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Abstract. The outcome of a legal dispute, namely, the decision of its adjudicator, is
uncertain, and both parties develop their strategies on the basis of their appreciation
of the probability that the adjudicator will accept their arguments or the arguments
of their adversary. Costs and gains have to be balanced in light of this uncertainty in
order to identify the most convenient strategies. This paper provides a probabilistic
approach embedded into an argumentation framework to capture this uncertainty
and its use to determine the expected utility to engage in a legal dispute.
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1. Introduction

In legal disputes, there is uncertainty about what statements (the rules and facts asserted
by the parties in their arguments) will be accepted by the adjudicator. For the parties
involved, uncertainty propagates from the acceptance of their statements to the outcome.
In light of this uncertainty expected costs and gains have to be balanced in order to decide
whether to start a dispute, and what strategies to adopt in it. This paper provides an
approach by which to capture this uncertainty, and it describes the use of this approach
to determine the expected utility of engaging in a legal dispute.

In the setting of the argumentation framework by Prakken and Sartor (1997), a prob-
ability distribution is assumed with respect to the adjudicator’s acceptance of the parties’
statements. This distribution results in a probability of an argument’s success by taking
into account the probabilities of its counterarguments. The former probability is then
used in combination with the costs and gains of the dispute in order to predict the ex-
pected utility of such a dispute. It is then shown that in deciding whether or not to engage
in a legal dispute, the expected utility may provide appropriate guidance to a rational
litigant.
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An important difference with respect to other work in AI on combining logic and
probabilities (e.g. Pollock (1995)) is that while the latter considers the probability that a
state of affairs holds, we consider the probability that a statement s is accepted by an ad-
judicator. Such probability can be more precisely expressed as Pr(accepted(q)), which
we abbreviate into Pr(qa). While the laws of probability entail that Pr(qa∨¬(qa)) = 1,
they do not entail that Pr(qa ∨ (¬q)a) = 1. Indeed, there is also a third possibility,
namely that neither q nor ¬q is accepted (¬qa∧¬(¬q)a). Note that on our interpretation,
unlike in the other work, it makes sense to assign probabilities to normative statements or
rules. Related work in argumentation on the treatment of uncertainty by the probability
of statement acceptance is Roth et al. (2007), but instead of the probability of success of
an argument, it proposes to compute the probability that the topic is defeasibly justifi-
able, where the probability of success of an argument plays no role. By considering the
latter probability, the dialogue tree is tracked and that may be a decisive advantage for
further investigation in the field of argumentation. Moreover, we want to make as few
assumptions as possible on the underlying logic and structure of arguments, to make our
ideas as widely applicable as possible.

Let us turn to an example (hereinafter referred to as the mad cow example) to illus-
trate our approach in this paper. John wants to sue Henry, claiming compensation for the
damage that Henry’s cow caused to him when he drove off the road to avoid the cow.
John knows that he has to show, according to the rule that an animal’s owners have to
pay damages caused by their animals (a rule the judge will certainly accept), that Henry
is the owner of the cow (Henry could claim that the cow belongs to someone else, but
since his herd was near the street this is hard to accept) and that the accident was caused
by the need to avoid the cow (Henry could claim that the car drove off the road regardless
of the cow, but since the cow was hit, this is hard to accept). John knows that even if
all of these statements were accepted by the judge, Henry could counterattack in various
ways, claiming that the damage was due to John’s negligence (according to the rule that
when driving on a mountain road one should pay attention to crossing animals, which
John did not do to a sufficient degree) or that it was a case of force majeure (the cow
suddenly went crazy and crossed into the street). The last objection could be replied to
by using the rule (though it is not so sure that the judge will accept it, since it is a debated
one) that only exogenous events can count as force majeure, and the cow’s madness is
endogenous. If John wins, the compensation will amount to 1500$, and Henry will also
have to pay trial expenses, which are estimated to 500$. If John loses he will have to
pay trial expenses. For analysing the example we shall introduce atomic sentences that
abbreviate the conclusion that is at stake and the reasons that parties adduced in their
arguments (see Table 3.1).

