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Chapter 1

Introduction

Probabilistic networks are used in many knowledge-based systems and for
many tasks. For example, we can use probabilistic networks to model the
weather or to model diseases. Probabilistic networks consist of two parts,
namely a qualitative part and a quantitative part. The qualitative part of
the probabilistic network describes the variables with their independency
assumptions. The quantitative part of the probabilistic network is a set of
conditional probabilities. Probabilistic networks are generally constructed
with the help of experts from the domain of application [3].

A probabilistic network allows for computing any probability of interest.
After creating a probabilistic network, you might find out that the network
is not working properly. For example, you might find out that an output
probability calculated by the network is not as high as it should. This can
be caused either by a wrong assignment of one of the probabilities in the
quantitative part or by a wrong assignment of the independency assump-
tions in the qualitative part.

In this thesis, we formulate a constraint on such an output probability. Then
we identify those parameters, for which a change in value serves to en-
force the constraint. Although assessing the probabilities of the network
seems easy, little deviations of the ’real’ values can generate many wrong
outcomes. The question is what you should do when you encounter such
a wrong outcome. Trying to change the parameters by hand will often lead
to disturbing the whole probability distribution, as results from changing
one parameter are hard to predict. Adjusting the parameters in order to
improve the results in the network is called parameter tuning. We will not
discuss how to adjust the qualitative part of the network.
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6 CHAPTER 1. INTRODUCTION

In this thesis, we have investigated the constraints that are useful to enforce
when you want to tune the parameter in the network. We have found out
that all these constraints can be enforced using sensitivity functions. These
sensitivity functions describe the sensitivity of an output probability to a
parameter and thus can be used to find the parameter value that enforces
the constraint.

If we want to enforce a constraint, we will have to change some parame-
ters. It is clear that changing a parameter can disturb probabilities in the
network. In this thesis, we investigate how we can select the optimal pa-
rameter change. We formulate this optimal parameter change as the parame-
ter change or parameter changes that maintain most of the output proba-
bilities. We discuss the possible selection criteria for selecting this optimal
parameter change from a set of parameter changes. We also discuss the
selection criteria to select the optimal multiple parameter change when we
want to change multiple parameters in one CPT. We have tested these selec-
tion criteria in an experiment, these selection criteria performed reasonable.
However, the selection criteria did not find the optimal parameter change.

The structure of the rest of this thesis is as follows; the first chapter recapitu-
lates the prerequisites we need to be able to understand this thesis. We will
describe these prerequisites in a summarized fashion. In the third chapter,
we investigate how we can use constraints to tune the network. We will ex-
plain how these constraints can be enforced using sensitivity functions and
we will discuss how we can use the algorithms for finding the required
sensitivity functions. In the fourth chapter, we discuss how to select the op-
timal parameter change(s). We investigate how we can select the parameter
change that enforces the constraint and maintains most of the current out-
put probabilities. In the final chapter, we present some conclusions of this
thesis and directions for further research.



Chapter 2

Preliminaries

In this chapter, we will describe the prerequisites for reading this thesis. In
this chapter, we will first discuss the probabilistic network in general. Then
we will discuss the sensitivity functions.

2.1 What is a probabilistic network

A probabilistic network consists of a qualitative part and a quantitative
part. The qualitative part of a belief network describes the variables with
their independency assumptions. The quantitative part of the network is
a set of conditional probabilities that describe the strengths of the depen-
dences between the variables represented in the qualitative part [3].

Probabilistic networks predict the outcome given some observations as in-
put. For example, a probabilistic network can be used to calculate the prob-
ability of having a disease, when having some symptoms.

More formally, we use the following definition when we discuss a proba-
bilistic network.

Definition 1 A probabilistic network is a tupe B=(G,Γ), where:

• G is an acyclic digraph with vertices V(G) = {V1,...,Vn}, n≥1, and arcs
A(G);

• Γ is a set of conditional probabilities τx|u = Pr(x|u) where x is a value
associated with a variable of the digraph and u denotes a combination of
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8 CHAPTER 2. PRELIMINARIES

values for the parents of that variable in the diagraph. We will call these
conditional probabilities the parameters of the network.

The conditional probabilities together define a unique joint probability dis-
tribution Pr on V (G) that respects the independences portrayed in G [7].
These parameters are stored in conditional probability tables (CPTs).

2.2 Sensitivity functions

Sensitivity analysis can be used to find the one-way sensitivity function
that describes the relation between an output probability and a single pa-
rameter. In this thesis, we use this sensitivity function to find the change in
a parameter that enforces a constraint. As described by Coupe and van der
Gaag [3], this sensitivity function is always of the following form:

Theorem 1 Let Pr(a|e) denote an output probability, where a is a value of the
variable A and e denotes the observations. Let τx|u denote a parameter of the net-
work as before. Then:

Pr(a|e)(τx|u) =
Pr(a ∧ e)(τx|u)

Pr(e)(τx|u)
=

α · τx|u + β

γ · τx|u + σ
,

Where α ,β, γ and σ are constants of the sensitivity function.

We will use Pr(a|e)(τx|u) to denote the sensitivity function that describes
the sensitivity of the probability Pr(a|e) to the parameter τx|u. This sen-
sitivity function is either a linear function or a fragment of a rectangular
hyperbola, Renooij and van der Gaag [8].

As described by the axioms of the probability theory the values of the out-
put probabilities Pr(a|e) have to be between 0 and 1; the same holds for the
values of a parameter τx|u. Moreover, Pr(a|e)(τx|u) must be well-defined for
each value of τx|u. We have that in the domain between 0 and 1 there cannot
be an asymptote. We conclude that in the domain between 0 and 1 the sen-
sitivity function is either monotonically non-increasing or monotonically
non-decreasing.
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2.3 Obtaining the sensitivity functions

Kjærulff and van der Gaag [5] have described two algorithms for finding
sensitivity functions.

The first algorithm is OneOutAllIn, which takes a probability Pr(a|e) as
input and returns for each network parameter τx|u the constants α, β, γ
and σ of the sensitivity function Pr(a|e)(τx|u). A call to the algorithm One-
OutAllIn with input Pr(a|e) will be denoted by OneOutAllIn : Pr(a|e)
The second algorithm is AllOutOneIn, which takes the parameter τx|u
and the observation e as input and returns for each probability Pr(a|e)
the costants α, β, γ and σ of the sensitivity function Pr(a|e)(τx|u). A call
to the algorithm AllOutOneIn with input τx|u and e will be denoted by
AllOutOneIn : (e)(τx|u)

Computing the probabilities of the network requires one inward and two
outward propagations of the network. The algorithms, OneOutAllIn and
AllOutOneIn can compute the values of the constants of these sensitiv-
ity functions with one inward an two outward propagations of the net-
work which is thus an additional cost of one outward propagation. The
computing cost of these inward and outward propagations are not linear
with the size of the network. With propagation, we will denote one inward
and one outward propagation of the network. The cost of the algorithms,
OneOutAllIn and AllOutOneIn can thus be seen as requiring 1.5 propaga-
tions of the network.

At this moment there are no efficient algorithms to calculate for each of
the parameters and for each of the output probabilities in the network the
values of the constants of the sensitivity functions that describes the sensi-
tivity of the output probability with respect to a parameter, AllOutAllIn.
An N-way sensitivity analysis as described in [5] is computationally very
demanding.
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Chapter 3

Possible constraints and how to
enforce them

Upon reasoning with a probabilistic network, we may find out that the net-
work answers a certain query incorrectly. Parameter tuning can be used to
improve the results returned by a probabilistic network. To this end, we for-
mulate a constraint on the possible values of one or more of the network’s
output probabilities. After we have formulated the constraint, we identify
those parameters, for which a change in value serves to enforce the con-
straint.

In this chapter, we first consider all the constraints that may be interesting
when tuning a network. Then we will show how to determine the parame-
ter changes that serves to enforce these constraints.

3.1 Constraints of interest

In this section, we will list the important constraints we would like to be
able to enforce when tuning a network. We will give some intuition about
the constraints.

In the remainder of this section we will assume that a and b are values of
variables A and B in the network. Variables A and B may be the same,
unless stated otherwise. In addition, we assume that e1 and e2 are observa-
tions for two subsets E1 and E2, respectively, of network variables, where
E1 and E2 do not contain the variables A and B. Sets E1 and E2 may be

11



12 CHAPTER 3. POSSIBLE CONSTRAINTS

equivalent and so may the observations e1 and e2, unless stated otherwise.
If e1 and e2 are necessarily equivalent and hence E1 = E2, we remove the
subscripts and use e and E. Finally, we assume that η is a constant.

1 Constraining a single probability

When testing a network, a domain expert may find that an outcome prob-
ability that the network is giving is unexpected. When the expert has an
idea of a more realistic value for the outcome, then we want to enforce a
constraint of the form Pr(a|e) = η, where η is considered the correct out-
come probability.

Suppose we are investigating a network that is used to predict the prob-
ability of having Glandular fever, also know as the Kissing disease. The
expert, in this case a physician, may know the exact probability of having
the Glandular fever given an inflammation of the throat and fever. If this
presumed probability is different from the output probability of the net-
work, the physician may find that the latter has to change. To change this
output probability we need to change one or multiple network parameters.

Another possibility is that the physician only knows that the probability
computed by the network should be higher or lower than the current prob-
ability or that the physician knows that the probability computed should
be higher than a presumed value. For example, the physician could know
that the probability of Glandular fever when having an inflammation of the
throat and fever is much higher than the current output value, but he does
not know what it should be exactly. Then we can use a slight variation of
the constraint: Pr(a|e) < η (1a) or Pr(a|e) > η (1b).

We will investigate how to determine the parameter changes that serve to
enforce this type of constraint in Section 3.2.

2 Constraining the probability of the occurrence of two simultaneous events

When testing a network, we could check whether the network returns a re-
alistic probability of the occurrence of two values of two (different) output
variables at the same time. If we know the exact probability, then we want
to enforce a constraint of the form Pr(a ∧ b|e) = η.

We could, for example investigate a network modelling the flu and its
symptoms. If a physician knows that the probability of having a fever and
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coughing when having a flu should be 0.2 instead of the current prob-
ability 0.6, then you would want to enforce the constraint: Pr(fever ∧
coughing|flu) = 0.2.

Instead, the expert may want to enforce the less strict constraints Pr(a ∧
b|e) < η (2a) or Pr(a ∧ b|e) > η (2b). For example, the physician may want
to make the probability of both coughing and having a fever when having
the flu lower than 0.2.

When we want to change the probability of one of the two different output
values occurring, we need a constraint of the form Pr(a ∨ b|e) = η. For
example, the expert may know the probability of having a fever or cough-
ing (or both). Since Pr(a ∨ b|e)= 1− Pr(¬a ∧ ¬b|e) we can establish this by
enforcing the constraint Pr(¬a ∧ ¬b|e) = 1− η.

We will investigate how to determine the parameter changes that serve to
enforce this type of constraint in Section 3.3.

3 Constraining the ratio of two output probabilities

The constraint Pr(a|e1) = η · Pr(b|e2) can be used to constrain the ratio of
two output probabilities. For example, you may want to change the prob-
abilities of two outcome values in such a way that one outcome value is
twice as likely as the other outcome value.

Suppose we are still investigating a network modelling the flu and its
symptoms. If the physician knows that the probability of coughing when
having the flu is four times as likely as the probability of having a fever
when having the flu, then you could impose the following constraint
Pr(coughing|flu) = 4 · Pr(fever|flu).

If we know that two outcome values have to have equal probabilities, we
will have to impose the constraint: Pr(a|e1) = η · Pr(b|e2) with η = 1.

Off course when we only know that one outcome probability has to be
higher or lower than another outcome probability then we would need the
constraint Pr(a|e1) < η · Pr(b|e2) (3a) or Pr(a|e1) > η · Pr(b|e2) (3b).

We will investigate how to determine the parameter changes that serve to
enforce this type of constraint in Section 3.4.

4 Constraining the difference between two output probabilities
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An expert might know the exact value of the difference between two prob-
abilities. If this difference is unequal to the difference between the two cor-
responding probabilities computed from the network, then we want to en-
force a constraint of the form Pr(a|e1)− Pr(b|e2) = η.

Suppose we are investigating a probabilistic network that contains an
alarm system that is able to detect fire and burglars. Suppose that the
manufacturer of the alarm system knows that the alarm system detects a
fire slightly better than it detects a burglar. He knows the difference has
to be around 0.1. Then we could impose the constraint Pr(alarm|fire) −
Pr(alarm|burglar) = 0.1.

Sometimes we do not know the exact value of the difference between two
probabilities, but we know that the difference between two probabilities
has to be higher than a certain value. For example, the probability of having
the Glandular fever when having an inflammation of the throat and a fever
has to be higher than the probability of the Glandular fever when having
only an inflammation of the throat. In this case we can use a constraint of
the form Pr(a|e1)− Pr(b|e2) < η (4a) or Pr(a|e1)− Pr(b|e2) > η.

We will investigate how to determine the parameter changes that serve to
enforce this type of constraint in Section 3.5.

Combining different types of constraints

It is also possible to enforce any combination of multiple constants. For
example, the physician may know that the probability of having a flu
when coughing, Pr(flu|coughing), has to be higher than the current prob-
ability Pr(flu|coughing)o, but the probability of having a flu in general
Pr(flu), cannot be higher than 0.1. In this case you would like to enforce
Pr(flu|coughing) > Pr(flu|coughing)o and Pr(flu) ≤ 0.1 at the same
time.

We will briefly discuss combining different types of constraint in Section
3.6.

3.2 Constraining a single probability

As we have seen, if we want to change a single output probability we have
to enforce a constraint of the form Pr(a|e) = η. In this section, we will
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investigate whether or not this constraint can be enforced and if so, how.
We are going to use the sensitivity functions relating the output probability
of interest to the different network parameters, to determine if there are
parameters that can be changed such that the constraint is enforced.

3.2.1 Calculating the new parameter values

With the constants of the sensitivity function for the output probability
Pr(a|e) with respect to a single parameter τx|u, we can calculate the value
of the parameter which enforces the output probability Pr(a|e) to be equal
to η.

Recall that the sensitivity function, Pr(a|e)(τx|u), has the following form:

Pr(a|e) =
α · τx|u + β

γ · τx|u + σ

To determine the value of the parameter τx|u for which it holds that
Pr(a|e) = η, we have to solve:

α · τx|u + β

γ · τx|u + σ
= η

which gives:

τx|u =
σ · η − β

α− γ · η

It is obvious from this formula, that once we obtain the constants of the
sensitivity functions for all the parameters, we can determine for each pa-
rameter the value that enforces the constraint. If the formula returns a value
of the parameter that is higher than one or lower than zero, then the con-
straint cannot be enforced using this parameter.

Instead of changing a single parameter, a constraint of this form can also be
enforced by changing multiple parameters simultaneously. The advantage
of changing multiple parameters is that in some cases this will cause less
changes in the probability distribution. We will cover this subject in Chap-
ter 4. Another advantage is that there are constraints that can be enforced
changing multiple parameters, which could not be enforced changing a sin-
gle parameter.
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Recall that enforcing constraint of this form using multiple parameter
changes would require us to determine the constants of all n-way sensitiv-
ity functions for each combination of parameters. This is known to be com-
putationally very demanding. If we only allow multiple parameter changes
in a single conditional probability table (CPT) then this is computationally
still doable.

To investigate the sensitivity function for multiple parameters, we will first
examine the sensitivity function for two parameters, the 2-way function.
Under the assumption that both parameters are taken from the same CPT,
we now know that we can obtain this 2-way function from the sensitivity
functions for the single parameter changes.

Let τi, i = 1, 2, denote the two parameters that we want to change and let
αi, βi,γi and σi, i = 1, 2, denote the values of the constants of the sensitivity
function that describes the sensitivity of the output probability of interest
Pr(a|e) to parameter τi, then we have the following sensitivity functions
for the single parameter changes:

Pr(a|e) =
α1 · τ1 + β1

γ1 · τ1 + σ1

Pr(a|e) =
α2 · τ2 + β2

γ2 · τ2 + σ2

The general form of the 2-way sensitivity function is.

