
Theorem Prover Supported Logics for Imperative Programs

I.S.W.B. Prasetya (UU) and A. Azurat (UI) and T.E.J. Vos (UPV)

and A. van Leeuwen (UU) and I. Gochkov (UU) and H. Suhartanto (UI)

jul. 2004

UU: Institute of Information and Computing Sciences, Utrecht University. P.O.Box 80.089, 3508 TB Utrecht, the

Netherlands. UI: Fakultas Ilmu Komputer, Universitas Indonesia. Kampus UI Depok, Indonesia. UPV: Instituto

Tecnológico de Informática , Universidad Politécnica de Valencia.

Emails: wishnu@cs.uu.nl, ade@cs.ui.ac.id, tanja@iti.upv.es, arthurvl@cs.uu.nl

Abstract

This report describes a simple imperative programming language L0 and its logic. Through
syntactical embedding in the theorem prover HOL we were able to quickly implement a veri-
fication support for L0. The approach gives access to HOL built-in utilities, like tactics and
rewrite functions, and allows much reuse of HOL built-in parser and type checker. However,
unlike semantical embedding, meta theorems cannot be proven. The logic of L0 is Hoare-based
and is completely syntax driven: it reduces a given specification to a set of verification condi-
tions, which are plain HOL formulas —thus can be verified in HOL in the standard way. L0

features only basic imperative constructs (including block and program call). Although it can
be used stand alone, its intended use is to serve as a stable core from which other languages
can be built, e.g. via customization and extension. This report gives two examples of new
languages built on L0: TEST, a language to write a suite of unit tests for L0 programs, and
Lingu, a language for scripting database transactions.

1

Contents

1 Introduction 3

2 Two Kinds of Embedding 3
2.1 Semantical Embedding . 4
2.2 Syntactical Embedding . 5

3 The Language L0 5

4 Embedding L0 7
4.1 Program Call . 8

5 L0 Logic 8

6 Implementing the Logic 11

7 TEST 12

8 Lingu 13
8.1 S Expression . 14
8.2 Lingu Expressions and Database Specific Instructions 16
8.3 Implementation . 17
8.4 Verifying Key Constraints . 17
8.5 Aggregate Function . 18

A Syntax of L0 19

B Syntax of TEST 20

C Syntax of Lingu 20

2

1 Introduction

Theorem provers like Isabelle, COQ, and HOL have very expressive base logics so that we can
embed a wide range of other logics in them, including programming logics. There have been many
examples of the latter, e.g. logics for C [4], Java [2], ML [1], and UNITY [6]. All these examples,
and most other embeddings of programming logics, are what we call semantical embeddings. Such
an embedding maintains representations of both the abstract syntax and semantic of an object
language L in the theorem prover’s logic. Distinction between shallow and deep embedding is
often made, depending on how detailed the syntax is represented. Isabelle is also suitable to do
syntactical embedding. This is a different kind of embedding; its goal is not to have a representation
of L’s semantic in the theorem prover, but rather: to embed as much as possible of L’s concrete
syntax.

The drawback of syntactical embedding is clear. Without the semantic we will not be able to
verify meta-theorems about L (e.g. the soundness of its logic). However, syntactical embedding
gives us, with minimum effort, a parser and type checker for the object language, which are
obtained mostly by reusing the theorem prover’s own parser and type checker. This cannot be done
in a semantical embedding; a full language-front-end will have to be built to complement it, e.g.
as the LOOP front-end compiler [8] is used to drive its back-end Java logic, which is semantically
embedded in HOL [2]. Semantical embedding is best suited for studying meta properties of a
logic. To actually implement logics, in particular of programming languages, whose syntax are
often complicated, syntactical embedding would be preferred. If a semantical embedding already
exists, a syntactical embedding can serve as its language front-end.

We will discuss here a syntactical embedding of a Hoare-styled logic for an imperative pro-
gramming language, which we simply call L0, in HOL. It is a minimalistic language, featuring
only basic constructs: basic statements, block, program call, return value, pass-by-value and pass-
by-reference parameters, and old keyword to refer to a variable’s initial state. It has no notion
of object nor compilation module. It also leaves the syntax of expressions and assertions under-
specified. After sufficient concretization we can turn L0 to a concrete language which can be used
stand alone. Our L0 library includes an example of such a concrete instance of L0, called Lmin

0 ,
which comes with an ML translator for execution (and few other utilities, e.g. a test generator).
However the intended use of L0 is to serve as a stable core from which other languages can be built,
e.g. via customization and extension. This report also gives two examples of new languages built
on L0: TEST, a language to write a suite of unit tests for L0 programs, and Lingu, a language
for scripting database transactions. In both cases we can reuse much of what we have built for
L0. The new parts can be quite easily implemented by reusing utilities already provided by HOL.

Isabelle is commonly used to do syntactical embedding; it provides a framework and tools
especially made for this purpose. We use HOL however, primarily because we are more familiar
with it. HOL is not especially made for syntactical embedding and is more often used for seman-
tical embedding. However, underneath HOL offers the same typed λ-calculus as the embedding
medium. Later versions of HOL also allow syntax customization, which is very useful in syntacti-
cal embedding. It makes HOL at least worth considering for people already investing substantial
effort in HOL.

A prototype of L0, Lmin
0 , TEST, and Lingu can be downloaded from:

http://www.cs.uu.nl/~wishnu/research/projects/xMECH

2 Two Kinds of Embedding

To better illustrate the difference between syntactical and semantical embedding we will give
examples. Consider the following simplistic statement language L —the typing rules are not
shown; they are quite standard.

