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Abstract. This paper investigates the relations between Timmer et al.’s proposal
for explaining Bayesian networks with structured argumentation and abstract
models of probabilistic argumentation. First some challenges are identified for in-
corporating probabilistic notions of argument strength in structured models of ar-
gumentation. Then it is investigated to what extent Timmer et al’s approach meets
these challenges and satisfies semantics and rationality conditions for probabilis-
tic argumentation frameworks proposed in the literature. The results are used to
draw conclusions about the strengths and limitations of both approaches.

1 Introduction and Motivation

There is a recent increase in interest in models of probabilistic argumentation. In argu-
mentation theory, Hahn and others have advocated a probabilistic interpretation of ar-
gument schemes (e.g. [3]). A limitation of this work is that it does not deal with several
crucial features of argumentation-based inference, such as attacks and combinations of
arguments. Recent AI research on abstract models of probabilistic argumentation, e.g.
[7, 6], addresses the first limitation. However, since it says nothing about the structure
of arguments and the nature of attack, the proposed models have so far been hard to
interpret. For example, it is not easy to understand what the probability of an argument
means, since in probability theory probabilities are assigned to the truth of statements
or to outcomes of events, and an argument is in general neither a statement nor an event.
What is required here is a precise account in terms of the structure of arguments and the
nature of attack. The present paper aims to offer such an account.

In the literature two different uses of probability theory in argumentation can be
seen, depending on whether the uncertainty is in or about the arguments. In the first
use, probabilities are intrinsic to an argument in that they are used for capturing the
strength of an argument given uncertainty concerning the truth of its premises or the
reliability of its inferences. An example is default reasoning with probabilistic general-
isations, as in The large majority of Belgian people speak French, Mathieu is Belgian,
therefore (presumably) Mathieu speaks French. Clearly, if all premises of an argument
are certain and it only makes deductive inferences, the argument should be given maxi-
mum probabilistic strength. [4] calls this use of probability the epistemic approach.

A second, extrinsic use of probability in argumentation (by [4] called the constella-
tions approach) is for expressing uncertainty about whether arguments are accepted as



existing by some arguing agent. [5] gives the example of a dialogue participant who ut-
ters an enthymeme and where the listener can imagine two reasonable premises that the
speaker had in mind: the listener can then assign probabilities to these options, which
translate into probabilities on which argument the speaker meant to construct. This un-
certainty has nothing to do with the intrinsic strengths of the two candidate completed
arguments: one might be stronger than the other while yet the other is more likely the
argument that the speaker had in mind. Note that in this approach even deductive argu-
ments from certain premises can have less than maximal strength.

This paper focuses on the first use of probability theory, unlike most recent work
on probabilistic abstract argumentation, which instead focuses on the second use (cf.
the overview in [6]). An exception is [4], who formally distinguishes and develops both
approaches, followed-up in e.g. [6]. For its epistemic approach [4] instantiates proba-
bilistic argumentation frameworks with classical argumentation and defines the strength
of an argument as the probability of the conjunction of all its premises. However, while
for classical argumentation (where all arguments are deductive) this makes sense, this
is not the case for accounts where arguments make defeasible inferences from certain
premises (as in the above example of default reasoning, where it is both certain that the
large majority of Belgian people speaks French and that Mathieu is Belgian but where
the conclusion does not deductively follow from them): here all arguments should ac-
cording to [4] be given strength 1, which is clearly undesirable.

Accordingly, the problem studied in this paper is how to instantiate abstract prob-
abilistic frameworks with an account of intrinsic probabilistic strength of structured
arguments, where the premises of all arguments are certain but their inferences can be
defeasible. The problem will be studied in the context of a simple instantiation of the
ASPIC+ framework [8]. In particular, [10]’s recent proposal will be studied to explain
forensic Bayesian networks in terms of ASPIC+-style structured argumentation frame-
works (SAFs) with probabilistic argument strengths. Since SAFs are an instance of
[1]’s abstract argumentation frameworks (AFs), Timmer’s probabilistic SAFs are a
suitable candidate for being related to abstract probabilistic frameworks.