So John’s problem is the following. According to his analysis of the case, what are
the chances which he has of winning? Does it make sense for him to sue Henry?

This paper is organised as follows. In Section 2 we briefly recall the main notions
of Prakken and Sartor (1997)’s argumentation logic on which our approach is based.
Section 3 provides a method for determining the probability of success of an argument.
In Section 4 we briefly address the notion of expected utility. In Section 4, the approach
is recapitulated and future investigations are suggested.



2. The argumentation context

Our treatment of uncertainty is embedded in a logical model for argumentation. With re-
gard to the logic supporting the construction of single arguments, we make the following
assumptions:

1. arguments have a finite nonempty set of premises and a conclusion. No premise
of one argument is a conclusion of another argument;

2. there is a binary relation of defeat between arguments.

The first assumption is reasonable since if some argument’s premise is the conclusion of
another argument, the two arguments should ideally be combined by making the second
argument a subargument of the first, thus turning the premise of the first into an inter-
mediate conclusion. The second assumptions makes it possible to apply the well-known
formal setting of Dung (1995).

We also assume that, given a set of arguments ordered by a binary defeat rela-
tion, i.e., given an ’argumentation framework’, the dialectical status of arguments is de-
termined with Prakken and Sartor (1997)’s dialectical proof theory for Dung (1995)’s
grounded semantics. In this proof theory, a test whether an argument is dialectically jus-
tified has the form of a dialogue game between a proponent and an opponent of the
argument.

Definition 1 Let T = (Args, defeat) be an argumentation framework. A dialogue on the
basis of T is a sequence of moves movei = (Playeri, Argi) (i > 0, Argi ∈ Args),
such that

1. Playeri = P iff i is odd; and playeri = O iff i is even;
2. if Playeri = Playerj = P and i 6= j, then Argi 6= Argj;
3. if Playeri = P (i > 1), then Argi strictly defeats Argi−1;
4. if Playeri = O then Argi defeats Argi−1.

(A strictly defeats B means that A defeats B and B does not defeat A.) The first condi-
tion says that player P begins and then the players take turns, while the second condition
prevents the proponent from repeating its attacks. The remaining two conditions state the
burden of proof for P and O. Figure 1 illustrates two dialogues that can be generated
from the mad cow example.

Definition 2 A player wins a dialogue if the other player cannot move.

The idea of this definition is that if P ’s last argument is undefeated, it reinstates all pre-
vious arguments of P that occur in the dialogue, in particular the first one. For example,
the proponent does not win the dialogue provided in Figure 2. An argument is shown to
be justified if the proponent can make the opponent run out of moves in whatever way
the opponent attacks:

Definition 3 An argument A is provably justified on the basis of argumentation frame-
work T iff P has a winning strategy in a game based on T that starts with A.

For example, the argument A of the mad cow example cannot be justified because pro-
ponent does not have a winning strategy for A (see Figure 2): if opponent attacks A with
B then proponent has no counterattack.



In Prakken and Sartor (1997) this dialectical proof theory was proven to be sound
and complete with respect to Dung’s grounded semantics. It is easy to see that a winning
strategy for A can be displayed as a tree with root A which only branches after P ’s
moves, which contains all possible replies of O and of which all branches end with a
move by P . Note also that a strategy for A can be obtained from the game tree for A (i.e.,
from the tree of all possible games that can be played about A) by deleting at any choice
point for P all but one of his possible moves. If these choices can be made in such a way
that all remaining branches end with a move by P , the strategy is a winning one for P .

Now as for the adjudicator’s acceptances we assume the following setting. When
determining whether a claim is sufficiently backed with an argument A, the adjudicator
constructs the game tree for A on the basis of a given argumentation framework T and
then decides for each premise of each argument in the game tree whether to accept or re-
ject it. Then the adjudicator prunes the game tree by chopping off all branches at the first
point where they contain an argument with a rejected premise. Finally, the adjudicator
checks in the manner just explained whether the resulting tree contains a winning strat-
egy for proponent. If such a winning strategy exists, this means that A is justified on the
basis of a new argumentation framework T ′ obtained from T by deleting all arguments
with a rejected premise and restricting the defeat relation to the remaining arguments.