3

Stmt :: skip
| Variable := Expr
| { Statement; . . . ; Statement }

Expr :: Variable | Bool-constant | Integer-constant

2.1 Semantical Embedding

We can represent L statements in HOL with (higher order) functions from state to state, and
states by functions from variable-names (e.g. represented by strings) to values. In the same line
we can represent expressions and assertions:

state = string→ val
stmt = state→ state
expr = state→ value
assertion = state→ bool

The type value represents values which our program variables may take. For L, it has to be rich
enough to represent Boolean values and integers. This HOL data-type representation will do:

hol datatype value = Bval of bool | Bint of int

Constants of appropriate types can be introduced to represent the three kinds of statements of L:

skip : stmt
asg : string→ expr→ stmt
seq : stmt→ stmt→ stmt

This is sufficient to embed the language, up to its abstract syntax. An (abstract) semantic can be
added simply by defining those constants, e.g.:

skip s = s
asg v e s = (λ x. if x=v then e s else s x)
seq S1 S2 s = S2 (S1 s)

A notion of Hoare-triple can be defined semantically, e.g.:

HOA (P, S, Q) = (∀s. P s⇒ Q (S s))

Inference rules for the corresponding Hoare logic can be represented as HOL formulas; e.g. this
rule for skip:

P ⇒ Q
{P} skip {Q}

is represented by the formula:

(∀s. P s⇒ Q s) ⇒ HOA (P, skip, Q)

Because we have a semantic, we can actually verify that L’s inference rules, like the one above for
skip, follow from L’s semantic. By doing so we effectively verify the soundness of L’s logic. This
feature is the main advantage of semantical embedding. Once verified the rules can be turned to
HOL theorems. Subsequent proofs built purely on HOL theorems are guaranteed to be safe.

The first problem with semantical embedding is that we have no concrete syntax. For example,
the statement {x := 0; b := F} is represented by this hard to read formula:

seq (asg "x" (Ival 0)) (asg "b" (Bval F))

Secondly we also lose type checking. We would expect HOL built-in type checker to do that.
Unfortunately, statements like this one:

seq (asg "x" (Ival 0)) (asg "x" (Bval F))

will be accepted by HOL. It represents {x := 0; x := F}, which would be type incorrect in L.

4

2.2 Syntactical Embedding

In the syntactical embedding we are not concerned with the embedding of the semantic of L. It
is sufficient to know that a statement is an object which is different than, for example, Boolean
values and integers. To enforce this, we represent statements with a new type, say Stmt. To
represent skip and sequence (of statements), we can introduce these constants:

skip : Stmt
seq : Stmt→ Stmt→ Stmt

There is no need to give concrete definition for these constants as in the semantical embedding.
The syntax of L uses the infix symbol := to denote assignment. HOL already uses this symbol

for something else, and unfortunately its syntax customization does not allow us to overload the
symbol. We will use a different infix symbol, and overload it to allow both boolean and integer
assignments:

/:= : bool→ bool→ Stmt
/:= : int→ int→ Stmt

The representation so far does not however gives us the concrete syntax for sequences. HOL
syntax customization allows us to define our own list-like syntax; this is what we use to embed
the concrete syntax of L’s sequence. However, the customization is limited. It won’t allow us to
get the exact syntax of L sequences, though we can get something that is quite close to it:

add_listform {separator = ";",
leftdelim = "/{",
rightdelim = "/}",
cons = "seq", nilstr = "skip"};

So now we can write /{ x/:=0; b/:=F /}, which will be parsed by HOL to:

seq (x/:=0) (seq (b/:=F) skip)

and typed as a value of type Stmt. The statement /{ x/:=0; x/:=F /} will however be rejected
by HOL, because it requires x to have both the type int and bool.

3 The Language L0

L0 is a simple imperative programming language. Below is a simple example of an L0 program
called swap:

swap (REF x,REF y)
=
pre T
post (x = old y) /\ (y = old x)
do
let tmp = 0
in /{ tmp /:= x ;

x /:= y ;
y /:= tmp /}

return void

A program can take parameters. The keyword REF before a formal parameter means that the
parameter will be passed as a reference; without the keyword it will be passed as a value. The
pre and post sections specify pre- and post-conditions. An assertion of the form old y refers to

5

the initial value of y; if y is a parameter of a program, it refers to the value of y when it is passed
to the program. So, the specification of swap above says that when the program ends, the value
of x and y will be swapped.

The syntax of various kind of statements (or ’instructions’, as they are called in L0) is listed
below. The complete syntax is the Appendix.

1. skip

2. An instruction to print to the screen: print (Expr). Only an expression of type int or
string can be an argument of print.

3. Assignment: Expr /:= Expr

4. Sequence of instructions: /{ Instr ; . . . ; Instr /}

5. Program call. In the first variant the return value is ignored; in the second the return value
is assigned to the target (variable) at the left-hand side:

/@ ProgName (ActualParams)

Expr /@= ProgName (ActualParams)

6. Conditional: if (Expr) then /{ Instr /} else /{ Instr /}

7. Introducing initialized local variables:

let
Var = Expr and
. . .
Var = Expr
in /{ Instr /}

8. Loop: while (Expr) wdo /{ Instr /}

9. assert (Assertion). This instruction is used to add an assertion to the code. This is used
for verification purpose only. During the verification it will be seen as a specification that
the asserted predicate must hold at that point. During the execution it will be ignored1.

The syntax of program declaration is shown below:

ProgDecl → ProgName (FormalParams) = ProgDeclRHS

ProgDeclRHS → pre (Assertion)
post (AssertionRet)
do /{ Instr /} return (Expr)

The pre and post sections are obligatory. A return instruction can only appear as the last
instruction in a program, and is obligatory. The assertion in the post may use the keyword ret,
which refers to the value returned by the program.