This paper is organised as follows. Section 2 presents the formal preliminaries. Sec-
tion 3 gives a conceptual analysis of the problem of defining probabilistic strengths
of structured arguments. Section 4 summarises [10]’s structured model of probabilistic
argumentation. Section 5 then formally investigates its relation with abstract probabilis-
tic argumentation frameworks, while Section 6 draws some general conclusions on the
relation between abstract and structured models of probabilistic argumentation.

2 Formal Preliminaries

An abstract argumentation framework (AF ) is a pair 〈A, attack〉, where A is a set ar-
guments and attack ⊆ A × A is a binary relation. The theory of AFs addresses how
sets of arguments (called extensions) can be identified which are internally coherent
and defend themselves against attack. A key notion here is that of an argument being
acceptable with respect to, or defended by a set of arguments: A ∈ A is defended by
S ⊆ A if for all B ∈ A: if B attacks A, then some C ∈ S attacks B. Then relative to a
given AF various types of extensions can be defined.
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– E is admissible if E is conflict-free and defends all its members;
– E is a preferred extension if E is a ⊆-maximal admissible set;
– E is a stable extension if E is admissible and attacks all arguments outside it;
– E ⊆ A is the grounded extension if E is the least fixpoint of operator F , where
F (S) returns all arguments defended by S.

Various proposals for extending abstract argumentation frameworks with probabilities
exist. Here we focus on one of the simplest proposals, the one of [7] as adapted by [4].
A probabilistic argumentation framework (PrAF ) is a triple 〈A, attack , P r〉 where
〈A, attack〉 is an abstract argumentation framework and Pr : A 7→ [0, 1]. Further
notions concerning PrAFs will be discussed in Section 5 below.

ASPIC+ [8] is a general framework for structured argumentation. It abstracts from
the logical language L except that it assumes a binary contrariness relation defined over
L. In the present paper L will be a language of propositional or predicate-logic atoms.
Arguments are constructed from a knowledge base expressed inL by chaining inference
rules defined over L into graphs (which are trees if no premise is used more than once).
For present purposes only certain (non-attackable) premises and defeasible (attackable)
inference rules are needed. All this reduces to the following definitions:

Definition 1 (Argumentation System). An argumentation system (AS) is a tupleAS =
(L,̄ ,R) where:

– L is a logical language consisting of propositional or predicate-logic atoms
– ¯: L 7→ Pow(L) is a contrariness function over L
– R is a set of (defeasible) inference rules of the form φ1, . . . , φn ⇒ φ (where φ, φi

are meta-variables ranging over wff in L).

Definition 2. [Knowledge Bases and Arguments] An argument A on the basis of a
knowledge base K ⊆ L in an argumentation system AS is:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ; Sub(A) = {ϕ};
2. A1, . . . An ⇒ ψ if A1, . . . , An are arguments such that Conc(A1), . . . , Conc(An)
⇒ ψ ∈ Rwith: Prem(A) = Prem(A1)∪. . .∪Prem(An), Conc(A) = ψ, Sub(A) =
Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A};

An argument A is said to attack an argument B iff A rebuts B, where A rebuts B (on
B′) iff Conc(A) = ϕ for some B′ ∈ Sub(B) of the form B′′1 , . . . , B

′′
n ⇒ ϕ.

The ASPIC+ counterpart of an abstract argumentation framework is a structured
argumentation framework.

Definition 3. [Structured Argumentation Frameworks] Let AT be an argumentation
theory (AS,K). A structured argumentation framework (SAF) defined byAT , is a triple
〈A, C, � 〉 where A is the set of all finite arguments constructed from K in AS, � is an
ordering on A, and (X,Y ) ∈ C iff X attacks Y .

