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Abstract. The sign-propagation algorithm for inference with a
qualitative probabilistic network has been designed to handle a single
observation at a time. Multiple observations can in essence be dealt
with by entering them consecutively and combining the results of
the successive propagations, or by entering them for a newly added
dummy node. We demonstrate that both approaches can yield weaker
results than necessary. We identify the causes underlying this unnec-
essary weakness and adapt the propagation algorithm so as to provide
for the strongest possible results upon inference.

1 INTRODUCTION
Qualitative probabilistic networks (QPNs) were introduced in the
early 1990s for probabilistic reasoning in a qualitative way [1]. A
qualitative network encodes statistical variables and the probabilistic
relationships between them in a directed graph. The encoded rela-
tionships in essence represent influences on probability distributions.
Each such influence captures the shift in distribution for a variable
that is occasioned by a shift in another variable’s distribution. The
direction of the occasioned shift is summarised by a qualitative sign.

Qualitative networks can play an important role in the construction
of quantitative probabilistic networks for real-life applications. The
construction of a quantitative network begins with the construction
of its graph. Assessment of the various probabilities required, which
often is very hard, is typically performed only when the network’s
graph is considered robust. Now, by associating signs with the rela-
tionships modelled in the graph, a qualitative network is obtained that
can be used for studying the reasoning behaviour of the quantitative
network prior to the assessment of its probabilities. For this purpose,
it is important to derive as much information as possible from the
qualitative network.

Inference with a qualitative probabilistic network is based upon
the idea of combining and propagating signs [2]. The basic algorithm
computes the effect of a single observation on all the variables in the
network. It yields, for each variable, a sign indicating the direction of
the shift in distribution that is occasioned by the new observation. In
real-life applications, often the simultaneous, joint effect of multiple
observations is of interest. Multiple observations can in essence be
dealt with in two ways [3]. One way is to add a dummy descendant to
the observed nodes, for which an appropriate observation is entered
and subsequently propagated. Another way is to enter and propagate
the various observations one after the other and combine the results
of the successive propagations to yield the joint effect. Unfortunately,
both approaches can yield weaker results than necessary.
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In this paper, we address the propagation of multiple observations
in a qualitative probabilistic network. We will show that the dynam-
ics of the set of influences over which signs are propagated, can af-
fect the results of inference. We further show that some influences
are guaranteed to be dominated by others and should be disregarded
during sign propagation. Building upon these properties, we adapt
the basic algorithm to yield the strongest possible inference results.
The paper is organised as follows. Section 2 briefly reviews quali-
tative networks and the basic sign-propagation algorithm. Section 3
discusses propagating multiple observations with the two approaches
outlined above. In the Sections 4 and 5 we study the dynamics of in-
fluences and their dominance properties. In Section 6, we revisit the
basic algorithm. The paper ends with some conclusions in Section 7.

2 QUALITATIVE PROBABILISTIC NETWORKS
A qualitative probabilistic network encodes statistical variables and
the probabilistic relationships between them in a directed acyclic
graph G = (V (G), A(G)). Each node A ∈ V (G) represents a vari-
able. For ease of exposition, we assume all variables to be binary
with a > ā, writing a for A = true and ā for A = false, but our
results are readily generalised to non-binary variables. The set A(G)
of arcs captures probabilistic independence between the represented
variables. We say that a chain between two nodes is blocked if it in-
cludes either an observed node with at least one outgoing arc, or an
unobserved node with two incoming arcs and no observed descen-
dants; a node with two incoming arcs is termed a head-to-head node.
If all chains between two nodes are blocked, then these nodes are
said to be d-separated and the corresponding variables are consid-
ered conditionally independent given the observations present [4].

Associated with its digraph, a qualitative probabilistic network
specifies influences and synergies [1]. A qualitative influence be-
tween two nodes expresses how the values of one node influence the
probability distribution over the values of the other node.

Definition 2.1 Let G be an acyclic digraph with A → B ∈ A(G).
A positive qualitative influence of A on B, denoted S+(A,B), ex-
presses that observing a higher value for A makes the higher value
for B more likely, regardless of any other direct influences on B, that
is, Pr(b | ax) ≥ Pr(b | āx) for any combination of values x for the
set π(B) \{A} of predecessors of B other than A.