By intention L0 distinguishes assertions from expressions. An expression is intended to be
executable whereas an assertion is part of a program’s specification and as such does not have to
be executable. Assertions are used in the pre- and post-conditions and in the assert statement.
Expressions are used for example in the assignment and as the guard of a loop. In the actual syntax
of L0 the distinction between the two is however small, but this is more because in this respect

1Optionally, one can opt to actually check the asserted predicate at the run time, though this will be at the cost
of performance. Our position here is that assertions are checked during the verification or testing, but not at the
run time.

6

L0’s syntax is intentionally left under specified. One of the distinction is that in an assertion we
can write old v where v is a program variable2. This refers to the ’old’ value of v; more precisely,
the value of v when it is initialized in the innermost block that encloses the assertion. Passing
parameters during a program call counts as a block.

An L0 program is not allowed to access any global variable, except if it is passed as a REF
parameter to it. This can be enforced by checking that a program declaration contains no free
variable.

The above constraint also means that in pre- and post-conditions of a program P we can only
refer to the parameters of P . Note that if v is a pass-by-value parameter of P , occurences of v in
the post section of P refers to its initial value (hence, equal to old v), and not to v’s final value3.
L0 leaves the syntax of expressions, assertions, and the left hand side of assignment under

specified: any well-formed HOL term is allowed at those positions. This leaves some room for
customization. However, this makes L0 not directly implementable; e.g. assignments like:

b /:= (∃f′. (∀x. f′(sin x) = x))

would be rather hard to implement. For implementation, an instance of L0 whose syntax is
sufficiently narrowed is needed.

4 Embedding L0

We introduce a new type INSTR to represent instructions. Skip and sequence are represented as
in Subsection 2.2, except that we call the type INSTR here instead of Stmt. The representation of
assignment also remains the same, except that we generalize its type to accomodate assigments of
values of arbitrary types:

/:= : ′a→ ′a→ Stmt

Notice that the typing forces that the assigned expression to be of the same type as the assigment
target.

There is no need to introduce a new syntax for if-then-else and the let construct; HOL
already has them. The following constant is added to abstractly represent a while loop:

wloop : bool→ INSTR→ INSTR

The concrete syntax for while is introduced via HOL syntax customization, e.g.:

add_rule{term_name = "wloop", fixity = TruePrefix 19,

pp_elements = [PPBlock([TOK "while", BreakSpace(1,0),

TM, BreakSpace(1,0),

TOK "wdo",

BreakSpace(1,0)],

(PP.CONSISTENT,3)),

BeginFinalBlock(PP.CONSISTENT,0)],

paren_style = OnlyIfNecessary,

block_style = (AroundEachPhrase,(PP.CONSISTENT,0))};

2In JML assertion like old e where e is an arbitrary assertion is allowed. We won’t allow this because its meaning
is sometimes dubious. For example, what is the meaning of the assertion old (x + y) in:

let x=0 in assert (old x+y)

Does this refer to the meaning of x + y when x is initialized, or do we mean that only x should be interpreted in
this state? Of course, we can define a meaning, but at the moment we decide to simply disallow it.

3The motivation is that the pre and post sections, in addition to specifying a notion of correctness for P , are
treated by the L0 logic as the abstraction of P when handling a program call. For the caller Q, the final value of v
is irrelevant, because it cannot see it. So there is no point in specifying it in post. Q still knows the ’initial’ value
v though (that is, the value of v when Q passed it to P), which is our chosen interpretation of v in post.

7

This allows us to write for example while (0 < i) wdo /{ i /:= i− 1 /}, which will be parsed by
HOL to:

wloop(0 < i)(seq (i /:= i− 1) skip)

Notice also that the type of wloop forces the type of the loop guard to be bool.
The print instruction can be represented by a constant of function type, which is overloaded

so that it can take either an int or a string as an argument:

print : int→ INSTR
print : string→ INSTR

The representation of assert is straight forward:

assert : bool→ INSTR

4.1 Program Call

Program call is a bit more complicated. A program call like x /@ = P(0, 1) requires that the type
of x matches the return type of P. To coerce HOL type checker to check this we make P to have
the type:

(int#int)→ τ PROG

So, P(0, 1) would have the type τ PROG. This type can be thought to represent programs that
return values of type τ . We now can introduce the constant /@ = (denoting program call), having
this type:

/@ = : ′a→ ′a PROG→ INSTR

Notice that this forces the type of the assigment target to be matched with the program’s return
type.
L0 allows parameters to be passed either by value or by reference. We introduce a new HOL

data-type to represent reference (pointer):

hol datatype REF = REF of ’a

So, a HOL term of type, for example, int REF represents an L0 pointer pointing to an L0 value
of type int. So, the program swap (at the beginning of this Section) would have the HOL type:

(int REF # int REF) → void PROG

HOL will then accept calls like swap(REF e1, REF e2), but not swap(0, 1) because 0 and 1 are not
of type REF. We may want to restrict the syntax of actual parameters, for example, so that e1 and
e2 here should be variables. Unfortunately, there is no way we can incorporate such a restriction
in HOL now. So if it is desired, it has to be implemented as a separate syntax check (which is
called after HOL’s own syntax and type checks).

5 L0 Logic

L0 has a Hoare-styled, partial correctness based logic. It is quite standard; though the reader
may find it interesting to look at how we deal with program call and old back-reference. We will
deviate from the standard presentation of Hoare logic. We will express the logic in terms of a
reduction function.

