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Abstract
Diagnostic reasoning in essence amounts to reasoning about an unobservable condition,
based on indirect observations from diagnostic tests. Probabilistic networks that are de-
veloped for diagnostic reasoning, typically take the reliability characteristics of the tests
employed into consideration to avoid misdiagnosis. In this paper, we demonstrate the ef-
fects of inaccuracies in these characteristics by means of a sensitivity analysis of a real-life
network in the medical domain.
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1. Introduction

Since their introduction, probabilistic networks have become increasingly popular for
reasoning with uncertainty in a variety of application domains. A probabilistic network
in essence is a model of a joint probability distribution over a set of statistical variables
[1]. It is comprised of a graphical structure that captures the variables and the influential
relationships between them, and an associated set of conditional probability distributions
that serve to describe the strengths of these relationships. Since a probabilistic network
uniquely defines a joint probability distribution, it allows for computing any probability of
interest over its variables. Although probabilistic networks provide for any type of prob-
abilistic reasoning, they are most notably used for diagnostic reasoning, especially in the
medical domain. Diagnostic reasoning in general amounts to reasoning about an unob-
servable condition, based on indirect observations from diagnostic tests. Upon diagnostic
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reasoning with a probabilistic network, the available observations are entered and the pos-
terior probability distribution given these observations is established. The most likely value
for the main diagnostic variable then is taken for the diagnosis.

In most application domains, the results of diagnostic tests are uncertain to at least some
extent. In the medical domain, for example, an X-ray can be difficult to interpret: a physi-
cian may easily overlook a small tumour and state a negative result, or state a positive
result based upon a phantom image. The uncertainty in the result of a test is captured by
its sensitivity and specificity. The sensitivity is the probability of finding a positive result
whenever the condition tested for is present; the specificity is the probability of finding a
negative result in the absence of the condition. The reliability characteristics of the various
diagnostic tests in use should be taken into consideration in diagnostic reasoning to avoid
misdiagnosis. From a study of a real-life probabilistic network in oncology, in fact, we
found that taking the uncertainties in the tests’ results into account is essential to arrive at
clinically acceptable behaviour [2]. These characteristics are typically obtained from liter-
ature, from statistical data, or from human experts, however, and inevitably are inaccurate.
Since the characteristics are used in diagnostic reasoning, the established diagnosis may be
sensitive to the inaccuracies involved and, in fact, may be unreliable.

In this paper, we study the effects of inaccuracies in the reliability characteristics of di-
agnostic tests by means of a sensitivity analysis of a real-life probabilistic network in the
medical domain. Sensitivity analysis is a general technique for studying the robustness of
the output of a mathematical model to parameter variation. Within our network, we varied
the sensitivity and specificity characteristics of the represented diagnostic tests, and stud-
ied whether or not this variation could change the diagnosis established from the network.
From the analysis, some distinct patterns of sensitivity emerged, dependent upon the ac-
tual test results entered. The paper is organised as follows. In Section 2, we introduce the
oesophageal cancer network that we used for our study. In Section 3, we review sensitivity
analysis of probabilistic networks in general. In Section 4, we present the results that we
obtained from a sensitivity analysis of the oesophageal cancer network and provide some
insights to explain them. The paper ends with our concluding observations in Section 5.

2. The oesophageal cancer network

The oesophageal cancer network was constructed with the help of two experts in gas-
trointestinal oncology from the Netherlands Cancer Institute, Antoni van Leeuwenhoekhuis
[2]. The network describes the presentation characteristics of an oesophageal tumour, the
processes underlying the tumour’s invasion into the oesophageal wall and adjacent organs,
and the process of its metastasis. The extent of the cancer is summarised in a stage, which
can be either I, IIA, IIB, III, IVA, or IVB, in the order of advanced disease. The network
further models the diagnostic tests that are commonly used to establish the stage of a pa-
tient’s cancer; these tests range from a gastroscopic examination of the primary tumour
to a CT scan of the patient’s upper abdomen. The oesophageal cancer network currently
includes 42 statistical variables, for which almost 1000 probabilities were specified by the
experts. Of the 42 included variables, 23 variables serve to represent test results. For these
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Fig. 1. The oesophageal cancer network.

test variables, between 4 and 25 parameter probabilities are specified, with an average of
8 probabilities per variable. For ease of reference, the network is depicted in Fig. 1, which
also shows the prior probability distribution per variable.