Pr(a|e) =
δ · τ1 · τ2 + α1 · τ1 + α2 · τ2 + κ

ε · τ1 · τ2 + γ1 · τ1 + γ2 · τ2 + µ

This is a complex function to use because it requires the computation of a
larger number of constants. However, in the specific case that the parame-
ters in the function are from the same CPT, we can simplify this function.
Because the parameters are from the same CPT, we know that there are
no interaction terms. We know this, as the probabilities corresponding the
parameters have observations that are contradictory. This means that the
constants δ and ε are zero and that the sensitivity function now reduces to
the following form:

Pr(a|e) =
α1 · τ1 + α2 · τ2 + κ

γ1 · τ1 + γ2 · τ2 + µ

Where the constants κ and µ are the values of Pr(a ∧ e) and respectively.
Pr(e) if the parameters τ1 and τ2 are zero.
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If we want to change all the parameters in the CPT, we have to sum over
all these parameter.

Pr(a|e) =
∑

i αi · τi + κ∑
i γi · τi + µ

We can determine the values of κ and µ by calculating the probabilities
Pr(a ∧ e) and Pr(e) after setting all the parameters in the CPT to zero:

Let τ o
i denote the current value of parameter τi, then we know that the

difference in the probability Pr(a ∧ e) after changing parameter τ o
i to zero

is equal to αi · τ o
i . We know that the values of Pr(a ∧ e) and Pr(e) are, for

example, equal to the values of β1 and σ1 if the parameter τ1 is zero and the
other parameters have the original values.

Thus κ has the following value:

κ = β1 −
∑
i6=1

αi · τ o
i

Where
∑

i6=1 αi · τ o
i equals the difference in the probability Pr(a ∧ e) when

we change the current probabilities of the parameters, except the first, to
zero.

We can calculate µ using the same method:

µ = σ1 −
∑
i6=1

γi · τ o
i

Where
∑

i6=1 γi · τ o
i equals the difference in the probability Pr(e) when we

change the current probabilities of the parameters, except the first, to zero.

We conclude that after obtaining the sensitivity functions for each param-
eter in the network, we can determine which single parameter change or
multiple parameter changes in one CPT, serve to impose the given con-
straint. In the next section, we discuss how to compute the constants re-
quired.

3.2.2 Which parameters enforce the constraint

In the previous section we have obtained the functions for finding the pa-
rameter changes that can enforce the constraint Pr(a|e) = η. To be able to
use these functions we will need the values of the constants of the sensitiv-
ity function Pr(a|e)(τx|u). There are two algorithms available that serve to
directly compute the values of the constants.
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The two algorithms can actually exploited to answer two different types of
tuning questions. The first type of question is the type we have addressed
so far and relates to which of a large number of parameters serve(s) to en-
force a constraint on a single, or a small number of, output probabilities.
We will refer to such tuning questions as parameter questions. We could for
example want to know the parameter changes for each parameter in the
network that enforce a constraint, or we could want to know the smallest
absolute parameter change that would enforce a constraint. For this type of
question, we employ the algorithm OneOutAllIn mentioned in Section 2.

The second type of question addresses situations concerning a small num-
ber of parameters and a large number of output probabilities. We will re-
fer to these questions as output questions and employ the algorithm AllOu-
tOneIn to answer them. For example, when evaluating the network, we
might find out that many constraints are not satisfied. If we are uncertain
about the value of a particular parameter, we could examine whether there
is a value of that parameter that enforces all constraints. Another output
question could be that we want to increase a probability, without changing
the other probabilities containing the same observations more than 5

In the next section, we are going to investigate these questions. First, we
are going to consider the parameter questions. We will start with parameter
questions involving equality constraints. Then we will consider parameter
questions involving inequality constraints. Subsequently, we will give an
example where we need to enforce a constraint using multiple parameter
changes in one CPT. Finally, we will consider the output questions.

We will use the example network of Figure 3.1 in the examples. This net-
work is a modified version of the network described in [7].

The network has the following parameters:

τB=burgling = 0.2

τE=active = 0.6

τW=broken|B=burgling = 0.4
τW=broken|B=sleeping = 0.9

τA=ringing|B=burgling∧E=active = 0.1
τA=ringing|B=burgling∧E=active = 0.4
τA=ringing|B=sleeping∧E=inactive = 0.8
τA=ringing|B=sleeping∧E=inactive = 0.3
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Figure 3.1: An example network

Parameter questions

OneOutAllIn : Pr(a|e) returns the values of the constants of all the sen-
sitivity functions Pr(a|e)(τx|u) for one output probability Pr(a|e) with re-
spect to all parameters in the network. Using these sensitivity functions
we can determine for each parameter which value, if any, serves to enforce
the constraint Pr(a|e) = η. It is likely that more than one parameter upon
changing enforces the constraint. In that case, we need to choose one. Cri-
teria for doing so, for example the parameter that requires the smallest ab-
solute change, are discussed in Chapter 4. In the next example, we will try
to answer such a question.

Example 1 Suppose we want to change the probability Pr(A = ringing|W =
broken) for the network in Figure 3.1. We want to know for each parameter, the
parameter change that enforces the constraint. Of course, it could also be the case
that for some parameter the constraint cannot be enforced at all. As we can see,
the probability Pr(A = ringing|W = broken) currently is 0.562. Suppose we
want to change this to 0.60. A call to OneOutAllIn : Pr(A = ringing|W =
broken),returns the constants of the sensitivity functions, which are summarised
in Table 3.1. We can use these constants to find which parameters can, upon
change, enforce the given constraint, and to determine by how much they should
be changed.
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parameter α β γ σ

τB=burgling −0.452 0.540 −0.500 0.900
τE=active 0.336 0.248 0.000 0.800
τW=broken|B=burgling 0.044 0.432 0.200 0.720
τW=broken|B=sleeping 0.480 0.018 0.800 0.080
τA=ringing|B=burgling∧E=active 0.048 0.444 0.000 0.800
τA=ringing|B=burgling∧E=inactive 0.032 0.437 0.000 0.800
τA=ringing|B=sleeping∧E=active 0.432 0.104 0.000 0.800
τA=ringing|B=sleeping∧E=inactive 0.288 0.363 0.000 0.800

Table 3.1: Values of the constants of the sensitivity functions for the out-
come probability Pr(A = ringing|W = broken) for each parameter.

For each parameter we compute from the constants of its corresponding sensitivity
function

τx|u =
0.60 · σ − β

α− 0.60 · γ

For example, for the parameter τB=burgling we find

τB=burgling =
0.60 · 0.900− 0.540
−0.452 + 0.60 · 0.500

= 0.000

Similarly, for parameter τE=active we get:

τE=active =
0.60 · 0.800− 0.248
0.336− 0.60 · 0.000

= 0.690

So changing the parameter τB=burgling from its original value of 0.200 to 0.000,
or changing τE=active from 0.600 to 0.690 will result in a change in the output
probability Pr(A = ringing|W = broken) from 0.560 to 0.600.

Other parameter changes can also accomplish this, as can be seen from Table 3.2,
which lists the parameter values that enforce the constraint. Notice the difference
of change necessary for the different parameters. Furthermore, note that changing
some of the parameters cannot give the desired effect at all. This is indicated in the
table as np (not possible).

The above method can also be applied to answer another parameter ques-
tion. It can be used to find all the parameter changes that enforce con-
straints of the type Pr(a|e) > η or Pr(a|e) < η. However, additional infor-
mation is required besides the constants obtained using the above method:
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parameter τx|u current τ o
x|u new τx|u |τx|u − τ o

x|u|
τB=burgling 0.200 0.000 0.200
τE=active 0.600 0.690 0.090
τW=broken|B=burgling 0.400 0.000 0.400
τW=broken|B=sleeping 0.900 np np
τA=ringing|B=burgling∧E=active 0.100 0.750 0.650
τA=ringing|B=burgling∧E=active 0.400 np np
τA=ringing|B=sleeping∧E=inactive 0.800 0.870 0.070
τA=ringing|B=sleeping∧E=inactive 0.300 0.406 0.106

Table 3.2: Parameter changes that serve to enforce the constraint Pr(A =
ringing|W = broken) = 0.60.

we need to know whether the sensitivity function is increasing or decreas-
ing. As argued in Section 2.2, the sensitivity function is either monotoni-
cally increasing or monotonically decreasing. We know that the sensitivity
function is increasing when you need a higher value of the parameter to
increase the output probability, or when we need a lower parameter value
to decrease the output probability.

In Figure 3.2 we have shown an example graph of a monotonically increas-
ing sensitivity function. Suppose with the above method we find that to
enforce Pr(a|e) = η the parameter τx|u should have the new value τ1

x|u. We
now know that if the sensitivity function is monotonically increasing then:

Pr(a|e) > η when τx|u > τ1
x|u.

If the sensitivity function is monotonically decreasing then:

Pr(a|e) > η when τx|u < τ1
x|u.

In the previous example, we have found the parameter values that enforce
the constraint Pr(a|e) = η. In the next example we are going to use these
parameter values to enforce the constraint Pr(a|e) > η.

Example 2 Suppose we are using the same network from Figure 3.1 but now we
want the output probability Pr(A = ringing|W = broken), which is 0.562,
to be higher than 0.60. In other words, we have that Pr(A = ringing|W =
broken)o=0.562 and Pr(A = ringing|W = broken)1=0.60. To enforce the men-
tioned constraint we can use the results from the previous example.

In the previous example we found that if we want to change the value of Pr(A =
ringing|W = broken) from 0.562 to 0.60 using τE=active, then we have to change
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Figure 3.2: If the sensitivity function is monotonically increasing, then
Pr(a|e) > η when τx|u > τ1

x|u.

this parameter from τ o
E=active = 0.60 to τ1

E=active = 0.690 = 0.690.

Since τ o
E=active < τ1

E=active and Pr(A = ringing|W = broken)o < Pr(A =
ringing|W = broken)1 we know that the sensitivity function relating Pr(A =
ringing|W = broken) to parameter τE=active is monotonically increasing. As
the sensitivity function is monotonically increasing we know, as seen in Figure
3.2, that the value of τE=active has to be higher than 0.690 in order for the prob-
ability of interest to become higher than 0.60. We can repeat this argument for
each parameter in the network. The parameter changes that enforce the constraint
Pr(A = ringing|W = broken) > 0.6 are summarised in Table 3.3.

Upon tuning, the constraint Pr(a|e) > η can also be used to ensure that the
value of Pr(a|e) becomes higher than its current value. In that case, we only
have to know whether the sensitivity function is monotonically increasing
or monotonically decreasing to enforce the constraint.

There are also parameter questions for which you would like to know the
values of multiple parameter changes in one CPT to enforce a constraint.
When we are uncertain about one parameter in the CPT, we are probably
uncertain about the other parameters in that CPT as well. This approach,
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parameter current τ o
x|u new τx|u |τx|u − τ o

x|u|
τB=burgling 0.200 np np

τE=active 0.600 > 0.690 > 0.090
τW=broken|B=burgling 0.400 np np

τW=broken|B=sleeping 0.900 np np

τA=ringing|B=burgling∧E=active 0.100 > 0.750 > 0.650
τA=ringing|B=burgling∧E=active 0.400 np np

τA=ringing|B=sleeping∧E=inactive 0.800 > 0.870 > 0.070
τA=ringing|B=sleeping∧E=inactive 0.300 > 0.406 > 0.106

Table 3.3: Parameter changes that serve to enforce the constraint Pr(A =
ringing|W = broken) > 0.60.

changing multiple parameters in one CPT, can be more convenient than
changing only one of them. Finding the optimal solution for the parame-
ter changes in one CPT is very difficult and depends on the definition of
optimal. We will consider finding optimal solutions in the next chapter.

In the following example, we will show how we can find these multiple
parameter changes. However, using this method we find many solutions.
In the next chapter, we will discuss how to select the optimal multiple pa-
rameter changes from a set of solutions.

Example 3 Suppose we want to change the parameters in the CPT of Alarm of
the network of Figure 3.1 in such a way that they enforce the constraint Pr(A =
ringing|W = Broken) = 0.5. To find the sensitivity functions that are employed
to compute the changes required for the parameters in the CPT, we only have to
combine the constants of the sensitivity functions summarised in Table 3.1.

For ease of reference we call:
τA=ringing|B=burgling∧E=active = τ1

τA=ringing|B=Burgling∧E=inactive = τ2

τA=ringing|B=sleeping∧E=active = τ3

τA=ringing|B=sleeping∧E=inactive = τ4

Recall that the sensitivity function for changing multiple parameters in one CPT
is as follows:

Pr(a|e) =
∑

i αi · τi + κ∑
i γi · τi + µ
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Where κ is the value of Pr(a ∧ e) and µ the value of Pr(e) when the value of all
the parameters in the CPT are zero.

Using the values of the constants of the sensitivity functions of the single parame-
ter changes results in:

Pr(A = ringing|W = broken) =
0.048 · τ1 + 0.032 · τ2 + 0.432 · τ3 + 0.288 · τ4 + κ

0.000 · τ1 + 0.000 · τ2 + 0.000 · τ3 + 0.000 · τ4 + µ

Recall that the constant κ can be calculated from:

κ = β1 −
∑
i6=1

αi · τ o
i

Using the values of the constants in Table 3.1 we calculate:

κ = 0.4496− 0.048 · 0.1− 0.032 · 0.4− 0.432 · 0.8− 0.288 · 0.3 = 0

The constant µ can be calculated using this formula:

µ = σ1 −
∑
1.N

γu · τ o
u

Where
∑

1.N γu · τ o
u equals the difference in the probability Pr(e) when we change

the current probabilities of the parameters, except the first, to zero.

Using the values of the constants in Table 3.1 we calculate:

µ = 0.8− 0.000 · 0.1− 0.000 · 0.4− 0.000 · 0.8− 0.000 · 0.3 = 0.8

To determine the parameter changes that can enforce the constraint we now have
to solve:

0.048 · τ1 + 0.032 · τ2 + 0.432 · τ3 + 0.288 · τ4 + 0.000
0.000 · τ1 + 0.000 · τ2 + 0.000 · τ3 + 0.000 · τ4 + 0.800

= η

This equation has many solutions. In the next chapter, we will investigate how to
choose the best combination of parameter changes. One easy way to find a solution
is by taking the values of the parameters of the CPT to be equivalent. Of course,
this solution is obvious; however, we will use this method to illustrate how to use
the sensitivity function.
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If all the parameter values are to be equivalent, we have that, τ1 = τ2 = τ3 = τ4.
We can replace these parameters with one variable τ1−4, which now has the same
value as the four parameters. This makes the equation much easier to solve:

0.048 · τ1−4 + 0.032 · τ1−4 + 0.432 · τ1−4 + 0.288 · τ1−4 + 0.00
0.000 · τ1−4 + 0.000 · τ1−4 + 0.000 · τ1−4 + 0.000 · τ1−4 + 0.8

=
0.8 · τ1−4

0.8
= η

To determine the parameter changes that can enforce the constraint Pr(A =
ringing|W = Broken) = 0.5 with equal parameter values in the CPT of Alarm
we have that:

0.8 · τ1−4

0.8
= 0.5

When solving this equation we have that the value of τ1−4 has to be 0.5, that is, we
have to change all parameter values to 0.5 to enforce the constraint.

In this paragraph we have investigated how we can answer parameter
questions with respect to the constraint Pr(a|e) = η. We used the One-
OutAllIn algorithm to find the values of the constants needed to find the
sensitivity functions for all the parameters. If we want to answer output
questions where the expert wants to enforce many constraints of the form
Pr(a|e) = η then using OneOutAllIn to solve this would be infeasible, since
for each constraint, we would need to use one call to the algorithm. We will
now discuss how to handle output questions more efficiently.

Output questions

Instead of using OneOutAllIn to enforce multiple constraints, which would
require applying the algorithm multiple times, we can use the AllOutOneIn
algorithm. With one run of AllOutOneIn : (e)(τx|u) we get the sensitivity
functions we can use to determine the parameter change of one parameter
τx|u that serves to enforce the constraint Pr(a|e) = η for all probabilities in
the network that contain the evidence e. Using this algorithm, we can an-
swer questions containing multiple constraints if these constraints involve
probabilities containing the same observations.

With the sensitivity functions found from one run of AllOutOneIn, you
could, for example, find the value of a single parameter that enforces the
constraint Pr(a|e) = 0, but simultaneously enforce the constraint Pr(b|e) =
1, for a 6= b.
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We can of course also want to answer output questions relating to inequal-
ity constraints. These questions are more interesting, because now we can
find the parameter value for which multiple constraints containing inequal-
ities hold. For example, for a certain parameter we could find the value of
the parameter that enforces the constraint Pr(a|e) < 0.1, but also enforces
the constraint Pr(b|e) > 0.2.