A relation of defeat is then defined as follows (A ≺ B is defined as usual as A � B
and B 6� A). A defeats B iff A rebuts B on B′ and A ⊀ B′. Abstract argumentation
frameworks are then generated from SAFs by letting the attacks from an AF be the
defeats from a SAF .
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Definition 4 (Argumentation frameworks). An abstract argumentation framework (AF )
corresponding to a SAF = 〈A, C, � 〉 (where C is ASPIC+’s attack relation) is a pair
(A, attack) such that attack is the defeat relation on A determined by SAF .

3 Probabilistic Argument Strength: a Conceptual Analysis

We can now make the problem studied in this paper even more specific. The problem
is: in the context of the just-described simple instantiation of ASPIC+, how can a prob-
abilistic notion of argument strength be defined such that for two arguments A and B
we have that A � B just in case strength(A) ≤ strength(B)? In other words: how can
probabilistic argument strength be used to resolve attacks into defeats?

A first challenge here is that a higher internal strength does not necessarily make an
argument dialectically stronger. Suppose 90% of the birds can fly, and 80% of penguins
cannot fly. Should the argument Tweety can fly since it is a penguin so it is a bird be
stronger than the argument Tweety cannot fly since it is a penguin? Of course not, since
probability theory requires that all evidence is taken into account, and since penguins
are a special kind of bird, we should (defeasibly) conclude that Tweety cannot fly. More
formally, if we have Pr(q|p) = x and Pr(q|p ∧ r) = y and both p and r are given,
then we should base our inference on Pr(q|p ∧ r) = y. For this reason, probability-
based comparisons between arguments should, either explicitly or implicitly, involve a
kind of specificity principle. For example, [2] do so in their notion of specificity defeat
for probabilistic assumption-based argumentation. More generally this shows that the
probabilistic strength of an argument cannot be calculated independent of its attackers.

This issue arises in a different way in case of attacks between arguments that do not
have a specificity relation. Consider the following well-known example from nonmono-
tonic logic: Quakers are usually pacifists, Republicans are usually not pacifists, Nixon
was a quaker and a republican. It is wrong to compare Pr(P |Q) with Pr(¬P |R).
What counts is Pr(P |Q∧R) and in general the latter probability is independent of the
former probabilities (although in special cases this may be different).

A third challenge arises from the step-by-step nature of arguments. Consider I see
smoke, my observations are usually correct, therefore (presumably) there is smoke.
Where there is smoke, there usually is fire, therefore (presumably) there is fire. Can
a recursive definition of argument strength be given where the strength of the entire
argument depends on the strength of its subargument for there is smoke and the strength
of its final step? This is not a trivial problem, since Pr(fire|seesmoke) does in general
not follow from Pr(fire|smoke) and Pr(smoke|seesmoke).

4 Explaining Bayesian Networks with Argumentation

In this section we summarise [10]’s method for explaining (forensic) Bayesian networks
with argumentation. A Bayesian network is a graphical representation of a joint prob-
ability distribution. Formally, it is a pair (G,Pr) where G is a directed acyclic graph
(V,E), with a finite set of variables V connected by edges E from V × V, and Pr

4



is a probability function which specifies for every variable Vi the probability distribu-
tion Pr(Vi|parents(Vi)) of its outcomes conditioned on its parents parents(Vi) in the
graph. [10] assume that all variables are boolean.

[10] first set the language L of the ASPIC+ argumentation system to the set of all
V = v expressions where V ∈ V and v is a possible value of V . Then ϕ ∈ ψ iff ϕ
and ψ assign different values to the same variable. [10] then derive an ASPIC+ SAF
from a BN plus a set of instantiated variables (the evidence) in terms of an intermediate
structure called a support graph, which for a given variable of interest from V captures
the potential reasoning paths through the BN. Entering evidence in a BN prunes all
branches of the support graph that do not end in evidence. Arguments can be constructed
from the support graph by making its non-premise nodes either true or false.