To capture the uncertainties in the results of the diagnostic tests employed, the oe-
sophageal cancer network explicitly models the tests’ reliability characteristics. These
characteristics are defined in terms of two variables. The disease variable D models the
presence, indicated by d, or absence, indicated by d̄, of the condition under consideration;
the test variable T models the result of the test, where a positive result t suggests presence
and a negative result t̄ suggests absence of the condition. The sensitivity of the test to the
condition now is the probability Pr(t | d) that a positive test result is found in a patient who
actually has the condition; the specificity of the test is the probability Pr(t̄ | d̄) that a nega-
tive result is found in a patient without the condition [3]. In the network, the characteristics
are captured by the probabilities specified for the various test variables. As an example,
Fig. 2 shows the probabilities that were specified for an X-ray of a patient’s thorax; these

Metas-lungs

CT-lungs X-lungs

Metas-lungs

yes no

X-lungs yes 0.85 0.02

no 0.15 0.98

Fig. 2. A fragment of the oesophageal cancer network and some associated parameter probabilities.
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are the probabilities of a positive and of a negative test result, respectively, given the actual
presence or absence of metastases in the lungs. The X-ray is stated, for example, to have a
sensitivity of 0.85 and a specificity of 0.98.

3. Sensitivity analysis

Sensitivity analysis is a general technique for studying the effects of inaccuracies in the
parameters of a mathematical model on its output. In a sensitivity analysis of a probabilistic
network, for each parameter probability x, a sensitivity function f(x) is established that
expresses the output probability of interest in terms of x. If, upon varying x, the other
parameter probabilities from the same conditional distribution are co-varied proportionally,
such a sensitivity function is a quotient of two linear functions [4], that is,

f(x) =
a · x + b

c · x + d

where the constants a, b, c, d are built from the parameter probabilities that are not being
varied. These constants can be established by computing the output probability of interest
from the network for a small number of values for the parameter probability under study
and solving the resulting system of linear equations.

In general, a sensitivity function takes the shape of an orthogonal hyperbola

f(x) =
r

x− s
+ t, where r =

b · c− a · d

c2
, s = −

d

c
, and t =

a

c

The hyperbola has two asymptotes, parallel to the x- and y-axes; these asymptotes are y =
t and x = s, respectively. The hyperbola further has two branches; for ease of reference,
Fig. 3 depicts such a branch. The values of the four constants a, b, c, d of the sensitivity
function now determine the actual shape of the hyperbola. For r > 0, for example, the
hyperbola is composed of two decreasing branches in the first and third quadrants relative
to the asymptotes; for r < 0, the two branches are increasing and located in the second
and fourth quadrants. Since the output probability of interest exists for any value of the
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Fig. 3. A branch of an orthogonal hyperbola, located in the first quadrant relative to the asymptotes.
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parameter probability x, the sensitivity function f(x) that expresses this output probability
is well-defined on the interval [0, 1]. We therefore have that a sensitivity function is a
fragment of just a single branch of a hyperbola. We further have that the asymptote x = s

cannot be located within the interval [0, 1]: we have that either s < 0, in which case the
sensitivity function is a fragment of a branch in the first or fourth quadrant, or s > 1, in
which case the sensitivity function is a fragment of a branch in the second or third quadrant.

A sensitivity function serves to express some output probability of interest in terms of
a specific parameter probability, and therefore provides for studying the effect of varying
this parameter probability on that particular output probability. In diagnostic applications,
however, we are not so much interested in the effect of parameter variation on a single out-
put probability. Rather, we are interested in the effect on the diagnosis established from the
network. To study this effect, we have to consider the sensitivity functions for the various
possible values of the main diagnostic variable simultaneously and investigate whether or
not parameter variation can change the most likely value of this variable. For an output
variable D with the possible values d1, . . . , dn, n ≥ 1, we thus have to study the n sensi-
tivity functions fi(x), i = 1, . . . , n, that express the probability of the value di in terms of
the parameter probability x. With the parameter’s original value x0, the most likely value
of the output variable is a value dj for which fj(x0) ≥ fi(x0) for all i 6= j. Now, if the
sensitivity function fj(x) intersects with the sensitivity function fi(x) for some value di,
then the most likely value for D may change from dj to di upon varying x. The intersec-
tions of the function fj(x) with the other sensitivity functions, therefore, reveal the effects
of parameter variation on the diagnosis.