If we know between which values the output probabilities are likely to
be, then we could define constraints for each output probability in the
network containing the same observations, like 0.4 < Pr(a|e) < 0.6 and
0.2 < Pr(b|e) < 0.3. Using AllOutOneIn, we could find the values for the
constants for the sensitivity function we need to determine the parameter
changes to enforce these constraints. We will illustrate this in the following
example.

Example 4 Suppose we are uncertain about the parameter τE=active. From in-
terviewing the manufacturer of the alarm system, the police and a geographer, we
know that the outputs of the network should satisfy the following constraints:

• Pr(B = burgling|W = broken) < 0.80

• Pr(A = ringing|W = broken) > 0.50

• Pr(E = active|W = broken) > 0.60

First we have to solve the equation Pr(a|e) = η for the three output probabilities.
To find the parameter changes that enforce these constraints we need the sensitiv-
ity functions that describe the sensitivity of the three output probabilities to the
parameter. With one run of AllOutOneIn : (W = broken)(τE=active) we find
the values of the constants of the sensitivity functions Pr(a|e)(τE=active) for all
output probabilities in the network with the observation W = broken. The values
of the constants of these sensitivity functions are summarised in Table 3.4.

To find the parameter change that enforces Pr(a|e) = η we compute:

τE=active =
0.60 · σ − β

α− 0.60 · γ

For Pr(B = burgling|W = broken) this gives:

τ1
E=active =

0.800 · 0.80− 0.080
0.000− 0.00 · 0.80

= ∞
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output probability α β γ σ

Pr(B = burgling|W = broken) 0.000 0.080 0.000 0.800
Pr(B = sleeping|W = broken) 0.000 0.072 0.000 0.800
Pr(E = active|W = broken) 0.800 0.000 0.000 0.800
Pr(E = inactive|W = broken) −0.800 0.800 0.000 0.800
Pr(A = ringing|W = broken) 0.336 0.248 0.000 0.800
Pr(A = silent|W = broken) -0.336 0.552 0.000 0.800

Table 3.4: Values of the constants for the sensitivity functions for different
outcome probabilities with respect to the parameter τE=active.

For Pr(E = active|W = broken) this gives:

τ1
E=active =

0.800 · 0.50− 0.000
0.800− 0.00 · 0.50

= 0.500

For Pr(A = ringing|W = broken) this gives:

τ1
E=active =

0.800 · 0.60− 0.248
0.336− 0.00 · 0.60

= 0.690

When changing τE=active, the probability Pr(B = burgling|W = broken) can
never become 0.8. This is because the probability Pr(B = burgling|W = broken)
is independent of the parameter τE=active. We could have excluded this prob-
ability before running the analysis. We know that the probability of Pr(B =
burgling|W = broken) is 0.1, which is lower than 0.8, and will remain to be
so for any value of this parameter.

For the second constraint, we know that the original probability is 0.6 and the orig-
inal value of the parameter is also 0.600. So Pr(E = active|W = broken)o = 0.6
and τ o

E=active = 0.600. The probability Pr(E = active|W = broken)1 is 0.50
when τ1

E=active is 0.500. Because τ0
E=active > τ1

E=active and Pr(E = active|W =
broken)0 > Pr(E = active|W = broken)1 we know that the sensitivity
function is monotonically increasing. Thus we know that Pr(E = active|W =
broken) > 0.5 when τE=active > 0.5.

For the third constraint, we know that the original value of the probability
is 0.562 and the original value of the parameter is 0.600. So we know that
Pr(E = active|W = broken)o = 0.562 and τ o

E=active = 0.600. The prob-
ability Pr(E = active|W = broken)1 is 0.60 when τ1

E=active is 0.690. Be-
cause τ0

E=active < τ1
E=active and Pr(E = active|W = broken)0 < Pr(E =
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active|W = broken)1 we know that the sensitivity function is monotonically in-
creasing. Thus we know that Pr(E = active|W = broken) > 0.6 whenever
τE=active > 0.690.

With the original value of 0.600, only the first constraint was satisfied. The value
of τE=active has to be higher than 0.690 to enforce all three constraints.

3.3 Constraining the probability of the occurrence of
two simultaneous events

In this section, we investigate how we can constrain the probability of the
occurrence of two events. We will consider the constraint Pr(a ∧ b) = η
for the situation where there are no observations and we will consider the
constraint Pr(a ∧ b|e) = η when there are observations.

3.3.1 Calculating the new parameter values

First, we will discuss the situation when we want to change the probability
of occurrence of two events when there are no observations. We start with
this situation, because this can be solved in an easier way than when there
are observations.

With the constants of the sensitivity functions for the output probability
Pr(a|b) with respect to the parameter τx|u we can calculate the new value
of the parameter which enforces the output probability Pr(a ∧ b) to have
the value η. This is because the sensitivity function of Pr(a|b) is made out
of the sensitivity function of two other probabilities, namely Pr(a ∧ b) and
Pr(b):

Pr(a ∧ b)
Pr(b)

= Pr(a|b)

In other words, we can use the numerator of the sensitivity function for
Pr(a|b) to get the sensitivity function of the probability Pr(a ∧ b). We can
find the values of the sensitivity function of the probability Pr(a∧ b) by us-
ing the α and β values of the sensitivity function of the probability Pr(a|b):

Pr(a ∧ b) = α · τx|u + β
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Solving the equation ατx|u + β = η gives:

τx|u =
η − β

α

This indicates that if we have the values of the constants α and β of the
sensitivity function that describes the relation between a parameter τx|u
with respect to a output probability Pr(a|b), then we can find the parame-
ter value of τx|u that enforces the constraint Pr(a ∧ b) = η. This approach
can only be used when there are no observations in the constraint.

In the case that we do have observations, we need two sensitivity functions.
We need the sensitivity function that describes the relation between a pa-
rameter τx|u and the probabilities Pr(a|b ∧ e) and Pr(b|e) respectively. We
will now show that using these sensitivity functions we can calculate the
value of the parameter τx|u for which it holds that Pr(a ∧ b|e) = η. We first
observe that from the definition of conditional probability, we have that.

Pr(a ∧ b|e)(τx|u) = (Pr(a|b ∧ e) · Pr(b|e))(τx|u)

[
Pr(a ∧ b ∧ e)

Pr(b ∧ e)
· Pr(b ∧ e)

Pr(e)

]
(τx|u) =

[
Pr(a ∧ b ∧ e)

Pr(b ∧ e)

]
(τx|u)·

[
Pr(b ∧ e)

Pr(e)

]
(τx|u)

If we have the following sensitivity function Pr(a|b ∧ e)(τx|u):

Pr(a|b ∧ e)(τx|u) =
α1 · τx|u + β1

γ1 · τx|u + σ1

And the following sensitivity function Pr(b|e)(τx|u):

Pr(b|e)(τx|u) =
α2 · τx|u + β2

γ2 · τx|u + σ2

Then γ1 · τx|u + σ1 should be equivalent to α2 · τx|u + β2 and multiplying
both sensitivity functions, results in:

Pr(a ∧ b|e) =
α1 · τx|u + β1

γ2 · τx|u + σ2

We can find the values of the constants for the sensitivity function Pr(a ∧
b|e)(τx|u) by using the values of the constants α and β of the sensitivity
function Pr(a|b ∧ e)(τx|u) and the values of the constants γ and σ of the
sensitivity function Pr(b|e)(τx|u).

the next section, we are going to investigate how to most efficiently find the
constants of the sensitivity functions needed.
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3.3.2 Which parameters enforce the constraint

We now know how to enforce the constraint, if we have the needed sensi-
tivity functions. In this section, we investigate how to find these sensitivity
functions. As in the previous section, we first discuss the parameter ques-
tions. These questions can be answered using the algorithm OneOutAllIn.
Then we will discuss the output questions, which can be answered using
the algorithm AllOutOneIn.

Parameter questions

We will first consider the constraint Pr(a ∧ b) = η. If we want to find the
parameter change of parameter τx|u that enforces this constraint, we have
to obtain the values of the constants α and β of the sensitivity function that
describes the relation between the parameter and the output probability
Pr(a|e). If we want to find these parameter changes for all parameters in
the network, we will have to obtain the values of the constants α and β for
all these sensitivity functions. Recall that using the algorithm OneOutAllIn,
we can find these values of the constants of the sensitivity functions.

Example 5 Suppose we want to change the probability Pr(A = ringing ∧W =
broken) to 0.4 in the network of Figure 3.1 and suppose we want to find the small-
est parameter change that enforces the constraint. Choosing the smallest parameter
change is one of the selection criteria that we will discuss in Chapter 4. To find
these parameter changes we need to run the algorithm on the output probability
Pr(A = ringing|W = broken), because:

Pr(A = ringing|W = broken) =
Pr(A = ringing ∧W = broken)

Pr(W = broken)

In this way, we can use the constants in the numerators of the sensitivity functions
that are returned by the algorithm. The values of the constants from the sensitivity
functions are summarised in Table 3.1. We have to use the values of α and β and
fill in the formula:

τx|u =
0.4− β

α

If we do this for τB=burgling this gives:

τx|u =
0.4− 0.540
−0.452

= 0.3097
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The results of doing this for all the parameters are summarised in Table 3.5. We
can see that parameter τW=broken|B=sleeping needs the smallest change to enforce
the constraint.

parameter current τ o
x|u new τx|u |τx|u − τ o

x|u|
τB=burgling 0.200 0.310 0.110
τE=active 0.600 0.452 0.148
τW=broken|B=burgling 0.400 np np
τW=broken|B=sleeping 0.900 0.796 0.104
τA=ringing|B=burgling∧E=active 0.100 np np
τA=ringing|B=burgling∧E=active 0.400 np np
τA=ringing|B=sleeping∧E=inactive 0.800 0.685 0.115
τA=ringing|B=sleeping∧E=inactive 0.300 0.128 0.172

Table 3.5: Parameter changes that serve to enforce the constraint Pr(A =
ringing ∧W = broken) = 0.4

The above method can also used to find all the parameter changes that
enforces constraints of the type Pr(a ∧ b) > η or Pr(a ∧ b) < η. We know
that the sensitivity function of a parameter with respect to Pr(a∧b) is linear,
because it is of the form α·τx|u+β. Because the function is linear, if the value
of alpha is higher than zero we know that the function is increasing and if
the value is lower than zero we know that the function is decreasing. If the
value of the constant α is zero, we know that the parameter cannot change
the probability.

Example 6 Suppose that now we want to change the probability Pr(A =
ringing ∧ W = broken) to be higher than 0.5. The current value of the prob-
ability is 0.450. We still want to find the smallest parameter change that enforces
this constraint so we will need to calculate the parameter changes for all the pa-
rameters in the network.

We can use the same function that we used to find the parameter changes that
enforce the constraint Pr(A = ringing∧W = broken) = 0.4, only now with the
value 0.5. We use the values of the constants of the sensitivity function summarised
in Table 3.1.

τx|u =
0.5− β

α
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We have summarised all these parameter changes in Table 3.6. We can see that
the constraint can be enforced using the parameters τB=burgling and τE=active. Be-
cause the parameter τB=burgling has to decrease to enforce the constraint Pr(A =
ringing ∧W = broken) = 0.5, we know that to enforce the constraint Pr(A =
ringing ∧ W = broken) > 0.5 the parameter value has to be lower than 0.089.
The parameter value of τE=active has to be higher than 0.750 to enforce the con-
straint.

parameter current τx|u new τx|u |τx|u − τ o
x|u|

τB=burgling 0.200 0.089 0.111
τE=active 0.600 0.750 0.150
τW=broken|B=burgling 0.400 np np
τW=broken|B=sleeping 0.900 np np
τA=ringing|B=burgling∧E=active 0.100 np np
τA=ringing|B=burgling∧E=active 0.400 np np
τA=ringing|B=sleeping∧E=inactive 0.800 np np
τA=ringing|B=sleeping∧E=inactive 0.300 np np

Table 3.6: Parameter changes that serve to enforce the constraint Pr(A =
ringing ∧W = broken) = 0.5

If we want to find the parameter change of parameter τx|u that enforces the
constraint Pr(a∧ b|e) = η we need the values of the constants of two sensi-
tivity functions, namely the sensitivity function that describes the relation
between parameter τx|u and the output probability Pr(a|b ∧ e) as well as
the function describing the relation between the parameter and t the prob-
ability Pr(b|e).

Output questions

For one parameter, but for all combinations of outcome probabilities con-
ditioned on the same observations, we can get the value for which it holds
that Pr(a ∧ b) = η.

At first we run AllOutOneIn once on the output probability Pr(a|b). As ex-
plained in Section 3.3.1 we can use the numerator of the sensitivity function
to get the constants for the sensitivity function for Pr(a ∧ b). We can find
the values of the numerator by using the α and β values, that are returned
by the algorithm.
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With one call to AllOutOneIn on the parameter τx|u and evidence e we can
enforce the constraint Pr(a∧b) = η, for all values of a, b or η. Using the sen-
sitivity functions of one run of the algorithm, we can enforce the constraint
Pr(a∧ b) = η, but also the constraint Pr(c∧ b) = η2 or even Pr(d∧ b) = η3,
all only with respect to the parameter τx|u.

Recall that the sensitivity function Pr(a ∧ b)(τx|u) is of the form ατx|u · β.
This is a linear function. As seen before, we can also use this sensitivity
function to enforce the constraints Pr(a ∧ b) < η or Pr(a ∧ b) > η. This
can be useful. If we obtain the sensitivity functions of the parameter τx|u
with respect to each of the output probabilities in the network containing
the same observations using the algorithm AllOutOneIn, we can enforce
the constraint Pr(a ∧ b) < η, but also the constraint Pr(c ∧ b) > η2 or even
Pr(d ∧ b) < η3, all only with respect to the parameter τx|u.

Example 7 Suppose we want to enforce the following constraints using the pa-
rameter τE=active:

• Pr(A = ringing ∧W = broken) > 0.3

• Pr(A = silent ∧W = broken) > 0.3

• Pr(E = active ∧W = broken) < 0.7

We only need one run of the algorithm AllOutOneIn. If we use this algorithm with
the parameter τE=active and the evidence W = broken, we obtain all the sensitiv-
ity functions needed. The constants of these sensitivity functions are summarised
in Table 3.4. To get the sensitivity function for these probabilities we can use the
sensitivity functions from the table. For example, to get the sensitivity function for
Pr(A = ringing ∧W = broken), we use the values of the constants α and β of
the sensitivity function of Pr(A = ringing|W = broken).

This sensitivity function of Pr(A = ringing ∧W = broken) is:

Pr(A = ringing ∧W = broken) = 0.336 · τE=active + 0.248

Pr(A = ringing ∧W = broken) is higher than 0.3 when τE=active > 0.155.

The sensitivity function of Pr(A = silent ∧W = broken) is:

Pr(A = silent ∧W = broken) = −0.336 · τE=active + 0.552
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Pr(A = silent ∧W = broken) is higher than 0.3 when τE=active < 0.750.

The sensitivity function of Pr(E = active ∧W = broken) is:

Pr(A = ringing ∧W = broken) = 0.800 · τE=active + 0.000

Pr(E = active ∧W = broken) is lower than 0.7 when τE=active < 0.875.

To enforce the three constraints, the value of τE=active has to be between 0.155 and
0.875.

Recall that using the sensitivity function Pr(b|e)(τx|u) and the sensitivity
function Pr(a|b ∧ e)(τx|u) we can calculate the sensitivity function Pr(a ∧
b|e)(τx|u).

We can use AllOutOneIn to get the values of the constants of the sensitivity
functions Pr(b|e)(τx|u) and Pr(a|b ∧ e)(τx|u) for all parameters in the net-
work. Using these sensitivity functions we can calculate the values of the
constants of the sensitivity function Pr(a ∧ b|e)(τx|u) for all the parameters
in the network. We can use these sensitivity functions to calculate the pa-
rameter value that enforces the constraints Pr(a ∧ b|e) = η, Pr(a ∧ b|e) < η
or Pr(a ∧ b|e) > η for every parameter in the network.

Example 8 Suppose we want to enforce the following constraints using the pa-
rameter τE=active:

• Pr(A = ringing ∧ E = active|W = broken) > 0.5

• Pr(B = burgling ∧ E = active|W = broken) > 0.05

We need two runs of the algorithm AllOutOneIn. If we deploy AllOutOneIn :
(E = Active ∧ W = broken)(τE=active) and AllOutOneIn : (W = broken)
(τE=active) we obtain all the sensitivity functions needed.