Crime

Motive Twin DNA_match

Psych_report

Psych_report Crime Twin

Motive

DNA_match

Fig. 1. A Bayesian network (below) and a support graph (above).

The basic idea is illustrated with Figures 1 and 2, displaying an example from [10].
The variable of interest in the BN is whether the suspect committed the Crime. Evidence
for this can be a DNA_match between the suspect’s DNA and DNA found at the crime
scene. Such a DNA match may also be explained by the existence of a Twin brother.
The existence of a Motive makes the crime more likely. Evidence for a motive may be
given in a psychological report (Psych_report). After the evidence Psych_report = True
and DNA_match = True is entered into the BN, the chain in the support graph from
Twin to Crime is pruned away. The arguments generated from this are all inference
trees corresponding to the pruned graph or a subgraph with all non-evidence nodes
instantiated in any possible way (i.e., with either True or False). Figure 2 displays the
arguments when Psych_report and Crime are both true. Formally (with contrariness for
convenience encoded with negation, even though ¬ is strictly speaking not part of L)
both these pieces of evidence are arguments and moreover:

A1 = Psych_report⇒ Motive A2 = A1,DNA_match⇒ Crime

But, for instance, the following arguments can also be constructed:
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B1 = Psych_report⇒¬ Motive B2 = B1,DNA_match⇒¬ Crime
C = A1,DNA_match⇒¬ Crime

Suppose that now Twin also becomes available as evidence. At first sight, one might
expect that this gives rise to rebuttal of A2 of the form Twin⇒¬ Crime. However, this
is not how the method works. Instead, it captures all variables relevant to a conclusion
in a single argument concerning that conclusion. So, A2, B2 and C are modified to:

A′2 = A1,DNA_match,Twin⇒ Crime B′2 = B1,DNA_match,Twin⇒¬ Crime
C ′ = A1,DNA_match,Twin⇒¬ Crime

So for every constructable argument there is a rebuttal with the same ‘skeleton’ but with
some truth values of non-premises flipped, and there are no other (direct) rebuttals.

Space limitations prevent listing the formal definitions of the support graph and the
induced SAF . Essentially, the knowledge base consists of the evidence while the set of
defeasible rules corresponds to links in the support graph. For present purposes all that
is relevant is that the following definition of argument strength, when used to resolve at-
tacks into defeats, gives the induced SAF a number of ‘good’ properties, which means
that [10]’s way to define probabilistic structured argumentation as an instantiation of
Dung-style AFs makes sense (with some simplified notation compared to [10]):

strength(A) = Pr(Conc(A)|K)

(whereK is the knowledge base of theAT induced by the BN-with-evidence). Thus the

Crime = true

Motive = true Twin DNA_match = true

Psych_report = true

95%

89% observed

observed

Psych_report Crime Twin

Motive

DNA_match

Fig. 2. Deriving arguments from the pruned support graph after entering evidence.

strength of an argument A equals the posterior probability of Conc(A) in the BN-with-
evidence inducing the SAF . This definition implies that the strengths of two directly
rebutting arguments always adds up to 1, since Pr(Q|P ) = 1− Pr(¬Q|P ).

Figure 2 displays the strengths of the non-premise arguments in the figure, based
on the probability tables in [10]. The strength of B1 is 1 − strength(A1) = 11% and
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the strength of B2 and C is 1 − strength(A2) = 5%. In fact, to obtain the results
listed below, for arguments for the variable of interest the definition of strength can be
reduced to the equivalent definition strength(A) = Pr(Conc(A)|Prem(A)). However,
for subarguments the inclusion of all of K is needed. For the reasons why see [10].
It should be noted that a strength of 1 of a non-premise argument does not mean that
it should be modelled as applying strict rules, since Pr(P |Q) = 1 does not imply
Pr(P |Q ∧R) = 1. So even a non-premise argument of strength 1 is defeasible.

The ‘good’ properties (as proven by or easily following from [10]) are as follows.