From the intersections of the various sensitivity functions for an output variable of inter-
est, we now compute a pair (α, β) that captures the deviation to smaller values and to larger
values than the original value x0 of the parameter probability under study, respectively, that
are maximally possible without inducing a change in the most likely value of the output
variable. Such a pair is called an admissible deviation [5]. We note that an admissible de-
viation (α, β) defines the range (x0 − α; x0 + β) within which the parameter probability
can be varied without inducing a change in the most likely value of the output variable. In
the sequel, we will use the symbols← and→ to denote that a parameter probability can
be varied to the left and to the right boundary of the probability interval, respectively.

4. Experimental results

To study the possible effects of inaccuracies in the reliability characteristics of diagnos-
tic tests, we conducted a sensitivity analysis of the oesophageal cancer network. In this
analysis, we varied the parameter probabilities of all test variables discerned and studied
the effects of their variation on the most likely stage computed from the network. Because
the patterns of sensitivity exhibited by a network typically vary with evidence, we used in
our study the medical records from 185 patients diagnosed with cancer of the oesophagus,
available from the Antoni van Leeuwenhoekhuis. The analysis revealed various distinct
patterns of sensitivity. In this section, we discuss some of these patterns, focusing on the
parameter probabilities of a small number of test variables.
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4.1. Statistics on induced changes

We consider the four diagnostic tests that serve to give insight in the presence or absence
of haematogenous metastases, or secondary tumours, in a patient’s liver and lungs. These
tests are a CT scan of the upper abdomen and a laparoscopy of the liver, to establish the
presence or absence of metastases in the liver, and an X-ray and a CT scan of the thorax,
to establish the presence or absence of metastases in the patient’s lungs. For each of the
associated test variables, four parameter probabilities are specified that correspond with
the test’s sensitivity and specificity and their complements. Tables 1 and 2 summarise the
results that we obtained from varying these parameter probabilities.

Table 1 describes, for each of the four test variables under consideration, the effects
of varying its parameter probabilities on the most likely stage computed for patients for
whom a negative result from the test is available. For example, for 89 of the 91 patients for
whom a negative result from a CT scan of the upper abdomen was found, varying the test’s
specificity resulted in a change in the most likely stage computed from the network; for just
3 patients, the complement of the test’s sensitivity resulted in such a change. In general,
we observe that, with the exception of a small number of patients, varying the specificities
of the tests induces a change in the most likely stage computed for a patient under study;
the complements of the sensitivities tend not to induce such a change.

The pattern of sensitivity that emerges from Table 1 can be readily explained by studying
the predictive value of a negative test result. The predictive value of a negative result is
defined as the probability of the condition under study indeed being absent in a negatively-
tested patient [3]. For the four tests under consideration, these predictive values can be
summarised by the abstractly stated probability Pr(Metas = no | Test = no) of the absence
of metastases given a negative result from the test. This probability can be written as

Pr(Metas = no | Test = no) =
g ·(1− n)

g ·(1− n) + h·n

where

g = p(Test = no | Metas = no)

h = p(Test = no | Metas = yes)

n = Pr(Metas = yes)

From the predictive value of a negative test result, we now observe that, if the probability
n of the presence of haematogenous metastases is relatively small, then the term h · n will
be small. Varying the complement h of the test’s sensitivity will then have little effect on
the predictive value: the most likely value of the main diagnostic variable is expected to
remain unchanged. Variation of the test’s specificity g then is expected to result in a change
in this most likely value. If n is extremely small, however, we have that the predictive value
equals almost 1: varying g will then also show little effect.

Now, for oesophageal cancer, the prior probability n of haematogenous metastases being
present (which coincides with a stage IVB cancer), is relatively small. Upon diagnostic
reasoning, moreover, it will not increase unless there is some strong evidence of metastases
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Table 1
The number of induced changes in the most likely stage given negative test results: 91 patients have CT-liver =
no; 15 patients have Lapa-liver = no; 127 patients have X-lungs = no; 109 patients have CT-lungs = no.

parameter induced
changes

p(Lapa-liver = no | Metas-liver = yes) 0 (0%)

p(Lapa-liver = no | Metas-liver = no) 15 (100%)

p(CT-liver = no | Metas-liver = yes) 3 (3%)

p(CT-liver = no | Metas-liver = no) 89 (98%)

p(X-lungs = no | Metas-lungs = yes) 2 (2%)

p(X-lungs = no | Metas-lungs = no) 122 (95%)

p(CT-lungs = no | Metas-lungs = yes) 1 (1%)

p(CT-lungs = no | Metas-lungs = no) 102 (94%)

in a patient’s liver or lungs. From the above observations, we would therefore expect that
varying the complement h of the sensitivity of a diagnostic test from which a negative result
is available, will not induce a change in the most likely stage computed for a patient. The
specificity g of the test is expected to do cause such a change upon variation. Figure 4 serves
to corroborate these expectations by showing the effects of varying the two parameter
probabilities for a CT scan of the upper abdomen for patient 94-2326 in whom all test
results point to the absence of haematogenous metastases.