The ‘+’ in S+(A,B) is termed the sign of the influence. A negative
qualitative influence S− and a zero influence S0 are defined analo-
gously. If the influence of A on B is not monotonic or if it is unknown
after inference, we say that it is ambiguous, denoted S?(A,B). The
definition of qualitative influence is generalised straightforwardly to
influences along chains without head-to-head nodes.

The set of influences of a qualitative network exhibits various
properties. The symmetry property states that, if the network in-



Table 1. The ⊗- and ⊕-operators.

⊗ + − 0 ? ⊕ + − 0 ?
+ + − 0 ? + + ? + ?
− − + 0 ? − ? − − ?
0 0 0 0 0 0 + − 0 ?
? ? ? 0 ? ? ? ? ? ?

cludes the influence Sδ(A,B), then it also includes Sδ(B,A), δ ∈
{+,−, 0, ?}. The transitivity property asserts that the qualitative in-
fluences along a chain without head-to-head nodes combine into a
single influence with the ⊗-operator from Table 1. The property
of composition asserts that multiple parallel influences between two
nodes combine into a single influence with the ⊕-operator.

A qualitative probabilistic network further includes product syner-
gies [5], that express how the value of one node influences the prob-
ability distribution of another node given a value for a third node.

Definition 2.2 Let G be as before, with A,B,C ∈ V (G) and
π(C) = {A,B}. A negative product synergy of A on B (and vice
versa) given the value c for node C, denoted X−({A,B}, c), ex-
presses that, given c, a higher value for A renders the higher value
for B less likely, that is, Pr(c |ab)·Pr(c | āb̄) ≤ Pr(c |ab̄)·Pr(c | āb).

Positive, zero, and ambiguous synergies are defined analogously. The
product synergy Xδ({A,B}, c) serves, upon observing c, to induce
a qualitative intercausal influence with sign δ between A and B.

Example 2.1 We consider the qualitative network from Figure 1,
which is a simplified fragment of a real-life network in the field of
oesophageal cancer. Node U represents whether or not a patient’s
tumour is ulcerating; node L models whether or not the tumour is
longer than 10 cm. Node W indicates whether or not the tumour has
grown beyond the oesophageal wall into adjacent structures. U and
L are modelled as the possible causes of tumour growth outside the
oesophagus. Since the presence of either cause suffices to increase
the probability of invasion of adjacent structures, both U and L ex-
ert a positive qualitative influence on W , indicated by the signs over
the arcs. The network further models that either value for W induces
a negative intercausal influence between U and L, indicated by the
two signs over the dashed line. Given a tumour’s growth beyond the
oesophageal wall, for example, the negative synergy expresses that
observation of one cause explains away the other cause. �

U L

W

−, −

+ +

Figure 1. The qualitative Wall invasion network.

Inference with a qualitative network is based upon the idea of prop-
agating and combining signs [2]. The algorithm traces the effects
of observing a node’s value on the other nodes in the network by
message-passing between neighbours. For each node, a node sign is
determined, indicating the direction of shift in its probability distri-
bution as occasioned by the new observation. Initially, all node signs
equal ‘0’. For the newly observed node, an appropriate sign is en-
tered, that is, a ‘+’ for the value true or a ‘−’ for false. Each node
receiving a message updates its sign with the ⊕-operator, and then
sends a message to each neighbour that is not d-separated from the

observed node and to every node on which it exerts an induced in-
fluence3. The sign of this message is the ⊗-product of the node’s
(new) sign and the sign of the influence it traverses. This process is
repeated throughout the network, building on the properties of sym-
metry, transitivity, and composition of influences. Since each node
can change its sign at most twice, the algorithm is guaranteed to halt.