The values of the constants of the sensitivity functions we obtained using
AllOutOneIn : (E = Active ∧ W = broken)(τE=active) are summarised in
Table 3.7. The values of the constants of the sensitivity functions obtained using
AllOutOneIn : (W = broken)(τE=active) are summarised in Table 3.4.

To calculate the sensitivity function Pr(A = ringing ∧ E = active|W =
broken)(τE=active) we use the values of the constants α and γ of the sensitiv-
ity function Pr(A = ringing|E = active ∧ W = broken)(τE=active) and the
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output probability α β γ σ

Pr(B = burgling|E = active ∧W = broken) 0.080 0.000 0.800 0.000
Pr(B = sleeping|E = active ∧W = broken) 0.720 0.000 0.800 0.000
Pr(A = ringing|E = active ∧W = broken) 0.584 0.000 0.800 0.000
Pr(A = silent|E = active ∧W = broken) 0.216 0.000 0.800 0.000

Table 3.7: Values of the constants for the sensitivity functions for different
outcome probabilities with respect to the parameter τE=active.

values of the constants γ and σ of the sensitivity function Pr(E = active|W =
broken)(τE=active).

This gives the following sensitivity function:

Pr(A = ringing ∧ E = active|W = broken) =
0.584 · τE=active + 0.00
0.00 · τE=active + 0.800

Using the method described in the previous section we calculate the parame-
ter value that enforces the constraint Pr(A = ringing ∧ E = active|W =
broken) = 0.5. This parameter value is 0.685. The current value of the parameter
is 0.6 and the current probability Pr(A = ringing ∧ E = active|W = broken)
is 0.438. This indicates that the sensitivity function is increasing. To enforce the
constraint Pr(A = ringing ∧ E = active|W = broken) = 0.5 the parameter
value has to be higher than 0.685.

To calculate the sensitivity function Pr(B = burgling ∧ E = active|W =
broken)(τE=active) we use the values of the constants α and γ of the sensitiv-
ity function Pr(B = burgling|E = active|W = broken)(τE=active) and the
values of the constants γ and σ of the sensitivity function Pr(E = active|W =
broken)(τE=active).

This gives the following sensitivity function:

Pr(A = ringing ∧ E = active|W = broken) =
0.08 · τE=active + 0.00
0.00 · τE=active + 0.800

To enforce the constraint Pr(B = burgling ∧E = active|W = broken) > 0.05,
the value of τE=active has to be higher than 0.5.

To enforce both constraints the value of τE=active has to be higher than 0.685.
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3.4 Constraining the ratio of two probabilities

In this section, we are going to investigate how we can constrain the ra-
tio of two probabilities. In this section, we assume that these probabilities
are of the from Pr(a|e) and we want to enforce the following constraint
Pr(a|e1)(τx|u) = η · Pr(b|e2)(τx|u). However, these probabilities can also be
of the form Pr(a ∧ b|e).

3.4.1 Calculating the new parameter values

Suppose we have the following sensitivity functions:

Sensitivity function Pr(a|e1)(τx|u):

Pr(a|e1)(τx|u) =
α1 · τx|u + β1

γ1 · τx|u + σ1

Sensitivity function Pr(b|e2)(τx|u):

Pr(b|e2)(τx|u) =
α2 · τx|u + β2

γ2 · τx|u + σ2

Then we can use these sensitivity functions to calculate the ratio between
the two probabilities.

If the evidence is the same in both cases, that is e1 = e2, then γ1 = γ2 and
σ1 = σ2, and therefore in order to enforce the constraint, we only have to
ensure that:

α1 · τx|u + β1 = η ·
(
α2 · τx|u + β2

)
Solving this equation gives:

τx|u =
β1 − β2 · η
α2 · η − α1

This indicates that if we have the sensitivity function Pr(a|e)(τx|u) and the
sensitivity function Pr(b|e)(τx|u), we can calculate the sensitivity of the ra-
tio η to the parameter τx|u. If we want to constrain a ratio Pr(a|e)(τx|u) =
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η · Pr(b|e)(τx|u), we can calculate the needed change in the parameter to
enforce this constraint.

If we use different observations, that is e1 6= e2 then we find two solutions:

solution 1:

τx|u =
−β1 · γ2 − α1 · σ2 + η · β2 · γ1 + η · α2 · σ1 −

√
ζ

2(α1 · γ2 − η · α2 · γ1)

solution 2:

τx|u =
−β1 · γ2 − α1 · σ2 + η · β2 · γ1 + η · α2 · σ1 +

√
ζ

2(α1 · γ2 − η · α2 · γ1)

Where

ζ = (β1 ·γ2+α1 ·σ2−η·β2 ·γ1−η·α2 ·σ1)2−4(α1 ·γ2−η·α2 ·γ1)(β1 ·σ2−η·β2 ·σ1)

This indicates that the two sensitivity functions are also sufficient to cal-
culate the parameter change that enforces the constraint Pr(a|e1)(τx|u) =
η ·Pr(b|e2)(τx|u) when the two probabilities contain different observations.
Although, in this case, we have to use a different, larger, formula. Fur-
thermore, when using different observations, we have two possible so-
lutions. The reason that we have two possible solutions is that when we
have different observations, we have different denominators in both func-
tions. If the dominators are equal, the asymptotes of the functions are at
the same position. Since the functions are monotonically non-increasing or
non-decreasing this is the reason that we only have one solution. If these
dominators are different, the asymptotes will be on a different position.
Then we can have two solutions.

These two solutions do not have to be valid solutions. It can be the case that
we have zero, one or even two valid solutions. We have a valid solution
when the suggested parameter value is a value between zero and one. If
there are two valid solutions, then we can enforce the constraint with two
parameter values.

3.4.2 Which parameters enforce the constraint

In the next section, we are going to investigate how we can obtain the value
of the constants for the required sensitivity functions.
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Parameters questions

Using two runs of the algorithm OneOutAllIn, we can enforce this con-
straint for all the parameters. For probabilities with equal observations, we
need the same sensitivity functions as for the probabilities with different
observations. The difference is that, as described above, we need another
function to find the parameter changes that upon changing enforce the con-
straint.

Example 9 Suppose we want to tune the network in Figure 3.1. We want to en-
force Pr(A = ringing|W = broken) = Pr(E = active|W = broken), that
is η = 1. We want to know the new parameter values that enforce the constraint.
To do this, we have to run the algorithm twice. First for Pr(A = ringing|W =
broken), as we already have done in a previous example. The results are sum-
marised in Table 3.1. Second for Pr(E = active|W = broken). We can find the
values of the constants of the sensitivity functions in Table 3.8.

parameter α β γ σ

τB=burgling -0.300 0.540 -0.500 0.900
τE=active 0.800 0.000 0.000 0.800
τW=broken|B=burgling 0.120 0.432 0.200 0.720
τW=broken|B=sleeping 0.480 0.048 0.800 0.080
τA=ringing|B=burgling∧E=active 0.000 0.480 0.000 0.800
τA=ringing|B=burgling∧E=active 0.000 0.480 0.000 0.800
τA=ringing|B=sleeping∧E=inactive 0.000 0.480 0.000 0.800
τA=ringing|B=sleeping∧E=inactive 0.000 0.480 0.000 0.800

Table 3.8: Values of the constants of the sensitivity functions for the out-
come probability Pr(E = active|W = broken) for each parameter.

Because we condition on the same set of observations in both probabilities, we can
use the following formula:

τx|u =
β2 − β1

α1 − α2

For the parameter τB=burgling we find:

τB=burgling =
0.540− 0.540

0.240−−0.452
= 0.000
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So we know that if τB=burgling = 0.000 then Pr(A = ringing|W = broken) =
Pr(E = active|W = broken).

We have done this for all the parameters in the network. The results can be found
in Table 3.9.

parameter current τ o
x|u new τx|u |τx|u − τ o

x|u|
τB=burgling 0.200 0.000 0.200
τE=active 0.600 0.534 0.066
τW=broken|B=burgling 0.400 0.000 0.400
τW=broken|B=sleeping 0.900 np np
τA=ringing|B=burgling∧E=active 0.100 0.750 0.650
τA=ringing|B=burgling∧E=active 0.400 np np
τA=ringing|B=sleeping∧E=inactive 0.800 0.870 0.070
τA=ringing|B=sleeping∧E=inactive 0.300 0.406 0.106

Table 3.9: Parameter changes that serve to enforce the constraint Pr(A =
ringing|W = broken) = Pr(E = active|W = broken).

The above approach also serves to answer constraints of the type
Pr(a|e1) < η · Pr(b|e2) or Pr(a|e1) > η · Pr(b|e2). First we have to en-
force constraints Pr(a|e1) = η · Pr(b|e2) like we have done before. If we
are using the same set of observations for both probabilities, then we know
that the function Pr(a|e)(τx|u) = η · Pr(b|e)(τx|u) has at most one intersec-
tion as we just have seen. Because it has one intersection we only have to
know on which side of the intersection the constraint holds. If we call the
solution we found τ1

x|u and the current paramter value τ1
x|u then we know

that

if τ o
x|u < τ1

x|u then the parameter has to be higher than or equal to τ1
x|u;

if τ o
x|u > τ1

x|u then the parameter has to be lower than or equal to τ1
x|u.

Example 10 Suppose we want to impose the following constraint: Pr(A =
ringing|W = broken) > Pr(E = active|W = broken). We know from the
previous example that Pr(A = ringing|W = broken) = Pr(E = active|W =
broken) when τE=active = 0.534. We know that the sensitivity functions are ei-
ther monotonically non-increasing or monotonically non-decreasing. Moreover as
the probabilities contain the same observations, we know that the asymptotes of
these sensitivity functions are equivalent.
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We know that with the current values the constraint is not satisfied. If τ o
x|u < τ1

x|u
then the parameter value has to be higher than or equal to the calculated parameter
value to enforce the constraint. If τ o

x|u > τ1
x|u then the parameter value has to be

lower than or equal to the calculated parameter.

We have done this for all the parameters in the network. The results can be found
in Table 3.10.

parameter current τ o
x|u new τx|u |τx|u − τ o

x|u|
τB=burgling 0.200 np np
τE=active 0.600 < 0.534 ¿0.066
τW=broken|B=burgling 0.400 np np
τW=broken|B=sleeping 0.900 np np
τA=ringing|B=burgling∧E=active 0.100 > 0.750 ¿ 0.650
τA=ringing|B=burgling∧E=active 0.400 np np
τA=ringing|B=sleeping∧E=inactive 0.800 > 0.870 ¿ 0.070
τA=ringing|B=sleeping∧E=inactive 0.300 > 0.406 ¿ 0.106

Table 3.10: Parameter values that serve to enforce the constraint Pr(A =
ringing|W = broken) > Pr(E = active|W = broken).

If we use different observations, then we know that the sensitivity func-
tions, (τx|u)(Pr(a|e1)) and (τx|u(Pr(b|e2)) can have different asymptotes.
These asymptotes cannot be on the domain between zero and one. This
implies that we can use the two solutions of the constraint Pr(a|e1) =
η · Pr(b|e2) to enforce the constraint Pr(a|e1) > η · Pr(b|e2) or Pr(a|e1) <
η · Pr(b|e2).

Let τ1
x|u and τ2

x|u denote the parameter values for which holds that
Pr(a|e1) = η · Pr(b|e2), where τ1

x|u < τ2
x|u. Suppose that we want to en-

force Pr(a|e1) < η ·Pr(b|e2). Because there are two solutions, there are two
values for which it holds that Pr(a|e1) = η · Pr(b|e2). This means that one
of the following equations has to hold:

1: Pr(a|e1) < η · Pr(b|e2) if τ1
x|u < τx|u < τ2

x|u
2: Pr(a|e1) < η · Pr(b|e2) if τx|u < τ1

x|u and if τx|u > τ2
x|u.

Always one of these two situations holds. We can find out which one of
these two situations holds using the current values of the parameters and
the current probabilities. If we know that one of the situations does not
hold, we know that the other one holds.
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The constraint Pr(a|e1) > ηPr(b|e2) can be handled analogously.

Output questions

Using AllOutOneIn we can solve another type of question. With only one
run of algorithm AllOutOneIn we can find the constants of the values of the
sensitivity functions we can use to calculate the parameter values that en-
force the constraints Pr(a|e) = η ·Pr(b|e) for all the probabilities in the net-
work containing the same observations. If we want to enforce constraints
on probabilities with different observations, we need one run for each com-
bination of observations. This method is especially useful if we want to
constrain the ratio between probabilities with the same observations, as in
that case we only need one run.

Using these sensitivity functions we can also find the parameter values that
enforce the constraints Pr(a|e) < η · Pr(b|e) or Pr(a|e) > η · Pr(b|e).

Example 11 Suppose we want to enforce the following constraints using the pa-
rameter τE=active.

• Pr(A = ringing|W = broken) < 2 · Pr(E = active|W = broken)

• Pr(B = burgling|W = broken) < 2 · Pr(E = active|W = broken)

With one run of AllOutOneIn : (W = broken)(τE=active) we obtain the values
of the constants of the sensitivity functions summarised in Table 3.4. We can use
these values to find the parameter change in parameter τE=active that enforces the
constraints.

From this table we get the following sensitivity functions

Pr(A = ringing|W = broken)(τE=active):

Pr(A = ringing|W = broken) =
0.336 · τE=active + 0.248
0.000 · τE=active + 0.800

Pr(E = active|W = broken)(τE=active):

Pr(E = active|W = broken) =
0.800 · τE=active + 0.000
0.000 · τE=active + 0.800
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Pr(B = burgling|W = broken)(τE=active):

Pr(B = burgling|W = broken) =
0.000 · τE=active + 0.080
0.000 · τE=active + 0.800

To find the parameter change that enforces Pr(A = ringing|W = broken) <
2 · Pr(E = active|W = broken), we first compute the parameter change that
enforces Pr(A = ringing|W = broken) = 2 · Pr(E = active|W = broken):

0.336 · τE=active + 0.248
0.000 · τE=active + 0.800

= 2 · 0.800 · τE=active + 0.000
0.000 · τE=active + 0.800

We establish that the parameter value has to be 0.1962 to solve this equation.
With the current parameter value of 0.6 the constraint Pr(A = ringing|W =
broken) < 2 ·Pr(E = active|W = broken) is not enforced, so we know that the
parameter has to be lower than 0.1962 to enforce the constraint.

To find the parameter change that enforces the second constraint Pr(B =
burgling|W = broken) < 2 · Pr(E = active|W = broken), we first com-
pute the parameter change that enforces Pr(B = burgling|W = broken) =
2 · Pr(E = active|W = broken).

0.000 · τE=active + 0.080
0.000 · τE=active + 0.800

= 2 · 0.800 · τE=active + 0.000
0.000 · τE=active + 0.800

With this equation, we establish that the parameter value has to be 0.05 to enforce
this equation. As the constraint Pr(B = burgling|W = broken) < 2 · Pr(E =
active|W = broken) is not satisfied with the current values of the parameter, we
know that the parameter value has to be lower than 0.05 to enforce the constraint.

Combining these result, the parameter value has to be lower than 0.05 to enforce
both constraints.

3.5 Constraining the difference between two output
probabilities

In this section, we investigate how we can constrain the difference between
two output probabilities. In this section, we assume that these probabilities
are of the form Pr(a|e) and we want to enforce the following constraint
Pr(a|e1)(τx|u) − Pr(b|e2)(τx|u) = η. However, these probabilities can also
be of the form Pr(a ∧ b|e).
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3.5.1 Calculating the new parameter values

If we want to constrain the difference Pr(a|e1)(τx|u) − Pr(b|e2)(τx|u) we
need the values of the constants of the sensitivity function of Pr(a|e1) and
the values of the constants of the sensitivity function of Pr(b|e2).