From Table 1, we observe that the expected pattern of sensitivity shows for most patients.
For a small number of patients, however, the specificities of the four tests under study are
not influential upon variation; for a small number of patients, moreover, the complements
of the tests’ sensitivities do induce a change in the most likely stage computed from the
network. To explain these findings, we consider again the predictive value of a negative test
result. We observe that, if the probability n of the presence of haematogenous metastases
increases as a consequence of one or more positive results from the other tests, then the
term h · n increases. Variation of the complement h of the sensitivity of the test from

Table 2
The number of induced changes in the most likely stage given positive test results; 4 patients have Lapa-liver =
yes; 7 patients have CT-liver = yes; 9 patients have X-lungs = yes; 6 patients have CT-lungs = yes.

parameter induced
changes

p(Lapa-liver = yes | Metas-liver = yes) 3 (75%)

p(Lapa-liver = yes | Metas-liver = no) 3 (75%)

p(CT-liver = yes | Metas-liver = yes) 6 (86%)

p(CT-liver = yes | Metas-liver = no) 6 (86%)

p(X-lungs = yes | Metas-lungs = yes) 5 (56%)

p(X-lungs = yes | Metas-lungs = no) 6 (67%)

p(CT-lungs = yes | Metas-lungs = yes) 2 (33%)

p(CT-lungs = yes | Metas-lungs = no) 2 (33%)
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Fig. 4. The effects of varying the parameter probabilities for a CT scan of the upper abdomen for patient 94-2326,
for whom all test results pertaining to haematogenous metastases are negative.

which a negative result is available, can then affect the predictive value and thereby induce
a change in the most likely value of the diagnostic variable. The test’s specificity g will
have similar effects upon variation, unless the probability of metastases being present has
become very large: if n is quite large, we have that g · (1− n) is rather small and varying
g can no longer affect the predictive value.

As mentioned before, the prior probability of metastases in a patient’s liver or lungs is
rather small. This probability increases substantially, however, as soon as one or more pos-
itive results from the four tests under study are obtained. For patient 95-1554, for example,
a positive result is available from a laparoscopic examination of the liver. From the above
observations, we expect for this patient that varying the complement of the sensitivity of
a CT scan of the upper abdomen will induce a change in the most likely stage computed
from the network. Figure 5, showing the effects of varying the parameter probabilities for
the CT scan for this patient, serves to corroborate this expectation. For patient 94-1496,
to conclude, positive results are available from two of the four tests under study. These
results substantially increase the probability of the presence of metastases. Figure 6 now
shows that the large probability of stage IVB serves to suppress the effects of varying the
parameter probabilities for the X-ray of the thorax from which a negative result is available.

Where Table 1 pertains to negative test results, Table 2 describes the effects of varying
the parameter probabilities for the tests from which a positive result is available. As the
number of patients with positive test results is rather limited, the patterns of sensitivity
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Fig. 5. The effects of varying the parameter probabilities for a CT scan of the upper abdomen for patient 95-1554,
for whom a single positive test result pertaining to haematogenous metastases is available.
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Fig. 6. The effects of varying the parameter probabilities for an X-ray of the thorax for patient 94-1496, for whom
two positive test results pertaining to haematogenous metastases are available.

observed are less clear. Roughly stated, upon variation both the sensitivities and the com-
plements of the specificities of the four tests tend to induce a change in the most likely
stage computed for a patient. This observation again is readily explained by studying the
predictive value Pr(Metas = yes | Test = yes) of a positive test result.

4.2. Statistics on admissible deviations

If varying a parameter probability induces a change in the most likely value of the main
diagnostic variable of a network, then inaccuracies in this parameter are likely to affect the
network’s diagnosis. The extent to which such inaccuracies can be influential, is expressed
by the admissible deviation for the parameter probability under study. In this section, we
review the admissible deviations that we found in the analysis of the oesophageal cancer
network. In doing so, we focus once again on the reliability characteristics of the four diag-
nostic tests that we discussed above. Tables 3 and 4 summarise the admissible deviations
for the parameter probabilities of the associated test variables; the reported averages are
computed over the admissible deviations that we found for the patients for whom varying

Table 3
The average admissible deviations given negative test results; in the order of presentation, the original values of
the parameters are 0.75, 0.98, 0.10, 0.95, 0.15, 0.98, 0.10, and 0.95.