3 PROPAGATING MULTIPLE OBSERVATIONS
The sign-propagation algorithm for inference with a qualitative net-
work basically serves to compute the effects of a single observation.
The algorithm can, however, be used to handle multiple observations
[3]. The first approach is to add a dummy node D to the network,
with arcs Oi → D for each observed node Oi; the sign of the in-
fluence associated with the arc Oi → D corresponds to the sign
of the observation for Oi. Running the basic sign-propagation algo-
rithm with a ‘+’ for the dummy node will now yield the joint effect
of all the observations. The other approach is to enter and propagate
the various observations one after the other. The joint effect on unob-
served nodes then equals the sign-sum of the results of the successive
propagations; observed nodes retain their sign of observation. Both
approaches, unfortunately, tend to yield unnecessarily weak results.

In the dummy-node approach to handling multiple observations,
the node sign of the newly added node is set to ‘+’. The node signs
of the truly observed nodes, however, are not fixed and can therefore
change during inference, as is illustrated by the following example.

Example 3.1 We consider the qualitative network from Figure 2.
Again pertaining to the invasion of an oesophageal tumour into adja-
cent structures beyond the oesophagus, it describes that the longer the
tumour, the more likely it is to have grown through the oesophageal
wall. The length L of the tumour is strongly correlated with whether
or not the tumour is circular, modelled by node C. We now address
entering the observations L = true and C = false.

Figure 2 shows the results of propagating the two observations
with the dummy-node approach. First, a dummy node Dummy is
added to the network, with arcs L → Dummy and C → Dummy,
and influences S+(L,Dummy) and S−(C,Dummy). A ‘+’ is then
entered for the dummy node. Dummy sends a ‘+’ to node L. L there-
upon sends a ‘+’ to both C and W . The dummy node also sends a
‘−’ to node C, which in turn passes the ‘−’ on to L. All nodes end
up with the ambiguous node sign ‘?’ after inference. �

? ? ?

+

C L W
+ +

− +

Dummy

Figure 2. The effect of entering a ‘+’ for node L and a ‘−’ for node C,
using the dummy-node approach.

The example illustrates a typical problem with the dummy-node ap-
proach: since multiple observations are entered as a single observa-
tion for a dummy node, the actual observations do not block chains
as they would in the original network. The set of influences over
which signs are propagated may thus be too large. In fact, observa-
tions can even be propagated to nodes from which they are actually

3 The literature on sign propagation is not clear on whether or not an inter-
causal influence that is induced by an observation is immediately used upon
propagating that observation. Here we assume that induced influences are
not used immediately. In Section 5 we will justify our assumption.
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Figure 3. The separate effects of entering a ‘+’ for L (a) and a ‘−’ for C
(b), and their joint effect (c).

d-separated. This can result in weaker signs than necessary, that is, it
can result in ‘?’s instead of ‘+’, ‘−’ or ‘0’s. Although not incorrect,
these ambiguous signs are very uninformative and, moreover, tend to
spread to large parts of the network.

Using the sequential-propagation approach to handling multiple
observations, the order in which observations are entered can affect
the net result of inference. The differences upon inference originate
from the dynamics of the set of influences over which signs are prop-
agated: the set shrinks as chains are blocked and expands as inter-
causal influences are induced. We present two illustrative examples.

Example 3.2 We consider again the network fragment from Fig-
ure 2, this time without the dummy node. We again address entering
the two observations L = true and C = false.

Figure 3 shows the results from first entering L = true and then
C = false. To propagate the first observation, node L sends a ‘+’
to both C and W . All three nodes end up with a positive node sign.
Then, a ‘−’ is entered for node C. As node L is observed, its sign is
not affected. In addition, as node L blocks the chain from C to W , no
sign is passed on to node W . The joint effect of the two observations
thus is positive for nodes L and W , and negative for node C. These
are the strongest possible results derivable from the network.

Figure 4 shows the results from first entering C = false and then
L = true. The joint effect of these observations on the probabil-
ity distribution of node W now is unknown. Note that this result is
weaker than necessary. �

Example 3.3 We consider once again the network fragment from
Figure 1 and address the observations L = true and W = true.

Figure 5 shows the results from first entering L = true and then
W = true. After entering the first observation, node L propagates a
‘+’ to node W . As U and L are independent causes of W , it does not
pass on a message to U : U ’s probability distribution is not affected by
the observation. Then, a ‘+’ is entered for node W . W sends a ‘+’
to both U and L. As node L is observed, its sign is not affected by
the new observation. The joint effect of the two observations shows
a positive net influence on node U ’s probability distribution, which
is the strongest possible result that can be derived from the network.