Given an instruction S and a post-condition q the function reduce returns another predicate
p —note that with respect to L0, reduce is a meta function. There is a global list of predicates

8

V on which reduce operates by adding new predicates to it, or modifying existing ones. Let
p = reduce S q. The function works in such a way so that the validity of all predicates in V
obtained after executing reduce S q implies the (partial) correctness of {p} S {q}. Consequently,
when given a specification {p0} S {q}, it is sufficient to: calculate p = reduce S q; prove the
validity of all predicates in the final V ; and prove p0 ⇒ p. In our embedding, all these predicates
would be plain HOL formulas; they can be proven in the standard way in HOL.

In the sequel, let q[e/v] denote the expression obtained by replacing all free occurences of v in
q with e. If V is a list of expressions, V [e/v] denote the list obtained by applying the substitution
[e/v] on every expression in V .

The predicates in V are also called verification conditions and the function reduce is also called
verification condition generator. The algorithm is described below:

1. Print:

reduce (print e) q = return q

2. To rule for assignment would normally look like this:

reduce (x /:= e) q = return q[e/x]

However, this ignores the fact that q may contain expressions old x. The x in the latter
should not be substituted. Recall that old x does not refer to the current value of x, but
rather to its initial value; hence the assignment should not influence the semantic of old x.
The following rule does the trick:

reduce (x /:= e) q = return q[@x/old x][e/x][old x/@x]

where @x is a fresh variable.

3. Sequences:

reduce (i1; i2) q = reduce i1 (reduce i2 q)

4. The rule for conditional is standard:

reduce (if g then i1 else i2) q = if g then reduce i1 q else reduce i2 q

5. The rule for loop requires an invariant. Automatically constructing invariant is in general
undecidable, though for special cases this can be done. We are not going to concern ourselves
with this issue. The programmer may specify an invariant using an assert instruction, which
must be the first instruction in the loop’s body. If it is not specified, then our logic will simply
assume T as the invariant. The rule:

reduce (while g wdo /{ assert inv; i /}) q
=
{ p := reduce i inv ;

V := [inv ∧ g ⇒ p, inv ∧ ¬g ⇒ q] ++ V ;
return inv }

6. The rule for assert is simple:

reduce (assert p) q = return (p ∧ q)

9

7. Abstractly, the rule for local declaration looks like this:

reduce (let v = e in i) q = (reduce i q[@v/v])[e/v][v/@v]

where @v is a fresh variable. The substitution [e/v] reflects the initialization of v to e. Note
that occurences of v in q refers to a different v than the v locally declared by the let. The
substitution q[@v/v] prevents the ’global’ v from being substituted by the reduction as it
encounters assignments to v inside S. After the body is reduced, the temporary name @v
can be restored to v, which is what the substitution [v/@v] does.

The above does not however take into account expressions of old v which may occur in p
and V as the result of the reduction on S. It refers to the initial value of v, which is e. So,
they should be substituted with e. Consider now this rule:

reduce (let v = e in i) q = { p := reduce i (q[@v/v]) ;
V := V [e/old v] ;
return p[e/v, e/old v][v/@v] }

This may seem to solve the problem discussed above. However, the subtitution on all
predicates in V is incorrect. It should only be applied to the new predicates added by
reduce i (q[@v/v]). Free occurences of v in other predicates in V refer to another v and
should not be substituted. The following one will cure this:

reduce (let v = e in i) q = { V := V [@v/v] ;
p := reduce i (q[@v/v]) ;
V := V [e/old v][v/@v] ;
return p[e/v, e/old v][v/@v] }

Introduction of multiple local variables are handled analogously.

8. L0 logic treats a called program P as a black-box. It means that the logic assumes that the
source code of P is not available, though its specification is.

Cosider a program P with the following header and specification:

P (REF r, v) = pre p
post q′

. . .

The black-box based reduction for calls to P looks abstractly like this:

reduce (x/@ = P (s, e)) q′ = { V := [q ⇒ q′[ret/x]] ++V ;
return p[s/r, e/v] }

However this ignores these details:

(a) If q′ set a constraint on some variable z which does not occur in q, we will not be able
to prove q ⇒ q′[ret/x]. To get around this, we will express the condition as part of the
calculated pre-condition instead. In this way subsequent information about x produced
by the ’ancestral’ calls to reduce will also be added to the implication. However note
that s in q′ refers to the state of s after the call. If it is shifted as it to the pre-condition
side its meaning changes, namely the state of s before the call. This is incorrect. So to
prevent this, s in q′ will be renamed with a fresh variable. Similar thing has to be done
to s in q.

10

(b) Occurrences of v in q actually refers to v’s value when it is passed to P . Similarly, old r
and old v also refer to the the values of these variable when they are passed.

(c) old s occuring in q′ does not refer to the value of s when it is passed to P . Instead it
refers to the value of s when it is initialized in the scope that directly encloses the call
to P . It should be left unchanged.

The following rule does it:

reduce (x/@ = P (s, e)) q′

=
return (p[r/old r, v/old v][s/r, e/v]

∧
(q[@s/r][e/old v, s/old @s, e/v] ⇒ q′[ret/x][@z/olds][@s/s][olds/@z])

The case for programs with more parameters, or calls using /@ (instead of /@ =), can be
handled analogously.

We still have to give the reduction algorithm at the program level. This is given below. The
function is also called reduce. It takes a program declaration, and reduces it to a list of verification
conditions. The function itself returns nothing. The resulting verification conditions are stored in
V .

reduce (P (REF r, v) = pre p post q do i return e)
=
{ w := reduce (i; ret/:=e) (q[old v/v]) ;

V := [p⇒ w] ++ V ;
V := V [r/old r, v/old v] }

6 Implementing the Logic

Implementing L0 logic amounts to implementing the reduce functions. They have been described
in sufficient detail so that their implementation is in principle straight forward. L0 instructions,
programs, and predicates are all, in our embedding, HOL terms. So, the reduce functions are
just functions that operates on HOL terms. They can be implemented in HOL’s meta-language
(moscow-ML). The variable V can be implemented by an assignable ML variable of the type list
of (HOL) terms.