Now the main problem studied in this paper is how, given a probability distribution
over the acceptances of the adjudicator, the probability that argument A is regarded as
provably justified in this way by the adjudicator can be determined.

3. Probability of success

In this section we will provide a method for determining the probability of success of
an argument by which we mean the probability that the argument is accepted as justi-
fied given a knowledge base of which the statements are assigned a probability of accep-
tance by the adjudicator. Here we shall not discuss the philosophical basis of probability,
and in particular the well-known distinction between objective probability and subjec-
tive probability, which goes beyond the limits of this paper. We think that our proposal
makes sense with regard to both ideas of probability. However, we also believe that the
most interesting scenario for the use of our method is for a party’s subjective but rational
assessment of the chance that his or her argument will stand and overcome all counter-
arguments given the set of premises which are likely to be accepted by an adjudicator.
We recall that the setting we assume is a game tree for an argument A, i.e., the tree of
all possible games about A. In this setting, the probability of success of an argument
depends upon two conditions:

1. the probability that the argument’s premises are accepted, which we call con-
struction chance (the argument will be rejected if the adjudicator refuses to ac-
cept one of the argument’s premises);

2. the probability that the argument has no valid counterargument, namely no coun-
terargument is able to attack it successfuly, which we call the security chance
(the argument will be rejected if the adjudicator’s acceptances imply that there is
a valid attacker of the argument)

In the next sections we discuss how to calculate the construction chance and security
chance.



3.1. Construction chance

The construction chance of an argument A, which we denote as Pr(Con(A)) is given
by the probability that the adjudicator accepts all premises q1, . . . qn of the argument,
that is, by the probability of qa

1 ,∧ . . . ∧ qa
n, where qa

i denotes the acceptance of qi. On
the assumption that the premises of an argument are mutually (statistically) indepen-
dent, Pr(Con(A)) is the product of the probability of acceptance of all premises in the
argument:

Pr(Con(A)) = Pr(qa
1 ∧ . . . ∧ qa

n) = Pr(qa
1 )× . . .× Pr(qa

n) (1)

For instance, the argument A in Figure 1 has three premises namely a, b and the rule
r1 which, respectively, have the probability of acceptance Pr(aa) = 1, Pr(ba) = 0, 9
and Pr(ra

1) = 1. Consequently, the construction chance of A is Pr(Con(A)) =
Pr(aa).P r(ba).P r(ra

1) = 0, 9.

r1:  a, b ⇒ c Pr(r1
a) = 1

a Pr(aa ) = 1

b Pr(ba ) = 0,9

r2:  d ⇒ ¬c Pr(r2
a) = 0,8

d Pr(da ) = 0,5 

A

B

r1:  a, b ⇒ c Pr(r1
a) = 1

a Pr(aa ) = 1 

b Pr(ba ) = 0,9

r3:  e ⇒ ¬c Pr(r3
a) = 0,5

e Pr(da ) = 0,2 

A

C

r4:  f ⇒ inapp(r3)      Pr(r2
a) = 0,5

f         Pr(fa ) = 0,3 

D

D2D1

Figure 1. Dialogues generated from the mad cow example.

Literal Meaning

a Henry is the owner of the cow.

b The accident was caused by the need to avoid the cow.

c Henry has to compensate damages.

d John was negligent.

e Cow was mad.

f Cow’s madness is endogenous.
Table 1. Literals with their meaning.



3.2. Security chance

Let us now add the second condition of probability of success of an argument, namely
that of not having a successful counterargument. For this purpose we take the view of
the justification of arguments as defined in Section 2: recall that all possible arguments
(given a set of background information) can be represented as a tree, where each branch
of the tree is a dialogue, namely a sequence of arguments by the two parties which defeat
one another. For the top argument to be justified, it must be successful along all branches
of the tree, which means that it must not be followed by a successful attacker along any
dialogue in the tree.