Figure 6 now shows the results from first entering W = true and
then L = true. After entering the first observation, node W propa-
gates a ‘+’ to both its causes. The observation in addition induces
a negative intercausal influence between U and L. Subsequently en-
tering the second observation causes node L to send a ‘−’ over the
intercausal influence to node U . It further sends a ‘+’ to W , but node
W has been observed and will not change sign. The joint effect of the
observations now reveals an ambiguous net effect on U ’s probability
distribution, which is a correct but unnecessarily weak result. �
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Figure 4. The separate effects of entering a ‘−’ for C (a) and a ‘+’ for L
(b), and their joint effect (c).
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Figure 5. The separate effects of entering a ‘+’ for L (a) and a ‘+’ for W
(b), and their joint effect (c).

The previous examples demonstrate that, by sequential propagation
of multiple observations and adding the results, the order in which
the various observations are entered can influence the results and can
yield unnecessary ambiguous node signs. As mentioned before, the
differences in results can be attributed to the dynamics of the set of
influences over which signs are propagated.

4 EXPLOITING DYNAMICS
When a single observation is entered into a qualitative network, the
basic algorithm propagates the associated sign to each node that is
not d-separated from the observed node. The set of influences over
which the sign is propagated is then unique. By entering multiple ob-
servations one after the other, however, this set changes dynamically.
On the one hand, influences are removed as chains are blocked; on
the other hand, intercausal influences are added [6]. In the previous
section we have shown that these dynamics can give rise to unnec-
essary ‘?’s and can yield different results upon inference, dependent
upon the order in which the observations are entered.

The order of entering observations for two nodes O1 and O2 can
influence the sign resulting for a node A if A is d-separated from,
for example, O1 given O2. Then, if the observation for O1 is entered
first, a sign may be propagated to node A that would not have reached
it if the observation for O2 had been entered first. To ensure that
the order in which multiple observations are entered is immaterial,
therefore, the sign of an observation should be propagated only along
chains that will not be blocked by subsequent observations. To this
end, for each node Oi in the set O of simultaneously observed nodes,
we determine the set of nodes that are d-separated from Oi given
O \ {Oi} and the set P of all previously observed nodes. We call
this set the exclusion set X(Oi) for Oi. We now have that any node
in X(Oi) is independent of Oi given (O ∪ P ) \ {Oi}.

Proposition 4.1 Let G be an acyclic digraph and let Pr be a prob-
ability distribution that respects G. Now, let P be a set of previously
observed nodes and let O be the set of newly observed nodes. Then,
for each Oi ∈ O, Pr(X(Oi) |O∪P ) = Pr(X(Oi) |(O∪P )\{Oi}).

Now, to ensure that the order of entering multiple observations does
not affect net results, the sign-propagation algorithm should restrict
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Figure 6. The separate effects of entering a ‘+’ for W (a) and for L (b),
and their joint effect (c).



the propagation of an observation for Oi ∈ O to those nodes in the
digraph that are not included in X(Oi). From Proposition 4.1, we
have that, by doing so, no node ever receives a sign it should not
have received given the other observations.

With the dummy-node approach to handling multiple observa-
tions, the set of influences over which signs are propagated does
not change dynamically upon inference since only a single obser-
vation for the dummy node is entered. However, as demonstrated in
the previous section, observations can then be propagated to nodes
from which they are d-separated. To ensure that signs are propagated
correctly, the sign-propagation algorithm should be adapted to send
signs to observed nodes over influences from the dummy node only.

5 DOMINANCE OF INFLUENCES
In the previous section, we discussed the use of an exclusion set to
prevent the order in which multiple observations are entered into a
qualitative network from affecting the net results of inference. In this
section, we demonstrate that any intercausal influences induced by
the observations should be disregarded during sign propagation. To
this end, we investigate the sole effect of these intercausal influences.

We begin by showing that the influences that are induced by a spe-
cific observation should not be used in propagating that observation.