Implementing the substitutions requires a lot more work, if we have to do it from scratch.
Luckily we can just borrow subsitution utilities already provided by HOL. By writing few addi-
tional combinators we can then code the substitutions almost as abstract as in the algorithm in
the previous section.

It is actually more convenient, in particular for implementing reduce on instructions, to work
on a separate data-type that reflects the structure of L0 instructions more explicitly rather than
working directly on HOL terms, because the latter is more low level.

For simplicity, let us consider only three sort of instructions: skip, assignment, and sequence.
The following ML data-type can be used to represent them:

datatype INSTR = SKIP
| ASG of term * term
| SEQ of INSTR list

where term is the ML-type of HOL terms. A function can be written to build an INSTR-
representation out of a HOL term representing a L0 instruction.

The reduce function (over instructions) can be implemented in the algebraic-style ala [3],
namely as an so-called algebra folded over INSTR-trees (if we view values of INSTR as trees). The
corresponding fold function (for INSTR) is:

11

fun foldINSTR (fskip,fasg,fseq) i =
let
fun fold SKIP = fskip
| fold (ASG (lhs,rhs)) = fasg lhs rhs
| fold (SEQ instructions) = fseq (map fold instructions)

in
fold i
end

The tuple (fskip, fasg, fseq) is called an INSTR-algebra. The function foldINSTR performs a
recursion over an INSTR-tree. As algebra is passed to it which controls how values are combined
during the recursion. Now, reduce can be implemented by folding the algebra below; V is here not
needed because none of the instructions in this simplified setup produce verification conditions:

val simplified_L0Logic_alg =
let
val fresh = mk_fresh x
fun fskip q = q
fun fasg x e q = q<-(fresh/old x)<-(e/x)<-(fresh/old x)
fun fseq fs q = foldr (op o) id fs q
in
(fskip,fasg,fseq)
end

The advantage of this style of implementation is that variations of the existing logics can be easily
and compositionally constructed by applying some alteration on the algebra that specifies the
existing logics. For example if we want to have a variant of the above logic where assignments are
treated differently, we can do it like this:

val new_L0Logic_alg =
let
val (fskip,_,fseq) = simplified_L0Logic_alg
val new_fasg = ...
in
(fskip,new_fasg,fseq)
end

Had we implemented simplified L0Logic directly as a recursive function, then altering its re-
cursive behavior will be impossible. See also our paper about compositional development of VCG:
[7].

Other syntax-driven functions on L0 can also be built as folded algebras, for example a function
for translating L0 to some an executable language, e.g. ML.

Current implemenation of L0 is prototype version 1 featuring: syntactical embedding in HOL,
the logic, a translator to ML to produce executables, a unit test specification language , a test
generator, and a test verifier (for the last three, see Section 7 for details).

7 TEST

TEST is a simple language to write a suite of unit tests on an L0 program. A test suite is either
a test instruction or a list of other test suites. A test instruction is just an L0 instruction which
includes one or multiple calls to the tested program. Such a call can be additionally marked with
the keyword whitebox —we will explain its meaning later. An example is given below:

SUITE /:: main.

12

/{ TEST /:: one. let x=0 and y=1
in
/{ whitebox (/@ swap(REF x, REF y))
; assert((x=1) /\ (y=0))

/}

; TEST /:: two. let x0=x and y0=y
in
/{ whitebox (/@ swap(REF x, REF y))
; whitebox (/@ swap(REF x, REF y))
; assert((x=x0) /\ (y=y0))

/}
/}

The suite is called main; it consists of two test-instructions (which begins with the keyword TEST).
The names after the symbol /:: are just labels associated to the corresponding test instruction
or suite. The second test instruction, for example, calls swap twice, and asserts that the value of
x and y should then be restored to their initial values.

The syntax of TEST is given in Appendix B. Like L0, it has been syntactically embedded in
HOL. We will not show how it is done, but it follows the same line as the embedding of L0.

The executional semantic of L0 ignores assert instructions. In TEST assert has a different
semantic: assert e checks e; if it is true then nothing happens, else an exception is thrown. So,
in TEST assert is used to actually test conditions. This does imply that the evaluation of e
should be implementable. So, we restrict the syntax of e: it should be an ordinary Expr rather
than Assertion (assuming that Expr is implementable).

For the execution of TEST the whitebox keyword has no meaning.
Rather than executing a test suite, we can also verify it. A test suite is passed if none of the

constituting test instructions throws an assert-violation exception. Under partial correctness,
this is equivalent to showing that each test instuction t satisfies {T} t {T} in the L0 logic. When
unit testing we assume that we do have access to the source code of the tested programs. So,
treating these programs as white boxes provides more information. Preceeding a program call
with a whitebox keyword will tell the logic to expand the call to the appropriate instantiation of
P ’s body4. This can be implemented as a pre-processor; we can use HOL built-in rewrite utilities
to do it. After the expansion we get an ordinary L0 instruction, which can be reduced normally
(using the reduce function from Section 5).

8 Lingu

Lingu (short hand of ”little language”) is a variation of L0 intended for writing database transac-
tions. A Lingu script has the same syntax as an L0 program, with a number of customizations:
Lingu has its own syntax for expressions and assertions, it has a number of database specific
instructions, and while-loop is not allowed in Lingu . Here is an example:

move6 (REF all, REF selected)
=
pre T
post (all union selected = (old all) union (old selected))
do
/{ let

q = empty
in

4If P is recursive, the white box expansion will only take place at the top level call. The recursive call is handled
as a black box call. This implicitly requires that P has been proven correct with respect to its declared specification.