Suppose we have these sensitivity functions:

Sensitivity function Pr(a|e1)(τx|u):

Pr(a|e1)(τx|u) =
α1 · τx|u + β1

γ1 · τx|u + σ1

Sensitivity function Pr(b|e2)(τx|u):

Pr(b|e2)(τx|u) =
α2 · τx|u + β2

γ2 · τx|u + σ2

Then we want to enforce:

α1 · τx|u + β1

γ1 · τx|u + σ1
−

α2 · τx|u + β2

γ2 · τx|u + σ2
= η

Using the same set of observations, that is e1 = e2, we have that γ1 = γ2

and σ2 = σ2, and therefore:

τx|u =
β1 − β2 − σ1 · η
−α1 + α2 + γ1 · η

If we are using a different set of observation for both outcome probabilities,
it gives two solutions:

solution one:

τx|u =
γ2 · η · σ2 − α2 · σ1 − γ1 · β2 − β1 · γ2 − α1 · σ2 + γ1 · σ2 · η −

√
ζ

2(−γ2 · η · γ1 + α2 · γ1 + α1 · γ2)

solution two:

τx|u =
γ2 · η · σ2 − α2 · σ1 − γ1 · β2 − β1 · γ2 − α1 · σ2 + γ1 · σ2 · η +

√
ζ

2(−γ2 · η · γ1 + α2 · γ1 + α1 · γ2)

where
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ζ = (−γ2 · η · σ1 + α2 · σ1 + γ1 · β2 + β1 · γ2 + α1 · σ2 − γ1 · σ2 · η)2

−4(−γ2 · η · γ1 + α2 · γ2 + α1 · γ2)(σ1 · β2 + β1 · σ2 − σ1 · σ2 · η)

Because in this case the dominators of the sensitivity functions are differ-
ent, we again have two possible valid solutions. We can have zero, one or
two parameter values that enforce the constraint. The parameter values are
valid if the values are between zero and one.

3.5.2 Which parameters enforce the constraint

To calculate the parameter changes that enforce Pr(a|e1)(τx|u) −
Pr(b|e2)(τx|u) = η, we need the values of the constants of the sensitivity
function Pr(a|e1)(τx|u) and the values of the constants of the sensitivity
function Pr(b|e1)(τx|u). In this section, we are going to investigate how we
can obtain these values.

Parameter questions

To enforce the constraint Pr(a|e1)(τx|u) − Pr(b|e2)(τx|u) = η we need two
runs of the algorithm OneOutAllIn; OneOutAllIn : Pr(a|e1) to get for
each parameter the sensitivity function Pr(a|e1)(τx|u) and OneOutAllIn :
Pr(b|e2) to get for each parameter the sensitivity function Pr(b|e2)(τx|u). If
the observations of the probabilities are equal, we need the same sensitivity
functions. However, in that case, we can use the smaller formula to get the
parameter value that enforces the constraint.

Example 12 Suppose we want to enforce the following constraint: Pr(A =
ringing|W = broken) − Pr(E = active|W = broken) = 0.1. We can use
the sensitivity functions we have found earlier summarised in Table 3.1 and those
summarised in Table 3.11 to enforce this constraint.

The two probabilities in the constraint contain the same observations; therefore, we
can use the formula:

τx|u =
β1 − β2 − σ1 · η
−α1 + α2 + γ1 · η
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parameter α β γ σ

τB=burgling -0.300 0.540 -0.500 0.900
τE=active 0.800 0.000 0.000 0.800
τW=broken|B=burgling 0.120 0.432 0.200 0.720
τW=broken|B=sleeping 0.480 0.048 0.800 0.080
τA=ringing|B=burgling∧E=active 0.000 0.480 0.000 0.800
τA=ringing|B=burgling∧E=active 0.000 0.480 0.000 0.800
τA=ringing|B=sleeping∧E=inactive 0.000 0.480 0.000 0.800
τA=ringing|B=sleeping∧E=inactive 0.000 0.480 0.000 0.800

Table 3.11: Values of the constants of the sensitivity function for the out-
come probability Pr(E = active|W = broken) for each parameter.

Filling in the constants of the sensitivity functions for τE=active this gives:

τE=active =
0.248− 0.000− 0.800 · 0.100
−0.336 + 0.800 + 0.000 · 0.100

= 0.362.

So when τE=active = 0.362 then Pr(A = ringing|W = broken) − Pr(E =
active|W = broken) = 0.1 We have done this for all parameters, the results are
summarised in Table 3.12.

parameter current τ o
x|u new τx|u |τx|u − τ o

x|u|
τB=burgling 0.200 np np
τE=active 0.600 0.362 0.238
τW=broken|B=burgling 0.400 np np
τW=broken|B=sleeping 0.900 np np
τA=ringing|B=burgling∧E=active 0.100 np np
τA=ringing|B=burgling∧E=active 0.400 np np
τA=ringing|B=sleeping∧E=inactive 0.800 np np
τA=ringing|B=sleeping∧E=inactive 0.300 np np

Table 3.12: Parameter values serve to enforce the constraint Pr(A =
ringing|W = broken)− Pr(E = active|W = broken) = 0.1.

The above approach also serves to answer constraints of the type Pr(a|e1)−
Pr(b|e2) < η or Pr(a|e1)−Pr(b|e2) > η. First we have to enforce constraints
Pr(a|e1)−Pr(b|e2) = η. If we are using the same set of observations for both
probabilities, then we know that the function Pr(a|e)(τx|u)−Pr(b|e)(τx|u) =
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η has only one intersection as we just have seen. Because it has one intersec-
tion we only have to know on which side of the intersection the constraint
holds. If we call the solution we found τ1

x|u and the current paramter value
τ1
x|u then we know that:

If τ o
x|u < τ1

x|u then the parameter has to be higher than or equal to τ1
x|u.

If τ o
x|u > τ1

x|u then the parameter has to be lower than or equal to τ1
x|u.

If we use different observations then we know that the sensitivity func-
tions Pr(a|e1)(τx|u) and Pr(b|e2)(τx|u), cannot have any asymptotes on the
domain between zero and one. This implies that we can use the two so-
lutions of the constraint Pr(a|e1) − Pr(b|e2) = η to enforce the constraint
Pr(a|e1)− Pr(b|e2) < η or Pr(a|e1)− Pr(b|e2) > η.

Let τ1
x|u and τ2

x|u denote the parameter values for which holds that
Pr(a|e1) − Pr(b|e2) = η, where τ1

x|u < τ2
x|u. Suppose that we want to en-

force Pr(a|e1)− Pr(b|e2) < η.

Because there are two solutions, there are two values for which holds that
Pr(a|e1)−Pr(b|e2) = η. This means that one of the following equations has
to hold

1: Pr(a|e1)− Pr(b|e2) < η if τ1
x|u < τx|u < τ2

x|u
2: Pr(a|e1)− Pr(b|e2) < η if τx|u < τ1

x|u and if τx|u > τ2
x|u.

Always one of these two situations holds when changing the parameter
values of one parameter. We can find out which one of these two situations
holds using the current values of the parameters and the probabilities. If
we know that one of the situations holds in the current situation, we know
it always holds when changing the parameter.

The constraint Pr(a|e1)− Pr(b|e2) > η can be handled analogously.

Example 13 Suppose we want to know when Pr(A = ringing|W = broken)−
Pr(E = active|W = broken) < 0.1. We can get the values of the sensitivity
function as we have done before. We know that with the current parameter values
the constraint is not enforced. We have found in the previous example that the
constraint Pr(A = ringing|W = broken) − Pr(E = active|W = broken) =
0.1 is enforced if we change τE=active to 0.362. This means that we have to change
the value of the parameter τE=active to lower than or equal to 0.362 to enforce the
constraint Pr(A = ringing|W = broken) − Pr(E = active|W = broken) <
0.1.
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Output questions

With only one run of algorithm AllOutOneIn we can find the constants of
the values of the sensitivity functions we can use to calculate the param-
eter values that enforce the constraints Pr(a|e) − Pr(b|e) = η for all the
probabilities in the network containing the same observations. If we want
to enforce constraints on probabilities with different observations, we need
one run for each combination of observations. This method is especially
useful if we want to constrain the difference between probabilities with the
same observations, as in that case we only need one run.

Using these sensitivity functions we can also find the parameter values that
enforce the constraints Pr(a|e)− Pr(b|e) < η or Pr(a|e)− Pr(b|e) > η

Example 14 Suppose we want to enforce the following constraints using the pa-
rameter τE=active:

• Pr(A = ringing|W = broken)− Pr(E = active|W = broken) > 0.2

• Pr(A = ringing|W = broken)−Pr(B = burgling|W = broken) < 0.4

With one iteration of AllOutOneIn : (W = broken)(τE=active) we obtain the
values of the constants of the sensitivity functions summarised in Table 3.4. We can
use these values to find the parameter change in parameter τE=active that enforces
the constraints.

Recall that from this table we can obtain the following sensitivity functions

Pr(A = ringing|W = broken)(τE=active):

Pr(A = ringing|W = broken) =
0.336 · τE=active + 0.248
0.000 · τE=active + 0.800

Pr(E = active|W = broken)(τE=active):

Pr(E = active|W = broken) =
0.800 · τE=active + 0.000
0.000 · τE=active + 0.800

Pr(E = active|W = broken)(τE=active):

Pr(B = burgling|W = broken) =
0.000 · τE=active + 0.080
0.000 · τE=active + 0.800
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To find the parameter change that enforces Pr(A = ringing|W = broken) −
Pr(E = active|W = broken) > 0.2, we first compute the parameter change that
enforces Pr(A = ringing|W = broken)−Pr(E = active|W = broken) = 0.2:

0.336 · τE=active + 0.248
0.000 · τE=active + 0.800

− 0.800 · τE=active + 0.000
0.000 · τE=active + 0.800

= 0.2

We compute that the parameter value has to be 0.190 to solve this equation.
With the current parameter value of 0.6 the constraint Pr(A = ringing|W =
broken)− Pr(E = active|W = broken) > 0.2 is not enforced, so we know that
the parameter has to be lower than 0.190 to enforce the constraint.

To find the parameter change that enforces the second constraint Pr(A =
ringing|W = broken) − Pr(B = burgling|W = broken) < 0.4, we first
compute the parameter change that enforces Pr(A = ringing|W = broken) −
Pr(B = burgling|W = broken) = 0.4:

0.336 · τE=active + 0.248
0.000 · τE=active + 0.800

− 0.000 · τE=active + 0.080
0.000 · τE=active + 0.800

= 0.4

With this equation, we compute that the parameter value has to be 0.214 to enforce
this equation. As the constraint Pr(A = ringing|W = broken) − Pr(B =
burgling|W = broken) < 0.4 is not satisfied with the current values of the
parameter, we know that the parameter value has to be lower than 0.214 to enforce
the constraint.

Combining these results, the parameter value has to be lower than 0.190 to enforce
both constraints.

3.6 Combining different types of constraints

In the previous sections, we have showed that we can enforce multiple con-
straints of the same type simultaneously. However, we can also combine
the solutions of multiple different constraints. This is only useful for con-
straints that contain inequalities. If we, for example, want to enforce two
constraints and we know that a parameter value has to be higher than 0.6
to enforce the first constraint and the parameter value has to be lower than
0.8 to enforce the second constraint than we know that the value has two
be between 0.6 and 0.8 to enforce both constraints.
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Example 15 Suppose we want to know for which value of the parameter
τB=burgling the following constraints are enforced:

• Pr(A = ringing|W = broken) > 0.55

• Pr(A = ringing|W = broken ∧ E = active) > 0.21

• Pr(E = active ∧A = ringing) < 0.2

Using the methods of the previous section, we can find out that:

• Pr(A = ringing|W = broken) > 0.55 if τB=burgling > 0.254

• Pr(A = ringing|W = broken ∧ E = active) > 0.21 if τB=burgling <
0.931

• Pr(E = active ∧A = ringing) < 0.2 if τB=burgling < 0.666

Combining these results, we know that the parameter τB=burgling has to be between
0.254 and 0.666 to enforce all constraints.

3.7 Related work

Chan and Darwiche [1] also proposed an approach for determining the
parameter changes that can enforce certain constraints for the purpose of
tuning. In this section, we will investigate the difference between our ap-
proach and theirs. First, we will examine how to enforce constraints using
the approach by Chan and Darwiche. Then we will consider the constraints
that can be enforced using this approach. Finally, we will compare both ap-
proaches. We will limit the discussion to the situation where only a single
parameter is changed at time.

3.7.1 The d-sensitivity function

Whereas we calculate all constants of the sensitivity function which relates
a probability Pr(a|e) to a parameter τx|u, Chan and Darwiche use a dif-
ferent interpretation of the sensitivity function which requires calculating
only two constants. Their function does not relate an output probability to
a parameter, but directly to a change in the parameter value. We will call
this function the d-sensitivity function.



50 CHAPTER 3. POSSIBLE CONSTRAINTS

In formulating the d-sensitivity function for an output probability Pr(a|e),
we require the current original probabilities Pr(a∧ e)o and Pr(e)o, and the
change in probabilities ∆Pr(a ∧ e) and ∆Pr(e), resulting from changing
the parameter under consideration:

Pr(a|e) =
Pr(a ∧ e)

Pr(e)
=

Pr(a ∧ e)o + ∆Pr(a ∧ e)
Pr(e)o + ∆Pr(e)

The difference in the probabilities, ∆Pr(a∧e) and ∆Pr(e) can be calculated
using the first derivative of the linear functions for Pr(a ∧ e) and Pr(e) as
a function of τx|u. These first derivatives correspond to the values of our
constants α and γ:

∆Pr(a ∧ e) = α ·∆τx|u

∆Pr(e) = γ ·∆τx|u

This gives the following d-sensitivity function:

Pr(a|e) =
Pr(a ∧ e)o + α ·∆τx|u

Pr(e)o + γ ·∆τx|u

The difference between this function and the sensitivity function is that,
instead of the constants β and σ, which depend on the actual parame-
ter under consideration, we now need the current original probabilities
Pr(a ∧ e)o and Pr(e)o, which can be calculated prior to parameter varia-
tion and do not depend on the actual parameter under consideration. Us-
ing the d-sensitivity function, we thus do not need to compute the value of
all constants for all parameters.

3.7.2 Enforcing constraints

Chan and Darwiche [1] employ the d-sensitivity function to determine the
parameter changes required to enforce the following types of constraint:

• Pr(a|e)− Pr(b|e) = η

• Pr(a|e) = η · Pr(b|e)
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Although not discussed in the mentioned paper, their approach serves to
enforce all the other constraints as well, even with probabilities with differ-
ent observations. We can enforce these constraints by replacing the sensitiv-
ity function with the d-sensitivity function. For example, the formula used
to describe parameter changes that could enforce the constraint Pr(a|e) = η
then becomes:

Pr(a ∧ e)o + α ·∆τx|u
Pr(e)o + γ ·∆τx|u

= η

This equation can be solved after obtaining the values of the constants. The
difference between the d-sensitivity function and the sensitivity function
is that using the d-sensitivity function we have to calculate the change in
the parameter τx|u required to enforce the constraint, instead of just its new
value.

3.7.3 Sensitivity function vs. d-sensitivity function

Using the d-sensitivity function, we need to obtain the values of fewer con-
stants than using the sensitivity function. This is a benefit only if the algo-
rithms that we use to compute the constants can also exploit the fact that
fewer constants are required. In this section, we compare the d-sensitivity
function with the sensitivity function in terms of the amount of network
propagations needed to calculate the values of the constants needed.

Recall that both algorithms OneOutAllIn and AllOutOneIn return all the
constants of the sensitivity function and therefore, also the two constants
required by the d-sensitivity function. When using these algorithms there-
fore, there will not be a difference whether you use the sensitivity function
or the d-sensitivity function. Both techniques will need an equal amount of
network propagations to get the required constants.

If we change the algorithms in such a way that the constants β and σ are
not computed, that is, the algorithms have to solve less equations, then us-
ing the d-sensitivity function could be slightly faster. Chan and Darwiche,
however, propose to use a different algorithm for computing the constants
required for the d-sensitivity function. They propose using the differential
approach[4] which allows for computing the value of a single constant in the
sensitivity functions for all parameters in the network. Using the sensitiv-
ity function requires running the differential approach four times, whereas
the d-sensitivity function requires only two runs.
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Recall that the algorithms OneOutAllIn and AllOutOneIn each basically
require 1.5 network propagations. The differential approach require one
network propagation [4]. It may be apparent that using the differential ap-
proach is only sensible in combination with the d-sensitivity function. In
addition, the differential approach is only useful for answering parameter
questions and not for output questions.

Table 3.13 lists the amount of network propagations required to answer
different parameter questions using the sensitivity function and the d-
sensitivity functions, and the related algorithms. We will give some exam-
ples as illustration.