1. The grounded extension equals the set of undefeated arguments.
2. The grounded extension satisfies subargument closure, direct and indirect consis-

tency and (trivially) strict closure. For the definitions of these properties see [8].
3. If A is in the grounded extension, then A is the strongest argument for Conc(A).
4. If A is in the grounded extension, then strength(A) > 0.5.

Interestingly, an argument can be stronger than some of its subarguments, An example
is Figure 2, where argument A2 for Crime is stronger than its subargument A2 for mo-
tive. This can happen since by combining arguments A1 and DNA_match, argument A2

aggregates the support given to its conclusion by two pieces of evidence. This reflects
a general feature of probabilistic reasoning, namely, that the combination of pieces of
evidence that each have weak probative force can have strong probative force.

Let us see how [10]’s approach deals with the challenges discussed in Section 3.
The first two challenges are dealt with since, firstly, all arguments contain all variables
from the BN that are relevant for their conclusions and, secondly, argument strength is
defined relative to all (relevant) evidence. While this is good, it also has an obvious lim-
itation, namely, that two arguments with the same premises and conclusion but different
internal structure have the same strength. Thus the third challenge is not fully met. On
the other hand, it is still partially met since two such arguments can have subarguments
of different strengths, and this can be reported to those to which the BN is explained.
Another possible limitation is that in [10] the reasons pro and con a conclusion are not,
as usual in argumentation, distributed over conflicting arguments but are all contained
in a single argument for or against the conclusion, which is not according to the con-
ceptual idea underlying argumentation-based inference. Nevertheless, for the purpose
of explaining forensic Bayesian networks to judges, prosecutors and defence lawyers
this may be perfectly adequate.

5 Relating the Abstract and Structured Accounts

We now investigate whether the work of [10] can be seen as an instantiation of epis-
temically interpreted probabilistic abstract frameworks in the sense of [4]. The first
step is obvious, namely, equating the probability of an argument in a PrAF with the
argument’s strength according to [10]. However, the next step, instantiating the attack
relation of PrAFs , is less obvious: should it be instantiated with ASPIC+’s C relation of
attack or with its defeat relation? Let us first assume that the probability of an argument
is to be used to resolve attacks: can this be modelled at the abstract level or should this
be modelled while taking the structure of arguments into account? [8] provide reasons
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for the latter approach, since the former approach cannot distinguish between direct and
indirect attack relations and therefore runs the risk of applying the wrong probabilities
to an attack. Consider an argument A3 = A1, A2 ⇒ ϕ and an argument B rebutting
A3 on A1. [8] show that with a last-link ordering in terms of rule priorities it may be
that A1 ≺ B while B ≺ A3. Then resolving the attacks at the abstract level by saying
that an argument A attacks (i.e., ASPIC+-defeats) an argument B iff A rebuts B and
A ⊀ B results in a grounded/preferred/stable/complete extension {A2, A3, B}, which
is not closed under the subargument relation. This problem arises since the rebuttal of
B on A3 is incorrectly resolved with B ≺ A3 (so B does not attack A3 in the AF )
while it should be resolved with A1 ≺ B (so B does attack A3 in the AF ), resulting in
a grounded extension {A2, B}. As shown by [8], the same problem can make conclu-
sion sets of extensions violate consistency. Since, as noted above, in [10]’s approach an
argument can also be stronger than some of its subarguments, all these problems also
arise if the Pr function is used at the abstract level of PrAFs to resolve attacks. This is
an important lesson that can be learned from the present analysis.

In [4], which instantiates PrAFs with classical argumentation, the argument prob-
abilities are not used in defining the attack relation between arguments, so (in terms
of ASPIC+), [4] instantiates the attack relation of PrAFs with ASPIC+’s C relation.
Yet his approach does not necessarily suffer from the just-sketched problems, since [4]
does not use the Pr functions to resolve the attacks in PrAFs . Instead, he defines the
following notions. The epistemic extension of a PrAF is {A ∈ A|Pr(A) > 0.5}.
A probability function is rational iff for every pair of arguments A and B such that
A attacks B, if Pr(A) > 0.5 then Pr(B) ≤ 0.5. A PrAF is called rational if its
Pr is rational. [4] then proves that for every rational PrAF its epistemic extension is
conflict-free with respect to the attack relation.