The basic idea is that the chance of success of an argument is diminished to the
extent that one of its attackers is going to be successful. Thus, generally, the probability
of success of an argument A is diminished by considering the chances of success of
all of its counterarguments, along all possible branches of the game tree of which the
root is given by A. In the following we shall first consider how to compute the security
chance along one dialogue line, and then how to compute security chance along multiple
dialogue lines, that is, in a dialogue tree.

3.2.1. Security chance along one dialogue

Let us now precisely characterise the security chance of an argument Ai in a dialogue
Dn =< A1, . . . , An >, intended as the probability that Ai can really exercise its in-
tended function in the dialogue. Since each argument in a dialogue, according to the di-
alogue protocol, is defeated (and thus prevented from being successful) by its succes-
sor, the probability of success of an argument does not only depend on its construction
chance, but also on the chance that the argument’s successor fails to be successful. Since
both these elements need to be present, we have to deal with the probability of a con-
junction of the construction of the argument and the failure of its attacker. We therefore
define Succ(Ai, Dn) as Con(Ai) ∧ ¬Succ(Ai+1, Dn). Since equivalent statements are
equally probable we have:

Pr(Succ(Ai, Dn)) = Pr(Con(Ai) ∧ ¬Succ(Ai+1, Dn)) (2)

Applying the product rule Pr(x ∧ y) = Pr(x).P r(y|x), the previous result (2) can be
rewritten as:

Pr(Succ(Ai, Dn)) = Pr(Con(Ai)).P r(¬Succ(Ai+1, Dn)|Con(Ai)) (3)

Since Pr(¬Succ(Ai+1, Dn)|Con(Ai)) = 1− Pr(Succ(Ai+1, Dn)|Con(Ai)), we ob-
tain:

Pr(Succ(Ai, Dn)) = Pr(Con(Ai)).[1− Pr(Succ(Ai+1, Dn)|Con(Ai))] (4)

We assume that each dialogue implicitly terminates with an empty argument, having no
chance of success, so that for the last argument An of Dn, the chance of success is given
by its chance of construction:

Pr(Succ(An, Dn)) = Pr(Con(An)) (5)

For example, the probability of success of argument A along dialogue d2 (see Figure
1) is given by instantiating the equality (4):



Pr(Succ(A,D2)) = Pr(Con(A)).[1− Pr(Succ(C,D2)|Con(A))]

= Pr(Con(A)).{1− Pr(Con(C)|Con(A))

.[1− Pr((Succ(D,D2)|Con(C))|Con(A))]}
(6)

According to the equation (5), the probability of success of D w.r.t. dialogue D2 equals
its construction chance, Pr(Succ(D,D2)) = Pr(Con(D)). Furthermore, under the
assumption that logically independent statements are also statistically independent, this
can be further simplified by eliminating the conditional probabilities ( this assumption
may not always be warranted). Under these assumptions we obtain:

Pr(Succ(A,D2)) = Pr(Con(A)).{1− Pr(Con(C)).[1− Pr(Con(D))]}
= 0, 9× {1− 0, 1× [1− 0, 15]}
= 0, 8235

(7)

Interestingly, one can demonstrate by induction that the probability
Pr(Succ(A1, Dn)) is bounded as follows:

Pr(Succ(A1, Di)) ≥ Pr(Succ(A1, Dj)) (i odd), (8)

Pr(Succ(A1, Di)) ≤ Pr(Succ(A1, Dj)) (i even), (9)

with j ≥ i. Consequently, the probabilities Pr(Succ(A1, D1)) and Pr(Succ(A1, D2))
are respectively the highest bound and lowest bound of Pr(Succ(A1, Dj)). Inside these
bounds, the probability Pr(Succ(A1, Dj)) oscillates at every move, with the maximum
amplitude that decreases with the length of the dialogue.

3.2.2. Security chance in dialogue tree

We need to consider the probability of success of an argument taking into account that the
argument can have more than one counterargument, and that the probabilities of success
of such counterarguments somehow need to be added up (since it is sufficient that one
counterargument is successful for the argument to fail).