Constraint OneOutAllIn Difference Approach
Pr(a|e) = η 1 · 1.5 propagations 2 · 1 propagations
Pr(a ∧ b) = η 1 · 1.5 propagations 1 · 1 propagations
Pr(a ∧ b|e) = η 2 · 1.5 propagations 3 · 1 propagations
Pr(a|e) = η · Pr(b|e) 2 · 1.5 propagations 2 · 1 propagations
Pr(a|e1) = η · Pr(b|e2) 2 · 1.5 propagations 4 · 1 propagations
Pr(a|e)− Pr(b|e) = η 2 · 1.5 propagations 3 · 1 propagations
Pr(a|e1)− Pr(b|e2) = η 2 · 1.5 propagations 4 · 1 propagations

Table 3.13: Amount of network propagations required for establishing
the constants of the sensitivity function with OneOutAllIn and of the d-
sensitivity function with the differential apporach in order to identify the
single parameter changes that serve to enforce different constraints.

When we use the differential approach, we should also use the d-sensitivity
function; otherwise, we will need more propagation, to calculate the values
of the constants. For this reason, we will use the d-sensitivity function when
we are using the differential approach. When using the OneOutAllIn algo-
rithm, the amount of propagations is independent of whether we use the
sensitivity function or the d-sensitivity function we will use the sensitivity
function in the remainder of this section.

The amount of network propagations we need is dependant on the con-
straint that we want to enforce, because the amount of constants needed
depends on the constraint. We first consider the constraint Pr(a|e1) −
Pr(a|e2) = η. Using the sensitivity function and OneOutAllIn, we will need
two runs as explained in the previous section. We will need one run for
the values of the four constants relating the probability Pr(a|e1) to the pa-
rameters and one run for the four constants relating the parameters to the
probability Pr(b|e2). Recall that one run of OneOutAllIn needs one and a
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half propagation, so two iterations will need three propagations. One the
other hand, using the differential approach, we will need the constants of α
and γ for the probability Pr(a|e1) and the values of the constants of α and
γ for the probability Pr(b|e2). We will need to run the algorithm for every
constant. The algorithm needs one propagation, so we will need four prop-
agations. When we want to enforce this constraint, using OneOutAllIn we
will need less propagations.

The algorithm OneOutAllIn does not always need a smaller amount of
propagations. When we want to enforce the constraint Pr(a|e) = η ·Pr(b|e),
using OneOutAllIn, we will need again two runs, although we know be-
forehand that the values of the constants of γ and σ are equal, because the
probabilities contain the same observations. Algorithm OneOutAllIn needs
again three propagations. The d-sensitivity function needs only two con-
stants. We can use the fact that the values of the constant γ are the same for
both probabilities. Because we know that the values are the same, we do
not need the values at all.

Recall that we have the following d-sensitivity functions.

Pr(a|e) =
Pr(a ∧ e)o + α1 ·∆τx|y

Pr(e)o + γ1 ·∆τx|y

Pr(b|e) =
Pr(b ∧ e)o + α1 ·∆τx|y

Pr(e)o + γ1 ·∆τx|y

Solving the equation Pr(a|e) = η · Pr(b|e) gives:

τx|u =
Pr(a ∧ e)o − Pr(b ∧ e)o ·+η

α2 · η − α1

To get the value of τx|u that enforces the constraint, we will only need the
values of the constants α1 and α2. We will have to run the differential ap-
proach twice and this needs two propagations.

In their article [1], Chan and Darwiche proposed enforcing the constraint
Pr(a|e) = η, by using the constraint Pr(a|e)− Pr(b|e) = η2 with Pr(b|e) =
Pr(¬a|e) and η2 = η − (1 − η). Using this technique, we need to use the
differential approach three times. One run for the value of the constant α
for the probability Pr(a|e), one run for the value of the constant α for the
probability Pr(b|e) and one run for the value of the constant for Pr(e),
which is the value of the constant γ for both the probabilities Pr(a|e) and
Pr(b|e); the constant γ is equal for both probabilities.
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If we, instead, use the d-sensitivity function of Pr(a|e) to calculate the pa-
rameter change needed to enforce the constraint Pr(a|e) = η we would
need only two runs of the differential approach. This way we only need
the values of the constants α and γ. Instead of three propagations of the
network, we now only need two propagations.

3.8 Conclusion

In this chapter, we have investigated the constraints that could be interest-
ing to enforce when we are tuning a network. Then we have investigated
whether we are able to enforce these constraints.

In this chapter, we have seen that we can find for each parameter in the
network, the parameter change that enforces one of the constraints. We can
use this method to compare different parameters. We have also seen that
we can find the parameter change that enforces multiple constraints on dif-
ferent probabilities simultaneously. However, we cannot constrain many
parameters containing different observations.

In this chapter, we have enforced the constraints using a single parameter
change or multiple parameter changes in one CPT. When we would like
to enforce the constraints using multiple parameter changes from different
CPTs calculating the needed change in the parameters becomes computa-
tionally too complex. N-way sensitivity analyses as described in [5] does
not only need more propagations, there are also many combinations of
multiple parameters that can be changed and for every combination there
can be multiple valid solutions.

We have also compared the algorithms that can be used for the parameter
questions. These algorithms seemed to have comparable running times.

When we are asking single parameter questions or multiple parameter
questions concerning one CPT, we most of the times will end up with a list
of potential parameter changes. In the next chapter, we are going to look
at those possible parameter changes. Although all the parameter changes
enforce the constraint, some of the parameter changes turn out to be better
than other parameter changes.



Chapter 4

How to select the optimal
parameter change

The methods described in the previous chapter allow us to compute the
(possibly empty) set of parameters that can be changed to enforce a given
constraint. If we consider changing only one parameter from this set, then
the methods described in the previous section also prescribe how to change
a selected parameter. If we consider changing multiple parameters from
this set then establishing the exact changes required and their joint effect
quickly becomes unfeasible.

In this chapter, we discuss and compare a number of selection criteria that
can be used to choose between the parameters in the set. First, we will in-
vestigate these selection criteria when we consider changing only one pa-
rameter in this set. Second, we will observe how to choose between the
solutions when we consider changing multiple parameters in a single con-
ditional probability table.

4.1 Selecting the optimal single parameter change

When using the methods described in Chapter 3 for single parameter
changes, the obtained set of parameters will include the needed parame-
ter change to enforce the constraint. From this set, we want to select the
parameter change that would improve the network performance most. Al-
though all the parameters in the set enforce the constraint, they can also
impose (unwanted) changes in other output probabilities.

55
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Changing parameters to enforce a constraint without knowing the influ-
ence of the parameters on the other output probabilities will probably dis-
turb a great part of the network. In this chapter we assume that, besides the
output for which we want to enforce a constraint, we want to maintain the
network’s output as much as possible. Unfortunately, we cannot calculate
for each parameter change the exact difference in all the output probabili-
ties. This would be computationally too demanding, because there are too
many output probabilities.

In this section, we discuss how we can use selection criteria to choose the
parameter that disturbs our network the least. We will study the perfor-
mance of the selection criteria in an experiment.

4.1.1 Selection criteria for single parameter change

In this section, we discuss the selection criteria that can be used to de-
termine the parameter change that would disturb our network the least.
These selection criteria try to predict the additional effects of the param-
eter changes based on the amount of change in the parameter and on the
current value of the parameter. We will study these selection criteria and
explain the underlying reasoning.

The smallest absolute change

From the fact that the sensitivity function is monotonically increasing or
monotonically decreasing, we know that a small absolute change in a pa-
rameter in the network will lead to a smaller absolute change in the out-
put probabilities than a larger change in the parameter. So in general, we
would like to apply a small change to one of the parameters to enforce the
constraint. To find such a small change, we could use the absolute change,
referred to as ∆A(τx|u), as a selection criterion.

To use this selection criterion, we should obtain all possible parameter
changes that enforce the constraint. From these parameter changes, we can
then select the parameter that requires the smallest absolute change, and
use this parameter to enforce the constraint.
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The smallest relative change

When we are using the absolute change as a selection criteria, a change
from 0.00 to 0.09 would be selected over a change from 0.50 to 0.60. How-
ever, the former would impose something that is assumed impossible to
be possible. Because of this we could consider parameter changes of a pa-
rameter with an extreme value to be more vital. The output of the network
is found to be more sensitive to parameters with values closer to zero or
one [1].

We can use the relative change ∆R(τx|u) to penalise changes in parameters
having extreme values. We calculate the change in the parameter relative to
the closest distance to zero or one. We use the distance to zero if the current
value, τ o

x|u, of the parameter is lower than, or equal to 0.5, and the distance
to one if the current value of the parameter is higher than 0.5.

∆R(τx|u) =
∆A(τx|u)

min{|0− τ o
x|u| , |1− τ o

x|u|}

This selection criterion would select a parameter change of a parameter
with a value close to 0.5 over a parameter change of a parameter close to
zero or one, but it would also prefer a small change over a large change.

The smallest log-odds change

Chan and Darwiche [1] proposed a measure to bound the change in any
output probability Pr(a|e) when changing a parameter τx|u. This bound
can also be used to indicate the maximum change in any of the output
probabilities in the network. This bound can be used as a selection criterion.
If we can select a parameter for which this bound is low, we know that the
maximum change in any of the output probabilities has to be small.

The bound is formulated in terms of log-odds. Let O(τx|u) denote the odds
of the parameter τx|u: O(τx|u) = τx|u/(1 − τx|u) and let O(a|e) denote the
odds of a given e: O(a|e) = Pr(a|e)/(1−Pr(a|e)). Let O(τx|u)o and O(a|e)o

denote the current values of these odds and let O(τx|u)1 and O(a|e)1 de-
note these odds after having applied an arbitrary change to parameter
τx|u. Let ∆O(a|e) denote the log-odds change in the probability of inter-
est: ∆O(a|e) = |O(a|e)o − O(a|e)1| and let ∆O(τx|u) denote the log-odds
change in the parameter of interest: ∆O(τx|u) = |O(τx|u)o −O(τx|u)1|. Then
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the log-odds change in the probability of interest, ∆O(a|e), is bounded by
the log-odds change in parameter ∆O(τx|u):

∆O(a|e) ≤ ∆O(τx|u)

This bound implies that the log-odds change in any output probability is
smaller or equal to the log-odds change in the parameter.

The given bound is a tight upper bound:

Theorem 2 Let a,e,x, and u be as before, then for each parameter τx|u:

∃a, e ∆O(a|e) = ∆O(τx|u)

This result immediately follows from the observation that a parameter τx|u
corresponds to the output probability Pr(x|u).

Chan and Darwiche [1], proposed the following selection method: when
selecting a single parameter to change, choose the parameter τx|u which
needs the smallest log-odds change to enforce the wanted constraint. This
minimizes the maximum log-odds change in the output probabilities.

4.1.2 Experiment

We will illustrate the performance of the three selection criteria by means of
an experiment. In this section, we will first explain about the set-up of the
experiment. Then we will discuss and explain the results of the experiment
for each selection criterion.

Calculating the changes in the output

For this experiment we have used the network in Figure 4.1. This network
is a modified version of the network described in [6]. We have adjusted
the parameter values of the network. For the experiment, we have used
randomly created parameter values. These values are as follows:
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γV1(v1) = 0.78287

γV2(v2|v1) = 0.25229
γV2(v2|¬v1) = 0.76101

γV3(v3|v2 ∧ v5) = 0.43430
γV3(v3|v2 ∧ ¬v5) = 0.13837
γV3(v3|¬v2 ∧ v5) = 0.53719
γV3(v3|¬v2 ∧ ¬v5) = 0.67183

γV4(v4|v3) = 0.85489
γV4(v4|¬v3) = 0.67861

γV5(v5|v6) = 0.39859
γV5(v5|¬v6) = 0.24058

γV6(v6) = 0.58836

γV7(v7|v6) = 0.30294
γV7(v7|¬v6) = 0.58181

γV8(v8|v3 ∧ v7) = 0.54046
γV8(v8|v3 ∧ ¬v7) = 0.06450
γV8(v8|¬v3 ∧ v7) = 0.37461
γV8(v8|¬v3 ∧ ¬v7) = 0.43342

Figure 4.1: An example network

Using the methods of Chapter 3, we calculated the single parameter
changes that can be used to increase the output Pr(v3|v1 ∧ v8) by 0.05, that
is, from 0.4195 to 0.4695.

We have summarized the resulting parameter changes in Table 4.1. Next to
these parameter changes are the values that are calculated by the different
selection criteria. This table is sorted on the log-odds difference. Although
these selection criteria select the same parameter as being the optimal pa-
rameter, there are some differences. For example, the log-odds difference of
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τv2|v1
is higher than the log-odds difference of τv7|v6

. However, the absolute
and relative change in τv2|v1

is higher. We will investigate which selection
criterion has the best prediction of the disturbance.

Parameter τ o
x|u τ1

x|u ∆A(τx|u) ∆R(τx|u) ∆O(τx|u)
τv3|¬v2∧¬v5

0.6718 0.7712 0.0994 0.1480 0.4987
τv8|¬v3∧¬v7

0.4334 0.3047 0.1287 0.2970 0.5570
τv8|v3∧v7

0.5405 0.6820 0.1415 0.3079 0.6010
τv7|v6

0.3029 0.4961 0.1932 0.6378 0.8178
τv2|v1

0.2523 0.1249 0.1274 0.5050 0.8605
τv8|¬v3∧v7

0.3746 0.1948 0.1798 0.4700 0.9067
τv3|¬v2∧v5

0.5372 0.7424 0.2052 0.4434 0.9094
τv8|v3∧¬v7

0.0645 0.1663 0.1018 0.6121 1.0623

Table 4.1: The parameter changes that enforce the output Pr(v3|v1 ∧ v8)
to increase by 0.05. Next to this are the values calculated by the selection
criteria; ∆A(τx|u) is the absolute change, ∆R(τx|u) is the relative change,
and ∆O(τx|u) is the log-odds change in the parameter.

Recall that although all these parameter changes enforce the constraint, we
want to maintain as much from the output probabilities as possible. There
are several ways to measure the disturbance of the network. In this section,
we are going to compare the selection criteria by using three measures for
the disturbance. We use three measures to give a good idea of the distur-
bance, and thus about the performance of the selection criteria.

First we have calculated the average change in all the output probabili-
ties. To measure this disturbance we have calculated all the current output
probabilities. Then we have calculated the difference in the output proba-
bilities after changing one of the parameters. For this network, we already
have about 35, 000 different output probabilities. Calculating the difference
in all the probabilities for this small network already was time consuming.
Calculating the differences in a moderate size network will be impractica-
ble as the number of output probabilities increases exponentially. We will
abbreviate this average absolute change in the output probabilities as av.
∆A(a|e).

The second measure we have calculated is the average relative change in
the output probabilities. To calculate this relative difference we have used
the method from the previous section, this way changes in the probabilities
that are near zero and one had a higher relative value than changes in the
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probabilities near 0.5. We will abbreviate this average relative change in the
output probabilities as av. ∆R(a|e).

The third measure we have calculated is the average log-odds change. For
each parameter change, we have calculated the average difference in the
log-odds for all the output probabilities. We will abbreviate this average
log-odds change in the output probabilities as av. ∆O(a|e).

Using three measures, we have a better idea of the disturbance. We will
inspect whether these measures have different values depending on the se-
lection criteria used, as we expect that for example the selection criterion
using the absolute parameter change might have a low absolute distur-
bance, but a high relative disturbance.

The values of these measures after changing each parameter are summa-
rized in Table 4.2. These values indicate the disturbance of the network.
For example, we can see that we would like to select the parameter τv8|v3∧v7

or the parameter τv3|¬v2∧¬v5
, we indicate this with a +. We do not want to

select the parameter τv7|v6
or the parameter τv2|v1

. This is indicated with a
−. In the next paragraphs, we are going to investigate whether the selection
criteria give a good prediction of this disturbance.