13

/{ q /:= select (map r. r) (only r. r.score>=6) all ;
delete all (drop r. r.score>=6) ;
selected /:= q union selected

/}
/}
return void

It defines a script called move6 that moves all entries r in the table all such that r.score ≥ 6 to
the table selected. The post-condition in the specification says that the union of the two table
is left unchanged, thus implying that there is no entry lost during the operation.

A Lingu script as the one above can operate on tables. In Lingu a table is just a set of
basic typed or ’flat record’ entries5. Recall that L0 allows arbitrary HOL term as expressions and
assertions. This will now be limited. We will first discuss the language S of limited set expressions.
An important aspect of S is that it is first order and implementable. Lingu expressions have a
more complicated syntax, but they are translated to S.

8.1 S Expression

Basic types are types such as bool and int. A flat record is a record whose fields are not of a set
type. A flat set is a set whose elements are of basic types or flat records. As said, we use a set to
model a table. More precisely, Lingu tables are non-hierarchical; hence they are all flat sets.

In the database community the names of the fields of a record are also called attributes. The
term attributes of a table is also used to mean the attributes of the elements of the table, assuming
that they are records.

Allowed types for S expressions, and also for Lingu expressions, are basic types, the types of
flat records, and the types of flat sets.

An S expression is either a simple expression or a set expression. The syntax of simple expres-
sion is below; UnOp and BinOp are respectively unary and binary numeric or boolean operators;
BinOp can also be = comparing two records.

SimplExpr → Constant | Variable
| SimplExpr.FieldName \\ field selection
| UnOp SimplExpr
| SimplExpr BinOp SimplExpr
| \\ record forming

<| FieldName := SimplExpr , . . . , FieldName := SimplExpr |>

Allowed set expressions in S are listed below; e is a simple expression, p, t, u are S expressions, p
is a predicate (it is of type bool):

1. ø (empty set), {e} (a singleton set), t ∪ u (set union)

2. Set comprehension: {e(r) | r ∈ t ∧ p(r)}

3. Set predicates: e ∈ t and (∀r. r ∈ t⇒ p(r))

Expressions of the form (∃r. r ∈ t∧p(r)) are not in the syntax, but are also allowed as shorthands
for the negation of the corresponding ∀ expressions. The following two lemmas can be prove quite
straight forwardly by induction over the structures of simple expressions and of S:

Lemma 8.1 : Every simple expression is either of a basic type or a flat record.

Lemma 8.2 : Every S expression is either a flat record, a flat set, or has a basic type.
5There are more sophisticated models of tables, e.g. [5]. At this point of research we stick to our simple model,

keeping in mind that there are things like duplicate entries, aggregate column operations, sorted entries which are
more difficult or even impossible to express with the current model.

14

Notice that the latter lemma implies that the syntax of S itself enforces the restriction that all
tables in S should be flat sets.

Let FOLS be the first order logic over the follwing set T of terms. T consists of all S expressions
of which are either a set typed variable or a simple expression of a non-boolean type. The predicate
symbols of FOLS are all numeric relations of S (such as ≤), = over simple and flat record types,
and ∈. An S expression of type bool is also called an S predicate. An S predicate is called first
order if it can be translated to an equivalent FOLS formula.

Theorem 8.3 : All S predicates are first order.

Proof: by induction. The non-trivial cases are:

• (∀r. r ∈ u ⇒ p(r)) is first order if: (1) r ranges over the elements of a flat set, (2) r ∈ u is
first order, and (3) p(r) is first order. The first follows from Lemma 8.2, which says that u
must be a flat set; (2) and (3) follow from the inductive assumption.

• Case e ∈ t. We have a number of sub-cases, depending on the form of t:

1. t is a set-typed variable: then both e and t are T -terms and e ∈ t is thus a FOLS
formula.

2. e ∈ ø is equivalent to false.

3. e ∈ {e′} is equivalent to e = e′. Furthermore, e and e′ must be of a simple or flat record
type. So, they are T -terms, and hence e = e′ is a FOLS formula.

4. e ∈ u1 ∪ u2 can be translated to e ∈ u1 ∧ e ∈ u2; each conjunct is first order by the
inductive assumption.

5. e ∈ {e′(r) | r ∈ u ∧ p(r)} can be translated to ¬(∀r. r ∈ u ⇒ p(r) ⇒ ¬(e = e′(r))),
which is first order. This can be argued in almost the same way as the ∀-case before,
plus the fact that e and e′(r) must be T -terms and therefore e = e′(r) is a FOLS
formula.

2

It follows that general results on the first order logic apply to S predicates. For example, if
the resulting first order logic translation is monadic or is in the Pressburger syntax (which admits
a limited form of numeric expressions) then it is decidable. HOL suports a number of automated
proof tools to handle first order formulas.

Lemma 8.4 : Every S expression of type set specifies a finite set.

Proof: This can be proven inductively. The non-trivial cases are:

• {e(r) | r ∈ t ∧ p(r)} is finite because t, by the inductive assumption, is finite.

• t ∪ u is finite, because t and u are, by the inductive assumption, finite.

2

Theorem 8.5 : If simple expressions are implementable, then all S expressions are imple-
mentable.