Consider an arbitrary argument A in tree τ = 〈τ1, . . . , τk〉 having counterarguments
(children) A1, . . . , Ak. The probability that any of these counterarguments Aj is suc-
cessful is the probability of the disjunction Succ(A1, τ1)∨ . . .∨Succ(Argk, τk), abbre-
viated as

∨j=k
j=1 Succ(Aj , τj). Then the probability that A is successful is given by the

probability that A is constructed times the probability that no such counterargument is
successful, that is, that the above disjunction is false:

Pr(Succ(A, τ)) = Pr(Con(A) ∧ [¬(
∨j=k

j=1 Succ(Aj , τj))])

= Pr(Con(A)).P r(¬(
∨j=k

j=1 Succ(Aj , τj))|Con(A))
(10)

By transforming the negation of a disjunction into a conjunction of negations (¬(x∨y) =
¬x ∧ ¬y), we obtain:

Pr(Succ(A, τ)) = Pr(Con(A)).P r(
∧j=k

j=1 ¬Succ(Aj , τj)|Con(A)) (11)

To further develop this formula, we need to consider Pr(
∧j=k

j=1 ¬Succ(Aj , τj)|Con(A))
namely the probability that all counterarguments fail to be successful. To do so, we need



to consider an argument’s failure under the condition that the other arguments fail as
well (since there may be a connection between such failures, as happens when arguments
share a common premise). We obtain this result using the idea that Pr(x ∧ y) is given
by Pr(x).P r(y|x), so that, in general, the probability of a conjunction a1 ∧ a2 ∧ a3 ∧
. . . ∧ an is given by Pr(a1).P r(a2|a1).P r(a3|(a1 ∧ a2). . . . .P r(an|a1 ∧ . . . ∧ an−1).
Accordingly, we obtain the following equality:

Pr(
∧j=k

j=1 ¬Succ(Aj , τj)|Con(A))

=
∏j=k

j=1{Pr(¬Succ(Aj , τj)|Con(A)
∧i=j−1

i=1 ¬Succ(Ai, τi))}
(12)

In conclusion by putting together all transformations so far indicated, we obtain:

Pr(Succ(A, τ))

= Pr(Con(A)).
∏j=k

j=1{Pr(¬Succ(Aj , τj)|Con(A)
∧i=j−1

i=1 ¬Succ(Ai, τi))}
(13)

To illustrate the above equality, consider Figure 2. The security chance of argument A

along the dialogue tree τ is:

Pr(Succ(A, τ))

= Pr(Con(A)).{Pr(¬Succ(B, τ1)|Con(A) ∧ ¬Succ(C, τ1))

.P r(¬Succ(C, τ2)|Con(A) ∧ ¬Succ(B, τ2))}
(14)

r1:  a, b ⇒ c Pr(r1
a) = 1

a Pr(aa ) = 1

b Pr(ba ) = 0,9

r2:  d ⇒ ¬c Pr(r2
a) = 0,8

d Pr(da ) = 0,5 

A

B

r3:  e ⇒ ¬c Pr(r3
a) = 0,5

e Pr(da ) = 0,2 

C

r4:  f ⇒ inapp(r3)      Pr(r2
a) = 0,5

f         Pr(fa ) = 0,3 

D

Figure 2. Dialogue tree generated from the mad cow example.

If we again assume that the premises of the arguments A, B, C, and D are statistically
independent, then since trees τ1 and τ2 are the dialogues D1 and D2, we can compute
(14) as follows.



Pr(Succ(A, τ))

= Pr(Con(A)).P r(¬Succ(B,D1)).P r(¬Succ(C,D2))

= Pr(Con(A)).[1− Pr(Succ(B,D1))].[1− Pr(Succ(C,D2))]

= 0, 9× [1− 0, 4]× [1− 0, 085]

= 0, 4941

(15)

Note that the present approach only defines the probability of success of arguments and
does not consider the probability whether a statement has at least one successful argu-
ment.The difference is especially relevant when a statement can be supported by several
arguments. A way to deal with such cases in the present framework is to adopt Prakken
(2005)’s treatment of such cases, in which several arguments for the same conclusion can
be combined into a new argument for the same conclusion. Then only the probability of
success of this single accrual argument needs to be computed. There may be other ways
to deal with accrual of arguments but this has to be left for future research.