Proposition 5.1 Let G be the digraph of a qualitative network with
A → C ∈ A(G) and Sδ(A,C), and without any other chains be-
tween A and C’s predecessors than through C. Let δC be the sign
of an observation for node C and let δA be the sign of node A given
this observation. Then, δA = δC ⊗ δ.

Proof: We prove the proposition for δ = δC = +; proofs for other
combinations of signs are analogous. The sign of node A given the
observation for C equals the sign of the change Pr(a | c)−Pr(a) in
A’s probability distribution. We find for all combinations of values x
for the set X of predecessors of C other than A, that

Pr(a | cx) − Pr(a) =
(Pr(c | ax)− Pr(c | x)) · Pr(a)

Pr(c | x)
= (Pr(c | ax)− Pr(c | āx)) ·

(
Pr(ā) · Pr(a)
Pr(c | x)

)

From S+(A,C) we have that Pr(c | ax) − Pr(c | āx) ≥ 0
for all x. We conclude that Pr(a | c) − Pr(a) =

∑
x(Pr(a |

cx)− Pr(a)) · Pr(x | c) ≥ 0 and, hence, that δA = δC ⊗ δ. �

The previous proposition only pertains to the effect of the intercausal
influence on node A. Any other influences on A from C’s predeces-
sors are handled by the propagation algorithm. We would like to note
that the proposition holds also when a descendant of C is observed.

We now show that, if an observation pertains to a node from a set
of multiple simultaneously observed nodes, then the intercausal in-
fluence induced by that observation should also be disregarded when
propagating the other observations; more specifically, we show that
direct influences always dominate over intercausal ones.

Dominance of direct influences over intercausal ones was already
suggested by M.J. Druzdzel [3, Section 6.4.3]. Druzdzel focuses on
the situation where a head-to-head node and one of its parents are
observed. As we will show presently, in this situation the effect of
the observation of the head-to-head node on an unobserved parent
is larger than the effect of the observation for the observed parent
via the induced intercausal influence. Druzdzel claims that this dom-
inance property follows from the following proposition: “For parents

A, B of C, and A, C of D, the qualitative influence of D on B solely
depends on the influence of D on C and that of C on B.” In the net-
work described, there are two chains from D to B, one consisting of
D ← A→ C ← B and one consisting of D ← C ← B. Druzdzel
proves the proposition by observing that the latter chain is the only
unblocked chain. Note, however, that if node D, a descendant of the
head-to-head node C, is observed, then an intercausal influence is
induced between nodes A and C, and the chain from A to B via C
becomes unblocked as well. Unfortunately, as the proposition does
not mention observed nodes nor intercausal influences, we feel that
it does not correctly capture the dominance property.

We will formally show that the dominance property suggested by
Druzdzel indeed holds. We say that the influence of a node B on a
node C dominates the influence of a node A on C, if an observation
for B has a larger effect on the probability distribution of C than
an observation for A, that is, iff, for all observations ai ∈ {a, ā}
of A and bi ∈ {b, b̄ } of B, we have that |Pr(c | bi) − Pr(c)| ≥
|Pr(c | ai) − Pr(c)|. We now prove that direct influences dominate
over intercausal ones.

Proposition 5.2 Let G be the digraph of a qualitative network with
A → C, B → C ∈ A(G) and without any other chains between A
and B than through C. Let δdirect be the sign of change for node A
given an observation for node C and let δinter be the sign of change
for node A given a subsequent observation for node B. Let δA be the
sign of node A given both observations. Then, δA = δdirect.

Proof: We prove the proposition for S+(A,C), the observations c
for node C and b for node B, and X−({A,B}, c). Note that we then
have that δdirect = + and δinter = −. Proofs for other combinations
of signs are analogous. The sign δdirect of the change in A’s proba-
bility distribution equals the sign of the difference Pr(a | c)−Pr(a).
The sign δinter of the change in A’s probability distribution occa-
sioned by the subsequent observation for node B, equals the sign of
Pr(a | bc) − Pr(a | c). The node sign δA of node A given both
observations equals the sign of the difference Pr(a | bc) − Pr(a).
For all combinations of values x for the set X of predecessors of C
other than A and B, we now have that

