the basic principle of argumentation that an
un-attacked argument is always justified.

Much work on value based argumentation frameworks
(VAFs) [Bench-Capon, 2003] considers extensions that con-
tain arguments that asymmetrically attack but do not defeat
after accounting for the ranking of the arguments’ values.
However, little work has been done on logical instantiations
of VAFs. Since ASPIC+ explicitly relates the notion of attack
to conflict in some (unspecified) instantiating logic, then such
extensions are clearly undesirable.

Finally, future work will extend this paper’s work in order
to structure Extended Argumentation Frameworks (EAFs)
[Modgil, 2009]. Initial investigations suggest that if one re-
tains the attack-based definition of conflict free for EAFs,
then the characteristic functions of such structured EAFs will
be monotonic (in [Modgil, 2009] monotonicity is only shown

for the characteristic functions of hierarchical EAFs).
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