4. Chances to win and expected utility

We have provided a method to calculate the probability of success of arguments in a
dialogue. Although this approach can be applied for different purposes (see Section 5),
one of the most direct ways to use it is in calculating the expected utility (EU) of an
arguer to take part in the argumentation.

As is well-known, different options are available to calculate EU and there is an ex-
tensive debate in the literature. This section is meant to illustrate how to use the method
previously developed with the example of the mad cow: complexities about EU are out-
side the scope of this section. The most classical way to calculate EU of an act X is as
follows:

EU(X) =
n∑

i=1

Pr(oi).u(oi) (16)

where o1, . . . , on are the possible (and mutually exclusive) outcomes of X . The equality
(16) states that the expected utility of an act X is the sum of the products of the prob-
abilities and utility’s values for each outcome, and it can be directly applied to single
arguments, thus calculating an arguments’ expected utility.

We have two mutually exclusive outcomes: for each arguer, he can win or lose. But
we have already defined arguer John as the person who has an interest in starting the ar-
gumentation (it is arguer John who wants to sue Henry to obtain compensation from him
for damages). Thus, calculating utility mainly makes sense when the act Sue_Henry
is considered. If so, only success of argument A corresponds to John’s winning, and
EU(Sue_Henry) will take into account A’s probability of success.

If John wins, the compensation will amount to 1500$, and Henry will also have to
cover the trial expenses (which are estimated to 500$), so that the compensation will be a
net advantage to John. If John loses he will have to cover the trial expenses. Accordingly,
the expected utility for John of suing Henry is:

EU(Sue_Henry) = Pr(Succ(A, τ))× 1500 + [1− Pr(Succ(A, τ))]× (−500)



In the previous section, Pr(Succ(A, τ)) turned out to be 0, 4941, and accordingly,
EU(Sue_Henry) = 1500× 0, 4941− 500× 0, 5059 = 488, 20$.

The decision to perform an act depends on the expected utility of this act and of its
omission. If the expected utility EU(X) of an act X is higher than the expected utility
EU(¬X) of its omission, then a rational agent will perform the act X .

In our example, the expected utility of victory amounts to 488, 20$ which while the
expected utility of not suing Henry is 0$, since nothing happens in this case (there is no
suit and therefore no gain and no loss). Thus, even though A’s probability of success is
not high, since 488, 20$ is better then nothing, it makes sense for John to sue Henry.

5. Conclusion

We have provided an approach to capture uncertainty about whether the players’ state-
ments will be accepted by an adjudicator and its consequence on the outcome of the dis-
pute. A probability distribution is assumed on these statements to reflect this uncertainty,
which induces the probability of success of an argument. The latter probability is then
used in combination of the costs and gains of the dispute in order to predict its expected
utility. We have illustrated that in deciding in engaging in a legal dispute, the expected
utility may be more relevant than the probability of winning the dispute.

An issue is: where do the numbers for the probabilities come from? Statistics could
help by providing the number of same-level courts that accepted a specific rule, or by
showing how a specific judge decided in the past. If a probability weighting is not empir-
ically verifiable, then a possible refinement is the introduction of variations on it, for ex-
ample, if John ‘feels’ that the probability is somewhere around a number X , how much
does it matter that John estimates X accurately?

Future works can be generated by variations ranging from the argumentation frame-
work and the uncertainty treatment to the utility function. We intend to couple it with
game theory as investigated by Roth et al. (2007) to determine optimal strategies in dia-
logue games for argumentation where each strategy may have a different utility.

Finally, the approach can be implemented into ‘argument assistance systems’ that
assist the decision making process of jurists and others, by providing a tool that offers
advice and reasons for its advice, to engage into a legal dispute.
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