Parameter av. ∆A(a|e) av. ∆R(a|e) av. ∆O(a|e)
τv8|v3∧v7

+ 0.0092 0.0290 0.0449
τv3|¬v2∧¬v5

+ 0.0094 0.0308 0.0466
τv8|¬v3∧¬v7

0.0103 0.0328 0.0500
τv8|v3∧¬v7

0.0100 0.0708 0.0640
τv8|¬v3∧v7

0.0146 0.0417 0.0690
τv3|¬v2∧v5

0.0158 0.0506 0.0763
τv2|v1

− 0.0189 0.0613 0.1016
τv7|v6

− 0.0229 0.0730 0.1031

Table 4.2: The three measures of the disturbance caused by the parameter
changes that enforce Pr(v3|v1 ∧ v8) to increase with 0.05; av. ∆A(a|e), sum-
marises the average absolute change, av. ∆R(a|e), summarises the average
relative change and av. ∆O(a|e) the average log-odds change in the output
probabilities.
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Parameter ∆A(τx|u) av. ∆A(a|e) av. ∆R(a|e) av. ∆O(a|e)
τv3|¬v2∧¬v5

+ 0.0994 0.0094 0.0308 0.0466
τv8|v3∧¬v7

0.1018 0.0100 0.0708 0.0640
τv2|v1

− 0.1274 0.0189 0.0613 0.1016
τv8|¬v3∧¬v7

0.1287 0.0103 0.0328 0.0497
τv8|v3∧v7

+ 0.1415 0.0092 0.0290 0.0449
τv7|v6

− 0.1932 0.0229 0.0730 0.1031
τv8|¬v3∧v7

0.1948 0.0147 0.0417 0.0690
τv3|¬v2∧v5

0.2052 0.0158 0.0417 0.0763

Table 4.3: The three measures of the disturbance caused by the parame-
ter changes that enforce Pr(v3|v1 ∧ v8) to increase with 0.05, sorted on the
selection criterion ∆A(τx|u), which indicates the absolute change in the pa-
rameter.

The smallest absolute change

In Table 4.3 we have sorted the table on the absolute change in the param-
eters. We see that a small absolute change does not always imply a small
disturbance of the network. Although a small absolute change in a param-
eter leads to a smaller disturbance than a large absolute change in the same
parameter, the disturbance is also dependent on the parameter. The output
probabilities are not equal sensitive to each of the parameters, because the
sensitivity functions of the parameters differ.

Although this selection criterion is using the absolute change in the param-
eter, it does not predict the average absolute disturbance better than the
relative disturbance or the log-odds disturbance.

We would like the selection criteria to select the parameter that has the
lowest disturbance. The two parameters with the lowest disturbance are
τv8|v3∧v7

and τv3|¬v2∧¬v5
. The selection criterion selects these parameters as

fifth and as first. The parameters that are selected as third and sixth param-
eter have a very high disturbance. We certainly do not want to change these
parameters to enforce the constraint.

The smallest relative change

If we sort the table on the relative change in the parameters, see Table 4.4,
we can see that the smallest relative change selection methods performs
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Parameter ∆R(τx|u) av. ∆A(a|e) av. ∆R(a|e) av. ∆O(a|e)
τv3|¬v2∧¬v5

+ 0.1480 0.0094 0.0308 0.0466
τv8|¬v3∧¬v7

0.2970 0.0103 0.0328 0.0500
τv8|v3∧v7

+ 0.3079 0.0092 0.0290 0.0449
τv3|¬v2∧v5

0.4434 0.0158 0.0506 0.0763
τv8|¬v3∧v7

0.4700 0.0146 0.0417 0.0690
τv2|v1

− 0.5050 0.0189 0.0613 0.1016
τv8|v3∧¬v7

0.6121 0.0100 0.0708 0.0640
τv7|v6

− 0.6378 0.0229 0.0730 0.1031

Table 4.4: The three measures of the disturbance caused by the parame-
ter changes that enforce Pr(v3|v1 ∧ v8) to increase with 0.05, sorted on the
selection criterion ∆R(τx|u), which indicates the relative change in the pa-
rameter.

slightly better. We can see that the relative change in the parameter is cor-
related with the disturbance of the network. The parameter selected is still
not the parameter that has the lowest disturbance measures. The parame-
ters with the lowest disturbance τv8|v3∧v7

and τv3|¬v2∧¬v5
are selected as first

and as third. The two parameters with the highest disturbance, τv2|v1
and

τv7|v6
are selected as sixth and as eighth.

Notice that the parameter that is selected seventh τv8|v3∧¬v7
has indeed a

high relative disturbance. However, this parameter has a low absolute dis-
turbance.

The smallest log-odds change

Recall that we are using the log-odds change in the parameter as a selec-
tion criterion, because the value of the log-odds change in the parameter
can be used as a measure to bound the change in any probability Pr(a|e)
in the network. We illustrate this bound using our example network. This
bound indicates that the log-odds change in any probability of the network
is smaller than or equal to the log-odds change of the parameter. We have
calculated the largest log-odds change in any of the output probabilities
in the network after applying each of the parameter changes. We have ex-
cluded the probability that corresponds with the parameter that is changed.
The bound implies that these values of the largest log-odds change have to
be equal to or smaller than the log-odds change in the parameter. Table 4.5
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Parameter ∆O(τx|u) max ∆A(a|e) max ∆R(a|e) max ∆O(a|e)
τv3|¬v2∧¬v5

0.4987 0.1240 0.5272 0.4987
τv8|¬v3∧¬v7

0.5570 0.1287 0.4160 0.5570
τv8|v3∧v7

0.6010 0.1416 0.3081 0.6010
τv7|v6

0.8178 0.2016 0.8530 0.8178
τv2|v1

0.8605 0.1972 0.5606 0.8605
τv8|¬v3∧v7

0.9067 0.1798 0.7686 0.9067
τv3|¬v2∧v5

0.9094 0.2234 1.2422 0.9094
τv8|v3∧¬v7

1.0623 0.2200 1.5782 1.0623

Table 4.5: The maximum absolute change, max ∆A(a|e), the maximum
relative change, max ∆R(a|e) and the maximum log-odds change, max
∆O(a|e), after changing the parameter that enforces Pr(v3|v1 ∧ v8) to in-
crease with 0.05. Sorted on the log-odds change in the parameter ∆O(τx|u).
The value of the log-odds change in the parameter can be used to predict
the maximum log-odds change in the output probability.

summarises the log-odds changes in the parameters and the largest log-
odds change in the output. As we can see, the bound described by Chan
and Darwiche [1] is indeed the maximum log-odds change of Pr(y|e).

For example, consider changing parameter τv3|¬v2∧¬v5
. We have to change

the parameter with a log-odds difference of 0.4987 to enforce the constraint.
We can see in the fifth column of the table the probability that has the
highest log-odds change, has a log-odds change of 0.4987. If we change
this parameter to the suggested value, all the output probabilities that are
changed, are indeed changed with equal or a lower log-odds change than
0.4987. It is also interesting to notice that this bound is tight when changing
a single parameter.

By selecting the parameter, that needs the lowest log-odds change, we min-
imize the maximum difference in log-odds change of the output proba-
bilities. When changing τv3|¬v2∧¬v5

, we can be sure that the output prob-
abilities are not changed with a higher log-odds difference than 0.4987,
because the parameter is changed with 0.4987. If we instead change pa-
rameter τv8|¬v3∧¬v7

, the output probabilities could change with a log-odds
difference of 0.5570.

Table 4.6 summarises the disturbance measures calculated as before but
now sorted on log-odds value of the parameter. It is clear that a low maxi-
mum bound does not always indicate a low average log-odds change. Pa-
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rameter τv8|v3∧v7
is changed with a log-odds change of 0.6010, which gives

a higher bound than parameter τv3|¬v2∧¬v5
which is changed with a log-

odds change of 0.4987. However, we can see in the table that the average
disturbance in the output when changing parameter τv8|v3∧v7

is lower.

This selection criterion also selects the parameters with the lowest distur-
bance τv8|v3∧v7

and τv3|¬v2∧¬v5
as first and as third. The two parameters with

the highest disturbance, τv2|v1
and τv7|v6

are selected as fourth and fifth.

Parameter ∆O(τx|u) av. ∆A(a|e) av. ∆R(a|e) av. ∆O(a|e)
τv3|¬v2∧¬v5

+ 0.4987 0.0094 0.0308 0.0466
τv8|¬v3∧¬v7

0.5570 0.0103 0.0328 0.0500
τv8|v3∧v7

+ 0.6010 0.0092 0.0290 0.0449
τv7|v6

− 0.8178 0.0229 0.0730 0.1031
τv2|v1

− 0.8605 0.0189 0.0613 0.1016
τv8|¬v3∧v7

0.9067 0.0146 0.0417 0.0690
τv3|¬v2∧v5

0.9094 0.0158 0.0506 0.0763
τv8|v3∧¬v7

1.0623 0.0100 0.0708 0.0640

Table 4.6: The three measures of the disturbance caused by the parame-
ter changes that enforce Pr(v3|v1 ∧ v8) to increase with 0.05, sorted on the
selection criterion ∆O(τx|u), which indicates the log-odds change in the pa-
rameter.

4.1.3 Conclusion

Both the absolute change in the parameter as the closeness to an extreme
value of the current value of the parameter have proved to be an indication
of the disturbance of the network. However, the absolute and the relative
change in the parameter do not provide enough information to accurately
predict the amount of disturbance caused by the parameter. Although we
can find an increasing trend in the disturbance, due to too much variation,
these two selection criteria cannot find the parameter that disturbs this net-
work the least.

The log-odds change in the parameter can be used as a bound to find the
maximum log-odds change in the output. This bound indeed found the
maximum log-odds change in our experiment for all the parameters. We
found the bound to be tight in our example, even when excluding the
probability Pr(a|e) that corresponds to the parameter τx|u. This bound, is
proved tight in general when we do not exclude this parameter.
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When this bound is used to predict the maximum absolute and the max-
imum relative disturbance, it does not find the optimal parameter. This
bound does not give a better prediction of the average disturbance than the
absolute and relative change of the parameter. The three selection criteria
all found the same parameter to be the optimal parameter. Although, an-
other parameter turned out to disturb the network the least, the parameter
found by the selection criteria has a reasonable low disturbance measure.

If we observe the two parameters that have the lowest disturbance and the
two parameters that has the highest disturbance we see that the relative
selection criterion predicts the disturbance best. The parameters with the
lowest disturbance can be found in the upper region and the parameters
with the highest disturbance in the lower region of the table. As we are only
investigating the result of one network, further research is needed to see if
this is always the case. We can conclude that the three selection criteria do
not accurately predict the disturbance of the network, but can be used to
give an indication.

4.2 Selecting the optimal multiple parameter changes

In the previous section, we have investigated the selection criteria for sin-
gle parameter changes. If a constraint can be enforced by small changes to
multiple parameters instead of a larger change to a single parameter, then
the changing of multiple parameters may be preferred. Unfortunately, as
argued in the previous chapter, finding the parameter changes for multiple
parameters from different CPTs that enforce a constraint is computationally
too demanding. In this section, we will focus on finding the optimal mul-
tiple parameter changes in a single conditional probability table. To find
the optimal combination of parameter changes we can again use different
selection criteria. We will first investigate these different types of selection
criteria. Then we will investigate the performance of these selection criteria
in an experiment.

4.2.1 Selection criteria for multiple parameter changes

Instead of choosing between the parameters that are going to be changed,
in this section we are searching for the optimal combination of parameter
changes for the parameter in a single CPT. Of course this CPT has to be
selected. An expert, for example, can choose this CPT because he assumes
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that the values for the parameters of a CPT were inaccurately found. We can
also choose the CPT for which we know that the single parameter changes
are sensitive to the constraint by first using the selection criteria for single
parameter changes.

In this section, we will consider the different selection criteria that can be
used to find the optimal multiple parameter change. Recall that using the
methods of Chapter 3, we can find the values for the constants of the sensi-
tivity function for multiple parameter changes. This function can be used to
find the parameter changes that enforce a constraint. This sensitivity func-
tion has the following form:

Pr(a|e) =
∑

i αi · τi + κ∑
i γi · τi + µ

Instead of the constants β and σ, this function uses the constants κ and µ,
where κ denotes the value of Pr(a ∧ e) if all the parameters in the CPT are
changed to zero and µ denotes the value of Pr(e) if all these parameters
are changed to zero. These constants are further explained in the previous
chapter. The index i is used to specify the parameters.

If we for example want to enforce the constraint Pr(a|e) = η we thus only
have to make sure that the following equation is satisfied:

∑
i αi · τi + κ∑
i γi · τi + µ

= η

However, there are many combinations of parameter changes possible for
which this equation is satisfied. All these combinations enforce the con-
straint. Again, we would like to find the optimal parameter changes to
enforce a constraint. In this section, we are going to discuss the different
selection criteria to choose between these parameter changes.

smallest total absolute change

One way of selecting the optimal parameter changes, could be by selecting
from the set of parameter changes that satisfy the equation, the parameter
changes that have the smallest total absolute change,

∑
i ∆A(τi). We know

from the single parameter selection criteria, that the absolute change is a
indication of the disturbance in the network. A larger absolute change in
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the parameter will give a larger disturbance than a small change in the
same parameter.

To be certain that the parameter changes enforce the constraint, we adjust,
after assigning the other parameter values, the value of the last parameter
in such a way that the parameter changes satisfy the equation. This can
be easily done, because after assigning the other parameter changes, the
last parameter is the only unknown variable. We will illustrate this with an
example in Section 4.2.2. We have to be careful, that the only valid solutions
are the solutions were all the parameters have a value larger than or equal
to zero and smaller than or equal to one. From these set of valid solutions,
we want to select the solution that has the smallest total absolute change:

min
∑

i

∆A(τi)

Where the index i is used to specify the parameters.

However, we obtain the smallest total absolute change when we change the
parameter that needs the smallest absolute change to enforce the constraint
and we keep the other parameters on the current values. This is because
we are changing only parameters from a single CPT. The sensitivities of the
output probabilities to the parameters are independent of the values of the
other parameters in the same CPT. Changing two parameters simultane-
ously cannot make the output probabilities change more. This makes the
function

∑
i ∆A(τi) linear in the parameters. Changing the parameter for

which the output probabilities are most sensitive will result in the lowest
total absolute change. Therefore, instead of a multiple parameter change
this method will only find a single parameter change. Still, we can com-
pare the performance of this single parameter change with the multiple
parameter changes found by the other selection criteria.

smallest total relative change

When changing multiple parameters, we can use the total relative change,∑
i ∆R(τi) of the parameters selected as a selection criterion. Again, we use

the change in the parameter relative to the distance to zero if the current
value of the parameter is lower than 0.5 and the relative to the distance to
one if the current value of the parameter is higher than 0.5. We can use this
selection criterion to penalties the extreme values. As seen in the previous
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section, the output probabilities are more sensitive to changes in parame-
ters that have extreme values.

Again, we can adjust the value of the last parameter in such a way that
the parameter changes enforce the constraint. From this set of parameter
changes, we want to find the smallest relative change.

min
∑

i

∆R(τi)

Where the index i is used to specify the parameters. Unfortunately, the
function is not linear in the parameters, if we calculate the relative change.
We can use a hill-climbing technique to find the minimum of this function.

smallest total log-odds

The log-odds change can also be used to bound the maximum log-odds
change when changing multiple parameters. When changing only one pa-
rameter, the log-odds change in the parameter bounds the maximum log-
odds change of the output. If a parameter is changed with a log-odds of η,
each output probability is changed with a log-odds value between zero and
η. If we then change another parameter with a log-odds of η, then the out-
put probabilities are again changing with a log-odds value between zero
and η. The total log-odds change for each output probability, when chang-
ing two parameters with the value of η thus has to be between zero and
2 · η.

So in general, the log-odds change of the output probabilities when chang-
ing multiple parameters is between zero and the sum of the log-odds
change of all the parameters that are changed:

∑
i ∆O(τi). Consequently,

the maximum log-odds change in the output probabilities is bounded to be
smaller than or equal to the total log-odds change of the changed parame-
ters:

max ∆O(a|e) ≤
∑

i

∆O(τi)

However, this bound can be large and it is not tight. Only in the extreme
case that a output probability is sensitive to all the parameters that we are
changing, then that probability can be changed with this maximum value.
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Furthermore, the output probability has to be changed in the same direc-
tion by all the parameters otherwise the log-odds changes are cancelled
out.

To find the optimal multiple parameter change, we can minimize the total
log-odds change in the parameters,

∑
i ∆O(τo). If we can find a very small

value for the total log-odds change, we know we have a very small max-
imum log-odds change in the output. One way to find this minimum is
using a hill-climbing technique.

equal log-odds

Chan and Darwiche [2] proposed another method for selecting the combi-
nation of parameters when changing multiple parameters. They described
a method for changing all parameters with equal log-odds changes. We
know that the maximum log-odds change in the output is equal to the log-
odds change of the parameter that is changed. Thus when changing multi-
ple parameters, we know that the maximum log-odds change in the output
is equal to or greater than the log-odds change of every changed param-
eter. The maximum log-odds change will be equal to or greater than the
log-odds change of the parameter that has been changed with the largest
log-odds change.

max ∆O(a|e) ≥ max
i

∆O(τi)

If we want to minimise the log-odds change of the parameter that has the
largest log-odds change we have to change the parameters equally. For ex-
ample, suppose that we want to change four parameters in the same CPT. If
the parameters are not changed equally, the log-odds change of the param-
eter that has the largest log-odds change can be decreased by increasing
the log-odds changes of the other parameters. This will result eventually
in equal log-odds changes [2]. We will refer to this selection criterion as
eq.∆O(τi).