Proof: We only have to consider set expressions. By Lemma 8.4, a set expression of type set
specifies a finite set. Operations ∪, ∈, ∀, as well as comprehension, over finite sets are imple-
mentable.
2

15

8.2 Lingu Expressions and Database Specific Instructions

A Lingu expression is either a simple expression (with the same syntax as used in S) or a table
expression. A table expression queries a table, or construct a new table (in the sense that it is a
set of entries). Before evaluation, a table expression is first translated to an S expression. Allowed
table expressions are listed below, along with their S semantic; e is here a simple expression, p, t, u
are Lingu expressions, p is of type bool:

1. Empty, select, and union:

empty = ø
select t (map r. e(r)) (only r. p(r)) = {e(r) | r ∈ t ∧ p(r)}
t union u = t ∪ u

2. Table predicates:

e IN t = e ∈ t
ALLof t (satisfy r. p(r)) = (∀r. r ∈ t⇒ p(r))
SOMEof t (satisfy r. p(r)) = (∃r. r ∈ t ∧ p(r))

Notice that the syntax allows for example select and ALLof expressions to be nested in each
other.

A Lingu predicate is a Lingu expression of type bool. Lingu has the following database specific
instructions; whose meaning are defined in terms of L0 assignments over S expressions; e is here
a simple expression, t, t0 are Lingu expressions, p is a Lingu predicate:

1. Insertion:

ins e t = t /:= {e} ∪ t
insert t0 t (map r. e(r)) (only r. p(r)) = t /:= {e(r) | r ∈ t0 ∧ p(r)} ∪ t

2. Deletion:

del e t = t /:= {r | r ∈ t ∧ (r 6= e)}
delete t (drop r. p(r)) = t /:= {r | r ∈ t ∧ ¬p(r)}

3. Update:

update t (map r. e(r)) (only r. p(r))
=
t /:= {r | r ∈ t ∧ ¬p(r)} ∪ {e(r) | r ∈ t ∧ p(r)}

Only a Lingu expression is allowed to be used as an assertion (plus the use of special keywords
like ret and old).

Given the above semantics, a Lingu program and its pre/post specification can be translated
into a plain L0 specification where the assertions and expressions are all S expressions. This can be
reduced using L0 logic, resulting in verification conditions which are S predicates. The latter, by
Theorem 8.3, can be further translated to first order logic formulas for verification. Furthermore,
by Theorem 8.5 all Lingu expressions are also implementable. Also, since the language of assertions
in Lingu is just the same as expressions, with the exception of the use of old and ret , checking
them at the run time is implementable.

16

8.3 Implementation

Lingu extends L0 with its own syntax of expressions and a number of its own specific instructions.
We can (syntactically) embed it in HOL simply by extending our L0 embedding. For example, to
add the syntax and semantic of select we do:

Define ‘select t f p = {f r | r IN t /\ p r}‘ ;

new_binder_definition ("map_def", --‘(map:(’a->’b)->(’a->’b)) body = body‘--) ;

new_binder_definition ("only_def", --‘(only:(’a->bool)->(’a->bool)) body = body‘--) ;

So now we can write in HOL:

select t (map r. 0) (only r. r>0)}

which would have the semantic {0 | r IN t ∧ r > 0} in HOL.
The logic of Lingu works by first translating a Lingu specification to S (see previous Subsec-

tion), and then calling L0 logic. Implementing the translation is quite easy by using HOL built-in
rewrite utilities.

The current implementation of Lingu is prototype 4.1. It can accepts, for example, the script
move6 at the beginning of Section 8. A simple HOL tactic can prove the verification conditions
that we get after applying the logic of 4.1 on move6.

8.4 Verifying Key Constraints

Tables in databases often have keys. For example a primary key of a table t is an attribute K
of t that uniquely identifies the elements of the table. This specifies a constraint, also called key
constraint, for t, which we can express in Lingu :

ALLof t (satisfy r. ALLof t (satisfy r′. (r.K = r′.K)⇒ (r = r′))) (1)

Any script manipulating t should preserve this constraint.
One way to express key constraints is by specifying them explicitly in the post-condition of a

script S. However this would clutter our specifications. So instead, we will use a pre-processor
which appends an assertion C after each table assignment in S (remember that all database specific
instructions in Lingu are basically table assignments —see the semantic in Subsection 8.2). The
assertion C specifies all key constraints associated to the table targetted by the assignment. So,
for example if t is a table with the attribute K as its only primary key, then an assignment t /:= u
will be transformed to:

t /:= u ; assert (CK,t)

where CK,t is the same formula as (1). Subsequently we simply use the same L0 logic to reduce
the resulting program.

To make the generation of the key constraints easier, we encode the information about key
qualifiers in the type of the table. This way we can easily retrieve back the information via HOL
type system. So, introduce a new HOL data type:

hol datatype KEY = KEY of ’a

This type represent (primary) keys. If x is a plain value, e.g. an integer, KEY x turns it to a key.
For every basic type we have in Lingu (e.g. int), we add int KEY as a new basic type.

If we now, for example, want to have a table t of personal records where the attribute PersonId
is a primary key we would now declare t as a table over records of, for example, the type Person
below:

17

hol_datatype Person = <| PersonId : KEY int; Name : string |>

We also introduce a new form of assignment to generate new keys. If t is a table, the assigment
k /:= newkey t assigns a value of type ′a KEY (for some compatible type ′a) as a ’fresh’ key to
k. The key is fresh in the sense that it does not occur anywhere in t. The type ′a has to be an
infinite type to guarantee that we can always generate a fresh key (so, bool is not allowed.). To
simplify the formalization of newkey, we make the choice of the generated key to depend only on
the state of t. It means that, for example:

k1 /:= newkey t ; k2; /:= newkey t

will actually assign the same key to k1 and k2. If a different (fresh) key is desired for k2, then k1
has to be inserted first to t.