parameter admissible
deviation

p(Lapa-liver = no | Metas-liver = yes) –

p(Lapa-liver = no | Metas-liver = no) (0.8610,→)

p(CT-liver = no | Metas-liver = yes) (←, 0.3043)

p(CT-liver = no | Metas-liver = no) (0.8992,→)

p(X-lungs = no | Metas-lungs = yes) (←, 0.8054)

p(X-lungs = no | Metas-lungs = no) (0.9683,→)

p(CT-lungs = no | Metas-lungs = yes) (←, 0.2009)

p(CT-lungs = no | Metas-lungs = no) (0.9456,→)
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Table 4
The average admissible deviations given positive test results; in the order of presentation, the original values of
the parameters are 0.25, 0.02, 0.90, 0.05, 0.85, 0.02, 0.90, and 0.05.

parameter admissible
deviations

p(Lapa-liver = yes | Metas-liver = yes) (0.1875,→), (←, 0.2033)

p(Lapa-liver = yes | Metas-liver = no) (0.0090,→), (←, 0.0600)

p(CT-liver = yes | Metas-liver = yes) (0.7900,→)

p(CT-liver = yes | Metas-liver = no) (←, 0.4150)

p(X-lungs = yes | Metas-lungs = yes) (0.5658,→)

p(X-lungs = yes | Metas-lungs = no) (0.0150,→), (←, 0.2017)

p(CT-lungs = yes | Metas-lungs = yes) (0.8839,→)

p(CT-lungs = yes | Metas-lungs = no) (0.0461,→), (←, 0.0422)

the parameter under study induced a change in the most likely stage. Table 3 reports the
average admissible deviations for the parameter probabilities of the diagnostic tests from
which a negative result is available. For example, for the 89 patients for whom varying the
specificity of a CT scan of the upper abdomen induced a change in the most likely stage,
the specificity could be varied from its original value 0.95 to roughly 0.05 on average be-
fore the change occurred; for all these patients, moreover, the specificity could be varied to
1.00 without inducing any change in the stage computed from the network. Table 4 simi-
larly reports the average admissible deviations for the parameter probabilities of the tests
from which a positive result is available.

From Table 3, we observe that, while originally close to 1.00, the specificities of all
four tests, given a negative result, can be varied to almost 0 before a change in the most
likely stage is induced. Figure 7 shows, as an example, the distribution of the admissible
deviations found for the specificity of a CT scan of the upper abdomen; similar distributions
were found for the specificities of the other tests. This distribution of admissible deviations
can be explained by studying the shapes of the sensitivity functions concerned. We recall
from Section 3 that the sensitivity function yielded by varying a parameter probability x, in
essence is a branch of an orthogonal hyperbola. We argued that for the vertical asymptote
x = s of this hyperbola, either s < 0 or s > 1 holds. Now, the denominator c · x + d

0
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Fig. 7. The distribution of admissible deviations to smaller values, indicated by a negative value, for the parameter
probability p(CT-liver = no | Metas-liver = no), given a negative test result from the scan.
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of the sensitivity function in essence is a probability [4]. We thus have that 0 < c · x +
d ≤ 1 with 0 < d ≤ 1 and −1 ≤ c ≤ 1. Upon varying the parameter probability x,
a negative value for c can only arise from co-variation of the other probabilities from the
same distribution. Since in our experiments x is a probability associated with a test variable
whose value has been observed, these other probabilities do not partake in the sensitivity
function. From this observation, we have that c > 0. From s = − d

c
, we conclude that s <

0. The shoulder of the sensitivity function thus lies to the left, in the region of the smaller
x-coordinates. Note that Figures 4, 5 and 6 support these observations. From the shapes of
the resulting functions, we thus have that the various functions are more likely to intersect
for the smaller values of the parameter probability under study. Parameter probabilities
with a large original value thus are expected to have a large admissible deviation to smaller
values; parameter probabilities with a small original value are expected to have a smaller
admissible deviation. The results reported in Table 3 corroborate these expectations.

5. Conclusions

To study the effects of inaccuracies in the reliability characteristics of diagnostic tests,
we conducted a sensitivity analysis of a real-life probabilistic network. The patterns of
sensitivity that emerged from the analysis suggest that, while it is important to explicitly
model the possibility of test results being erroneous, most of the reliability characteristics
involved need not be very accurately specified. As we could explain the patterns of sen-
sitivity found from fundamental insights independent of the network under study, similar
patterns are expected also for other probabilistic networks for diagnostic applications.
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