4.2.2 Experiment

To compare these selection criteria we have used the same network as the
one used for the experiments with the single parameter changes. We have
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chosen to change the parameters of the CPT of V8 to increase the probabil-
ity Pr(v3|v1 ∧ v8) by 0.05, which is the same constraint as the one used in
the previous experiment. We also used the same measures to calculate the
disturbance of the network. These measures are explained in the previous
experiment. In the next paragraphs, we are going to explain how to find
the solutions using the selection criteria. Then we will compare the results
of the selection criteria.

We will compare these multiple parameter changes with two single pa-
rameter changes from the previous experiment. The first single parameter
change is the parameter change that was found to have the lowest dis-
turbance of the network, τv8|v3∧v7

. The second single parameter change
is the parameter change that gives the smallest total absolute change,
mini

∑
i ∆A(τi). This selection criterion always selects a single parameter

change.

Finding the solutions for the selection criteria

To find the solutions of the multiple parameter changes we have to use the
sensitivity function of multiple parameter changes. As we have explained
in the previous chapter, we can find this sensitivity function for multiple
parameter changes by using the values of the constants of the sensitivity
functions for single parameter changes.

If we want to change the parameters of the CPT for V8, we can use the
values of the constants we have found for the single parameter changes.
When using the method of the previous chapter to find these single param-
eter changes, we receive the values of the constants summarised in Table
4.7:

parameter α β γ σ

τv8|v3∧v7
0.1731 0.0155 0.1731 0.1664

τv8|v3∧¬v7
0.2407 0.0935 0.2407 0.2444

τv8|¬v3∧v7
0.0000 0.1091 0.1540 0.2023

τv8|¬v3∧¬v7
0.0000 0.1091 0.2151 0.1667

Table 4.7: Values of the constants of the sensitivity functions for the out-
come probability Pr(v3|v1 ∧ v8) for all parameters from the CPT for V8.

Recall that the sensitivity function for multiple parameter changes is as fol-
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lows:
Pr(a|e) =

∑
i αi · τi + κ∑
i γi · τi + µ

For ease of reference we call:
τv8|v3∧v7

= τ1

τv8|v3∧¬v7
= τ2

τv8|¬v3∧v7
= τ3

τv8|¬v3∧¬v7
= τ4

Filling in the values of the constants of α and γ results in:

Pr(v3|v1 ∧ v8) =
0.1731 · τ1 + 0.2407 · τ2 + κ

0.1731 · τ1 + 0.2407 · τ2 + 0.1540 · τ3 + 0.2151 · τ4 + µ

Recall that the value of the constant κ can be calculated using the following
formula:

κ = β1 −
∑
i6=1

αi · τ o
i

In our case, for κ this results in:

κ = 0.0155− (0.2407 · 0.0645 + 0.000 · 0.3746 + 0.00 · 0.4334) = 0.000

The constant µ can be calculated using this formula:

µ = σ1 −
∑
i6=1

γi · τ o
i

For µ this results in:

µ = 0.1664− (0.2407 · 0.0645 + 0.1540 · 0.3746 + 0.2151 · 0.4334) = 0.000

We now have the sensitivity function for the parameter changes in the CPT
for V8. To enforce the constraint Pr(v3|v1 ∧ v8) = 0.4695, we have to satisfy:

0.1731 · τ1 + 0.2407 · τ2 + 0.000
0.1731 · τ1 + 0.2407 · τ2 + 0.1540 · τ3 + 0.2151 · τ4 + 0.000

= 0.4695

There are many different multiple parameter changes for which this equa-
tion holds. For example, suppose we want the first three parameters to have
the value of 0.3, we can calculate the value of the fourth parameter:
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Pr(v3|v1 ∧ v8) =
0.1241

0.1703 + 0.2151 · τ4
= 0.4695

The fourth parameter τv8|v3∧¬v7
has to have a value of 0.4372. These pa-

rameter changes will enforce the constraint. However, it is easy to see that
if we increase the parameter change of one parameter, we can adjust the
parameter changes of the other parameters and still enforce the constraint.
All parameter changes that satisfy the equation enforce the constraint. We
use the selection methods described earlier to select a multiple parameter
change that is considered optimal.

We have used this equation to find the smallest total relative change and the
smallest total log-odds change in the parameters possible. The solution had
to satisfy the equation. We used a heuristic to find these parameter values,
because these values are hard to find. First, we assigned a random change
to three parameters. Then we calculated the value of the fourth parameter
using the equation. In this way, we could be sure that our solution enforces
the constraint. The value of the fourth parameter had to be between zero
and one, otherwise the solution was considered wrong. We searched for
the optimal parameters by using a hill climbing algorithm that finds a local
optimum and ran this algorithm multiple times to find the global optimum.

Calculating the equal log-odds change that enforces the constraint is eas-
ier. Because we now only have one variable, namely the log-odds change
of all the parameters. There is only one value of this log-odds change for
which the constraint holds. Chan and Darwiche [2] proposed an algorithm
for finding the equal log-odds change for which the equation holds. For
each value of the log-odds change, we can calculate the output probability.
The higher the value of the log-odds changes in the parameters, the higher
the value of the log-odds change in the probability. We can use the differ-
ence between this probability and the probability we want it to have, to see
if we have to increase or decrease the log-odds change. They proposed to
increase or decrease this value until the difference between the calculated
probability and the probability wanted is small enough. We have found
that an equal log-odds change of 0.1808 enforces the constraint in our ex-
ample.
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Results of the experiment

Using the same measures from the previous experiment, we have calcu-
lated the disturbance in the network after enforcing the multiple parameter
changes proposed by the selection criteria. The results of this experiment is
summarised in Table 4.8.The min

∑
i ∆A(τi) is the same as changing the

parameter that needs the lowest absolute change to enforce the constraint,
which is τv8|v3∧¬v7

, and thus not a multiple parameter change. We also in-
cluded the single parameter change that gave the best performance in the
previous experiment, τv8|v3∧v7

.

Selection Criteria av. ∆A(a|e) av. ∆R(a|e) av. ∆O(a|e)
eq. ∆O(τi) 0.0075 0.0278 0.0390
τv8|v3∧v7

0.0092 0.0290 0.0449
mini

∑
i ∆O(τi) 0.0098 0.0313 0.0473

mini
∑

i ∆R(τi) 0.0102 0.0325 0.0491
mini

∑
i ∆A(τi)∗ 0.0100 0.0708 0.0640

Table 4.8: The average disturbance in the output probability Pr(a|e) when
using each selection criterion for multiple parameter changes.

From the table we see that changing the parameters with an equal log-odds
change results in the lowest disturbance of the network, as indicated by the
three measures. The other selection criteria for multiple parameter changes
performed badly. We will investigate why this was the case.

Selection Criteria max ∆A(a|e) max ∆R(a|e) max ∆O(a|e)
eq. ∆O(τi) 0.0582 0.3116 0.2746
mini

∑
i ∆O(τi) 0.1103 0.3663 0.4384

mini
∑

i ∆R(τi) 0.1250 0.3992 0.5396
mini

∑
i ∆A(τi)∗ 0.2200 1.5782 1.0623

Table 4.9: The maximum disturbance of the output when using each selec-
tion criterion for multiple parameter changes.

We have summarised the maximum disturbance of the parameter changes
in Table 4.9. Changing the parameters equal also resulted in a lower maxi-
mum disturbance.

When discussing the selection criteria we have described two bounds to
predict the value of the maximum log-odds change in the output. Recall
that these were the following bounds:
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max ∆O(a|e) ≤
∑

i

∆O(τi)

max ∆O(a|e) ≥ max
i

∆O(τi)

Combining these bounds results in:

max
i

∆O(τi) ≤ max ∆O(a|e) ≤
∑

i

∆O(τi)

This means that the maximum log-odds change in the output is a value
between the log-odds change of the parameter that has the largest log-odds
change and the sum of the log-odds change of all the changed parameters.
In Table 4.10 we can see that these bounds are satisfied. The maximum log-
odds change in the output is indeed between the two values.

Selection Criteria max ∆O(τi)
∑

i ∆O(τi) max ∆O(a|e)
eq. ∆O(τi) 0.1808 0.7232 0.2746
mini

∑
∆O(τi) 0.4384 0.5545 0.4384

mini
∑

∆R(τi) 0.5369 0.5568 0.5396
mini

∑
∆A(τi)∗ 1.0623 1.0623 1.0623

Table 4.10: The maximum disturbance of the output when using each selec-
tion criterion for multiple parameter changes.

When we change the parameter that needs the smallest log-odds differ-
ence to enforce the constraint much more than the other parameters to
create a low total log-odds change like when using the selection criterion:
mini

∑
i ∆O(τi), one parameter has to be changed much. This will cause a

high maximum log-odds change in the output, as the maximum log-odds
change is equal to the log-odds change of the parameter that has the largest
log-odds change. This is the reason that using the mini

∑
i ∆O(τi) we have

such a high disturbance in the network.

Not all the parameters that we are changing have an equal effect on the out-
put probability. If we change all the parameters with equal log-odds, we are
changing parameters, which hardly contribute to enforcing the constraint.
This does not seem clever. The maximum disturbance of the output when
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changing the parameters equally is much higher than the log-odds change
of the parameters. This is because when all the parameters are changed
equally, all the parameters influence the output probabilities in the network
much. Even parameters that have a low contribution to enforcing the con-
straint are disturbing probabilities.

The maximum log-odds change can be seen as to come from two values.
First, we have the value of the largest log-odds change. We are sure that
the maximum disturbance is at least as high as this value; we can call this
the starting value of the maximum log-odds change in the output. Fur-
thermore, the log-odds change of the other parameters can cause the maxi-
mum log-odds change to be higher. We can call this an additional log-odds
change. This additional value is less effective.

maximum log-odds disturbance = δ + additional value

To illustrate this, we have used another selection criterion. It finds the
smallest total log-odds change, but we restrict the log-odds changes of the
parameters to be lower than a certain value δ:

min
i

∑
i

∆O(τi) while ∆O(τi) ≤ δ

If δ = 0.1808, this selection criterion will find equal parameter changes. If
δ = ∞, this selection criterion is the same as mini

∑
i ∆O(τi). If 0.1808 ≤ δ ≤

0.4384 then it finds a hybrid solution. For example, when using δ = 0.2000
this selection criterion restricts the log-odds change of the parameters to be
larger than 0.2. It searches for the combination of parameter changes that
finds the smallest total log-odds change in the parameters.

If we look at the value of the maximum log-odds disturbance as having
a starting value and an additional value then δ equals the starting value.
This is because the value of δ is equal to the parameter that has the largest
log-odds change and this is equal to or lower than the maximum log-odds
disturbance of the network. However, a low value of δ has a higher addi-
tional value.

Figure 3.1 illustrates this. We can see that the maximum log-odds distur-
bance is always higher than the value of δ. The value of δ can be seen as
the starting value of the maximum disturbance. We can also see that the
additional value decreases as δ increases, because the other parameters are
changed less. To find the optimal value of δ we have to find a balance be-
tween the starting value and the additional value.
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Figure 4.2: The maximum log-odds change in the output for different val-
ues of δ. By points on the line, δ is equal to the maximum log-odds change.
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Table 4.11 also illustrates this balance. Having a higher value of δ indeed
lowers the total log-odds change and thus the values of the other parame-
ters are changed less. The maximum disturbance is indeed always higher
than the value of δ. A value of δ between 0.20 and 0.21 does not only result
in the lowest maximum disturbance but also in a lower average distur-
bance.

Sel. Criteria
∑

i ∆O(τi) maxi ∆O(τi) max ∆O(a|e) av. ∆O(a|e)
δ = 0.1808* 0.7234 0.1808 0.2746 0.0390
δ = 0.20 0.6199 0.2000 0.2301 0.0381
δ = 0.21 0.6110 0.2100 0.2147 0.0381
δ = 0.22 0.6024 0.2200 0.2200 0.0389
δ = 0.4384** 0.5545 0.4384 0.4384 0.0473

Table 4.11: The disturbance in the network for different values of δ. *The
selection method eq. ∆O(τi) can in this example be seen as to have δ =
0.1808. **The selection method mini

∑
i ∆O(τi) can be seen as to have δ =

0.4384.

In this experiment, the multiple parameter changes gave a lower maximum
log-odds change than the single parameter changes, but this is not always
the case. When we want to change the output Pr(a|e) and we can change a
parameter that corresponds directly to this output probability, then chang-
ing this single parameter is more effective then changing multiple parame-
ters.

4.2.3 Conclusion

Using equal log-odds change, we find a reasonable good solution. How-
ever, to find the optimal solution we have to change the parameters that
need a smaller log-odds change to enforce a constraint more then the pa-
rameters that need a large change. We cannot change a single parameter
too much, because changing a parameter with a large log-odds difference
will give a large disturbance. To find the optimum parameter changes, we
need to find a balance between changing all the parameters equally and
changing single parameters that have a high contribution to enforcing the
constraint more.

In the experiment, we have found this balance by using different values for
the maximum log-odds difference that the parameters are allowed to have.
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The optimum value of this maximum is dependent on the network. Further
research is needed to investigate how to find this balance.

4.3 Summary and conclusion

In this chapter, we have investigated different selection criteria. If we want
to change only a single parameter, then we can use selection criteria to
choose between the different parameter changes that are obtained by the
methods described in Chapter 3. However, in our experiment, these selec-
tion criteria failed to find the optimal parameter change.

One of the selection criteria selects the parameter which needs the lowest
log-odds change to enforce the constraint. Although, this does not always
indicate the lowest average disturbance of the output probabilities in the
network, it does give us a maximum bound of the log-odds change in the
output. We know that the output probabilities are changed with an equal or
a lower log-odd change than the log-odds change of the parameter. More-
over, we know that this bound is tight when changing a single parameter.

Sometimes changing multiple parameters in the same CPT can give a better
result than changing a single parameter. When changing multiple parame-
ters in one CPT, we will obtain many possible solutions. We have to use a
selection criterion to find the optimal values for the changes in the param-
eter. That is why choosing between combinations of multiple parameter
changes is more difficult.

In this chapter, we have introduced a bound that indicates the value of
the most changed output probability when changing multiple parameters.
However, this bound is not very tight.

Chan and Darwiche [2] proposed changing the parameters equally. Al-
though this gives reasonable results, it is not always giving the best combi-
nation. In our experiment, changing parameters that have a high contribu-
tion to enforcing the constraint a bit more than the other parameters gave
the best results.

To find the optimal solution when changing multiple parameters we would
both like to have a small total log-odds value of the parameter changes as
well as a small log-odds change in each of the parameters. We have to find
a balance between these two values.
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Chapter 5

Conclusions and future work

In this thesis, we investigated the constraints that can be useful to enforce
when tuning the network. We have explained how these constraints can be
enforced using sensitivity functions and how these can be enforced using
only the derivatives and we compared these two approaches. We have also
discussed the algorithms that can be used to find these sensitivity func-
tions. Using these algorithms, we were able to find the parameter change
for each parameter in the network that enforces a constraint.

In this thesis, we have discussed changing a single parameter or changing
multiple parameters from a single CPT to enforce a constraint. We have
found the parameter change(s) that enforce(s) such a constraint using sen-
sitivity functions. How to find the parameter changes for multiple param-
eters from different CPTs that enforce a constraint has to be investigated in
future research.

If we want to enforce a constraint, we will have to change some parameters.
It is clear that changing a parameter can disturb many probabilities of the
network. If a little change in a parameter is enough to enforce a constraint,
it is probably also enough to disturb the network. In this thesis, we have
investigated how we can select the parameter change that maintains most
of the output probabilities. We have discussed some selection criteria to
select the optimal parameter change, which is the parameter change that
maintains most of the output probabilities from a set of parameter changes
that enforces a constraint and the selection criteria to select the optimal
multiple parameter change when we want to change multiple parameters
in one CPT. We have tested the performance of these selection criteria in an
experiment. The selection criteria found a reasonable solution, but did not

81
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find the optimal solution.

In an experiment, we where able to find the parameter changes that main-
tain more of the probabilities of the network by using a combination of two
selection criteria. How this combination of two selection criteria performs
in different networks has to be investigated in future research.
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