As further simplification we leave the exact result of newkey unspecified (except for the fact
that it is fresh). This does mean that usual rule to handle assignment cannot be used to handle
the newkey. The new rule is given below. Assume a table t with attributes K1, . . . ,Kn as primary
keys:

reduce (k /:= newkey t) q = return (Fk,t,K1 ∧ . . . ∧ Fk,t,Kn ⇒ q)

where Fk,t,K is an S predicate stating that k does not occur in the K-column of t. So:

Fk,t,K = ¬(k ∈ {r.K | r ∈ t})

Note that with the addition of the data type KEY, S (the language underlying Lingu) is still
first order (the underlying term language (T) does change since we now also have terms of the
form KEY e).

8.5 Aggregate Function

Expressing an aggregate function, like the sum over a column, is more difficult in our set model.
Because a set is unordered, only a commutative and associative operation can be aggregated. So,
addition will work, but not substraction. We will only discuss aggregare sum here. Let t be an S
expression of a set type, and e be a simple expression. We introduce the following syntax:

sum t (map r. e(r))

to denote the sum of all e(r) for all r taken from t. Each r should only be taken once. We now
need the semantic of this syntax. We can give one, but it will be rather complicated. Instead, we
will now choose to define the semantic axiomatically. It will be simple, though at the expense of
completeness. We will restrict the sort of predicates we want to express about sum to be predicates
of this form:

sum t (map r. d(r)) = sum u (map r. e(r)) (2)

When we have this predicate in a verification condition, we can reduce it to the following predicate:

(∃f. t
f←→ u ∧ (∀r. r ∈ t⇒ (d(r) = e(f r)))) (3)

where t
f←→ u means that f is a bijective function from t to u. The predicate means that every

record r in t has exactly one counterpart r′ = f r in u, and moreover the value of d(r) is the same
as e(r′). Consequently, the specified sums above are equal. This is a sufficient condition, but as
said not a necessary one.

The predicate in (3) cannot be express in S, but we can still express it in HOL. It is also no
longer first order due to the quantification over f .

18

References

[1] D. Syme. Machine Assisted Reasoning About Standard ML Using HOL. Technical report, Australian
National University, November 1992. ftp://ftp.cl.cam.ac.uk/hvg/papers/MLinHOL.thesis.ps.gz.

[2] Marieke Huisman. Java Program Verification in Higher-Order Logic with PVS and Isabelle. PhD
thesis, University of Nijmegen, The Netherlands, 2001.

[3] G. Malcolm. Data structures and program transformation. Science of Computer Programming, 14(2–
3):255–280, October 1990.

[4] Michael Norrish. C formalised in HOL. Technical Report UCAM-CL-TR-453, University of Cambridge,
Computer Laboratory, December 1998.

[5] Jan Paredaens, Paul De Bra, Marc Gyssens, and Dirk Van Gucht. The Structure of the Relational
Database Model. Springer, 1989.

[6] I. S. W. B. Prasetya. Mechanically Supported Design of Self-stabilizing Algorithms.
PhD thesis, Inst. of Information and Comp. Science, Utrecht Univ., 1995. Download:
www.cs.uu.nl/library/docs/theses.html.

[7] I.S.W.B Prasetya, A. Azurat, T.E.J. Vos, and A. van Leeuwen. Building verification condition gener-
ators by compositional extensions. In Proceedings of 3rd IEEE International Conference on Software
Engineering and Formal Methods. IEEE Computer Society Press, 2005.

[8] Joachim van den Berg and Bart Jacobs. The LOOP compiler for java and JML. In Proceeding of
TACAS 2001, pages 299–312, 2001.

A Syntax of L0

ProgDecl → ProgName (FormalParam , . . .) = ProgDeclRHS

ProgDeclRHS → pre (Assertion)
post (AssertionRet)
do /{ Instr /} return (Expr)

FormalParam → REF? Var

Var → Identifier | (Identifier : HOLType)

Assertion → HOLTerm \\ ret is not allowed

AssertionRet → HOLTerm \\ ret is allowed

Expr → HOLTerm \\ ret and old are not allowed

Instr → skip
| Expr /:= Expr
| /{ Instr ; . . . /}
| /@ ProgName (ActualParam , . . .)
| Expr /@= ProgName (ActualParam , . . .)
| if (Expr) then /{ Instr /} else /{ Instr /}
| let

Var = Expr and
. . .
in /{ Instr /}

| while (Expr) wdo /{ Instr /}
| assert (Assertion)

ActualParam → REF Var \\ pass-by-reference
| Expr \\ pass-by-value

19

B Syntax of TEST

Test-Suite → TEST Label? Test-Instr
— SUITE Label? /{ Test-Suite ; . . . ; Test-Suite /}

Label → /:: Identifier .

The syntax of Test-Instr is as Instr, except:

1. The following syntax is also allowed (white box call):

whitebox (ProgramCall)

2. The syntax for assert is restricted to: assert(Expr)

C Syntax of Lingu

Lingu has the same syntax as L0, except the following. The syntax for assertions and expressions
are the same:

Expr → SimpleExpr | TableExpr

SimpleExpr → Constant | Var
| SimplExpr.FieldName
| UnOp SimpleExpr
| SimpleExpr BinOp SimpleExpr
| <| FieldName := SimplExpr , . . . , FieldName := SimplExpr |>

TableExpr → empty
| select Expr (map Var . SimpleExpr) (only Var . Expr)
| TableExpr union TableExpr
| SimpleExpr IN Expr
| ALLof Expr (satisfy Var . Expr)
| SOMEof Expr (satisfy Var . Expr)

Lingu extends L0 instruction sets with the following:

Instr → . . . \\ as in L0

| ins SimpleExpr Expr
| insert Expr Expr (map Var . SimpleExpr) (only Var . Expr)
| del SimpleExpr Expr
| delete Expr (drop Var . Expr)
| update Expr (map Var . SimpleExpr) (only Var . Expr)

20