Yet the notion of an epistemic extension combined with the rationality constraint on
Pr is not a good abstraction of [10]’s approach. To start with, the grounded extension
in [10]’s approach does not always equal the epistemic extension. Consider a support
graph E −→ H1 −→ H2 and consider the arguments (E ⇒ H1) ⇒ H2 and (E ⇒
¬H1) ⇒ H2. Both have the same strength. Suppose their strength exceeds 0.5. Then
they cannot be both in the grounded extension, since they have rebutting subarguments.
Yet both are in the epistemic extension. This can happen since in [10]’s approach an
argument can be stronger than some of its subarguments.

Next, [10]’s probability function is not guaranteed to be rational. Consider the same
support graph, the above arguments and their respective subarguments E ⇒ H1 and
E ⇒ H2, and suppose strength((E ⇒ H1) ⇒ H2) = 0.6 and strength((E1 ⇒
H1)) = 0.4 and strength((E1 ⇒ ¬H1)) = 0.6. The argument for ¬H1 indirectly
attacks the argument for H2 but both have strength > 0.5. This can happen since the
attack is indirect. In PrAFs the distinction between direct and indirect attack cannot
be modelled. However, if the rationality constraint is confined to direct attacks, then it
holds, since the strengths of two directly rebutting arguments always add up to 1. This
is a first indication of the importance of taking the structure of arguments into account.

Further indications follow from an analysis of the other “rationality conditions” on
PrAFs proposed in [6]. (Below for any A ∈ A, A− = {B|B attacks A}).

COH Pr is coherent if for every A,B ∈ A, if A attacks B then Pr(A) ≤ 1− Pr(B).
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INV Pr is involutary if for every A,B ∈ A, if A attacks B then Pr(A) = 1− Pr(B).

SFOU Pr is semi-founded if Pr(A) ≥ 0.5 for every unattacked A ∈ A.

FOU Pr is founded if Pr(A) = 1 for every A ∈ A with A− = ∅.
SOPT Pr is semi-optimistic if Pr(A) ≥ 1−ΣB∈A−Pr(B) whenever A− 6= ∅.

OPT Pr is optimistic if Pr(A) ≥ 1−ΣB∈A−Pr(B) for every A ∈ A.

We now investigate whether these properties hold for [10]’s approach, for both the
ASPIC+ C relation and its defeat relation. In doing so, we will use the support graph
E −→ H1 −→ H2 and the various arguments it generates with evidence E, assuming
that both Pr(H1|K) > 0.5 and Pr(H2|K) > 0.5. (For space limitations we omit a
proof that a BN that generates such a support graph, arguments and strengths exists).

COH in general neither holds for C nor for defeat, since these relations can be in-
direct. For example, argument (E ⇒ H1) ⇒ H2 rebuts (E ⇒ ¬H1) ⇒ H2 on
E ⇒ ¬H1 but both arguments have strength > 0.5 (even though the latter’s subargu-
ment for ¬H1 has strength < 0.5). However, COH does hold when restricted to direct
C or defeat relations, since for every pair of direct rebuttals their strengths add up to 1.
All these observations also hold for INV.

SFOU holds in general for both C and defeat. For C, note that the only non-rebutted
arguments are elements of K, which by definition have strength 1. For defeat, if B
unsuccessfully directly rebuts A, then strength(B) < strength(A) so since these
strengths add up to 1, strength(A) > 0.5. Note further that every non-premise ar-
gument has at least one rebuttal, so every non-defeated argument has strength > 0.5.