Pr(a | bcx)− Pr(a) =
Pr(c | abx) · Pr(a | bx)

Pr(c | bx) − Pr(a)

=
(Pr(c | abx)− Pr(c | bx)) · Pr(a)

Pr(c | bx)
= (Pr(c | abx)− Pr(c | ābx))·

(
Pr(a) · Pr(ā)
Pr(c | bx)

)

From S+(A,C) we have for all values x that Pr(c | abx) − Pr(c |
ābx) ≥ 0. We conclude that Pr(a | bc) − Pr(a) ≥ 0 and, hence,
that δA = δdirect. �

We note that the proposition also holds for indirect observations for
node C. The dominance property tells us that during the sequential
propagation of multiple simultaneous observations, intercausal influ-
ences induced by any of these observations should be disregarded.

6 PROBABILISTIC INFERENCE REVISITED

In the previous sections, we argued that observations for the nodes
Oi from a set O of simultaneously observed nodes should be prop-
agated only to the nodes that are not d-separated from Oi given all



other nodes from O. In addition, we demonstrated that, upon propa-
gating multiple simultaneous observations, we should disregard the
intercausal influences induced by these observations. The basic sign-
propagation algorithm can be easily adapted to incorporate these
ideas. For this purpose, a node’s exclusion set can be computed ef-
ficiently with the well-known Bayes-Ball algorithm [7]. This algo-
rithm computes the set of nodes that are structurally irrelevant for a
node of interest given all observed nodes. For an observed node Oi,
the set of structurally irrelevant nodes given all other observations, is
exactly our exclusion set X(Oi) of Oi.

We now illustrate the impact of disregarding intercausal influences
and using exclusion sets upon propagating multiple observations.

Example 6.1 We consider the qualitative network from Figure 7.
Figure 7(a) shows the results of using the basic sign-propagation
algorithm, after entering the subsequent observations D = true,
B = true, C = false, and G = false, and combining the results.
Note that the nodes A and E end up with the node sign ‘?’ as a result
of propagating a negative sign over the intercausal links induced by
the observations for D and B. The ‘?’ is propagated from node E to
node G and onwards, before the observation for G is entered. As a
result, nodes H , I and J also end up with the sign ‘?’. Figure 7(b)
shows the results of using the adapted algorithm, which disregards
intercausal influences and exploits the fact that node G d-separates
the nodes {H, I, J} from the other observed nodes. �

The adapted algorithm prevents the propagation of signs to nodes
that are d-separated from the observed node, given all other observed
nodes from the set of multiple observations. Each node therefore re-
ceives a sign if and only if its probability distribution is truly influ-
enced by the entire set of observations. As no node ever receives
signs it should not have received, no unnecessary ‘?’s are generated
and the algorithm returns the strongest possible signs that can be de-
rived from the specification of the network.

7 CONCLUSIONS
The basic algorithm for probabilistic inference with a qualitative net-
work has been designed to determine the effect of a single obser-
vation on the probability distributions of all nodes in the network.
We demonstrated that handling multiple observations by applying
the basic algorithm for each observation separately and combining
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Figure 7. Propagation of multiple observations using the original
sign-propagation algorithm (a) and the adapted algorithm (b).

the results into their joint effect can yield weaker results than nec-
essary. Furthermore, the results may depend on the order in which
the observations are entered. As the cause of these problems, we
identified the dynamics of the set of influences over which signs
are propagated upon inference. We showed that the intercausal in-
fluences that are added to this set are always dominated by direct
influences and should therefore be disregarded upon inference. In
addition, we showed that using exclusion sets for observed nodes
can prevent the propagation of the sign of an observation to nodes
that will be d-separated from the observed node given subsequently
entered observations. The adapted sign-propagation algorithm yields
results that are the strongest that can be derived from the qualitative
network as specified.

The concept of exclusion set and the disregarding of intercausal
influences are not just valuable when sequentially propagating mul-
tiple observations, but can also be exploited with the dummy-node
approach. We feel however that the dummy-node approach, when
compared to sequential propagation, bears the major drawback of
changing the structure of a network.
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