FOU holds in general for C but not for defeat. For C FOU holds for the same reason
as why SFOU holds. Our above example provides a counterexample for defeat if the
strength of the argument for H2 does not equal 1. This is also a counterexample for
FOU restricted to direct defeats.

SOPT neither holds for C nor for defeat, and neither for the direct nor for the indirect
relations. In our example, (E ⇒ H1) ⇒ H2 has two direct rebuttals, namely, (E ⇒
H1) ⇒ ¬H2 and (E ⇒ ¬H1) ⇒ H2. If the strength of the argument for H2 is higher
than 0.5 but below 0.75, then the strengths of its two rebuttals add up to above 0.5. This
is also a counterexample to OPT.

SOPT holds in general for both C and defeat. For direct attack and direct defeat it
holds since if A directly attacks B, then by definition of the strength of arguments it
holds that Pr(A)+Pr(B) = 1. Furthermore, by construction ofA every argument has
at least one direct attacker. If an argument A only has indirect defeaters, then Pr(A) >
0.5 since it has no direct defeaters. Then the property holds for defeat in general since
if B indirectly defeats A then B directly attacks a subargument of A so Pr(B) ≥ 0.5.

Finally, OPT holds for in general for attack since an argument without attackers has
probability 1. However, it holds neither for direct defeat nor for defeat in general since
an argument without defeaters can still have probability less than 1.

These results are summarised in the following Table.
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Direct General Direct General
attack attack defeat defeat

RAT x x
COH x x
INV x x
SFOU x x x x
FOU x x
SOPT x x x x
OPT x x

The negative results do not indicate flaws of [10]’s approach, since they are due to
two of its features which both are reasonable for probabilistic argumentation: the dis-
tinction between direct and indirect attack and the fact that an argument can be stronger
than some of its subarguments. It can therefore be concluded that [6]’s set of rationality
conditions cannot be seen as minimum conditions for the well-behavedness of PrAFs .

6 Conclusion

In this paper we have investigated to what extent [10]’s probabilistic version of AS-
PIC+, proposed for explaining Bayesian networks, satisfies semantics and rationality
conditions for probabilistic argumentation frameworks proposed in the literature. Some
results were positive but other results were negative. The negative results do not seem to
point at flaws of [10]’s approach but instead at limitations of current abstract models of
probabilistic argumentation, in particular their failure to distinguish between direct and
indirect relations of attack and defeat. One conclusion is that to make this distinction
in a proper way, the structure of arguments and the nature of attack and defeat must
be made explicit. Another conclusion is that not all rationality conditions for proba-
bilistic models of argumentation proposed in the literature can be regarded as minimum
requirements for the well-behavedness of these models.

This paper has also identified several challenges for attempts to use probabilistic
argument strength for resolving attacks into defeats. These challenges arise from the
difference between the global nature of Bayesian probabilistic reasoning (where all ev-
idence has to be taken into account) and the local nature of argumentation (where par-
ticular conflicting arguments are compared). [10] found a way to meet these challenges
but with some limitations. While [10]’s approach may suffice for its intended applica-
tion of explaining forensic Bayesian networks, future research should study whether
more general solutions are possible without these limitations.

Some related work was already discussed throughout this paper. In addition, [2]
propose an extension of [1]’s abstract frameworks with probability and then extend
assumption-based argumentation with the means to label literals in rules with proba-
bilities. The abstract approach models more than what is of present concern, namely,
some aspects of multi-agent argumentation, while the abstract and assumption-based
parts are not formally related. In future research it would be interesting to investigate
[2]’s probabilistic version of assumption-based argumentation in the same way as we
did for [10]’s probabilistic version of ASPIC+.
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In this paper we studied the use of probability for two things: for resolving attacks
into defeats within ASPIC+ and for identifying epistemic extensions in the sense of [4].
In future research it would be interesting to investigate the use of probability to define
graded notions of argument acceptability, as in e.g. [9]. We conjecture that here, too, it
is important to take the structure of arguments and the nature of attack into account.
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