Author name code: ueda ADS astronomy entries on 2022-09-14 author:"Ueda, Kohei" ------------------------------------------------------------------------ Title: Short-wavelength free-electron laser sources and science: a review Authors: Seddon, E. A.; Clarke, J. A.; Dunning, D. J.; Masciovecchio, C.; Milne, C. J.; Parmigiani, F.; Rugg, D.; Spence, J. C. H.; Thompson, N. R.; Ueda, K.; Vinko, S. M.; Wark, J. S.; Wurth, W. Bibcode: 2017RPPh...80k5901S Altcode: This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.

Dedicated to John M J Madey (1943-2016) and Rodolfo Bonifacio (1940-2016) whose perception, drive and perseverance paved the way for the realisation and development of short-wavelength free-electron lasers. Title: Photospheric Properties of Warm EUV Loops and Hot X-Ray Loops Authors: Kano, R.; Ueda, K.; Tsuneta, S. Bibcode: 2014ApJ...782L..32K Altcode: We investigate the photospheric properties (vector magnetic fields and horizontal velocity) of a well-developed active region, NOAA AR 10978, using the Hinode Solar Optical Telescope specifically to determine what gives rise to the temperature difference between "warm loops" (1-2 MK), which are coronal loops observed in EUV wavelengths, and "hot loops" (>3 MK), coronal loops observed in X-rays. We found that outside sunspots, the magnetic filling factor in the solar network varies with location and is anti-correlated with the horizontal random velocity. If we accept that the observed magnetic features consist of unresolved magnetic flux tubes, this anti-correlation can be explained by the ensemble average of flux-tube motion driven by small-scale random flows. The observed data are consistent with a flux tube width of ~77 km and horizontal flow at ~2.6 km s-1 with a spatial scale of ~120 km. We also found that outside sunspots, there is no significant difference between warm and hot loops either in the magnetic properties (except for the inclination) or in the horizontal random velocity at their footpoints, which are identified with the Hinode X-Ray Telescope and the Transition Region and Coronal Explorer. The energy flux injected into the coronal loops by the observed photospheric motion of the magnetic fields is estimated to be 2 × 106 erg s-1 cm-2, which is the same for both warm and hot loops. This suggests that coronal properties (e.g., loop length) play a more important role in giving rise to temperature differences of active-region coronal loops than photospheric parameters. Title: A Sounding Rocket Experiment for Spectropolarimetric Observations with the Lyα Line at 121.6 nm (CLASP) Authors: Ishikawa, R.; Bando, T.; Fujimura, D.; Hara, H.; Kano, R.; Kobiki, T.; Narukage, N.; Tsuneta, S.; Ueda, K.; Wantanabe, H.; Kobayashi, K.; Trujillo Bueno, J.; Manso Sainz, R.; Stepan, J.; de Pontieu, B.; Carlsson, M.; Casini, R. Bibcode: 2011ASPC..437..287I Altcode: A team consisting of Japan, USA, Spain, and Norway is developing a high-throughput Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP), which is proposed to fly with a NASA sounding rocket in 2014. CLASP will explore the magnetism of the upper solar chromosphere and transition region via the Hanle effect of the Lyα line for the first time. This experiment requires spectropolarimetric observations with high polarimetric sensitivity (∼0.1%) and wavelength resolution (0.1 Å). The final spatial resolution (slit width) is being discussed taking into account the required high signal-to-noise ratio. We have demonstrated the performance of the Lyα polarimeter by extensively using the Ultraviolet Synchrotron ORbital Radiation Facility (UVSOR) at the Institute for Molecular Sciences. In this contribution, we report these measurements at UVSOR together with the current status of the CLASP project. Title: The Chromospheric Lyman Alpha SpectroPolarimeter (CLASP) Authors: Kobayashi, K.; Tsuneta, S.; Trujillo Bueno, J.; Cirtain, J. W.; Bando, T.; Kano, R.; Hara, H.; Fujimura, D.; Ueda, K.; Ishikawa, R.; Watanabe, H.; Ichimoto, K.; Sakao, T.; de Pontieu, B.; Carlsson, M.; Casini, R. Bibcode: 2010AGUFMSH11B1632K Altcode: Magnetic fields in the solar chromosphere play a key role in the energy transfer and dynamics of the solar atmosphere. Yet a direct observation of the chromospheric magnetic field remains one of the greatest challenges in solar physics. While some advances have been made for observing the Zeeman effect in strong chromospheric lines, the effect is small and difficult to detect outside sunspots. The Hanle effect offers a promising alternative; it is sensitive to weaker magnetic fields (e.g., 5-500 G for Ly-Alpha), and while its magnitude saturates at stronger magnetic fields, the linear polarization signals remain sensitive to the magnetic field orientation. The Hanle effect is not only limited to off-limb observations. Because the chromosphere is illuminated by an anisotropic radiation field, the Ly-Alpha line is predicted to show linear polarization for on-disk, near-limb regions, and magnetic field is predicted to cause a measurable depolarization. At disk center, the Ly-Alpha radiation is predicted to be negligible in the absence of magnetic field, and linearly polarized to an order of 0.3% in the presence of an inclined magnetic field. The proposed CLASP sounding rocket instrument is designed to detect 0.3% linear polarization of the Ly-Alpha line at 1.5 arcsecond spatial resolution (0.7’’ pixel size) and 10 pm spectral resolution. The instrument consists of a 30 cm aperture Cassegrain telescope and a dual-beam spectropolarimeter. The telescope employs a ``cold mirror’’ design that uses multilayer coatings to reflect only the target wavelength range into the spectropolarimeter. The polarization analyzer consists of a rotating waveplate and a polarizing beamsplitter that comprises MgF2 plates placed at Brewster’s Angle. Each output beam of the polarizing beamsplitter, representing two orthogonal linear polarizations, is dispersed and focused using a separate spherical varied-line-space grating, and imaged with a separate 512x512 CCD camera. Prototypes of key optical components have been fabricated and tested. Instrument design is being finalized, and the experiment will be proposed for a 2014 flight aboard a NASA sounding rocket. Title: Orientation of X-Ray Bright Points in the Quiet Sun Authors: Ueda, K.; Kano, R.; Tsuneta, S.; Shibahashi, H. Bibcode: 2010SoPh..261...77U Altcode: Thanks to the high-resolution images from the X-ray telescope (XRT) aboard the Hinode satellite, X-ray bright points (XBPs) in the quiet region of the Sun are resolved and can be seen to have complex loop-like structures. We measure the orientation of such loop structures for 488 XBPs picked up in 26 snapshot X-ray images near the disk center. The distribution of the orientation is slightly but clearly biased to the east - west direction: the random distribution is rejected with a significance level of 1% by the χ2-test. The distribution is similar to the orientation distribution for the bipolar magnetic fields. The XBP orientation is, however, much more random than that of the bipolar magnetic fields with similar size. 24% of the XBPs are due to emerging bipoles, while the remaining 76% are due to chance encounters of opposite polarities. Title: Stellar-Mass Black Holes and Their Progenitors Authors: Miller, J.; Uttley; Nandra; Barret; Paerels; Mandez; Diaz; Cappi; Kitamoto; Nowak; Wilms; Rothschild; Smith; Weisskopf; Teraschima; Ueda Bibcode: 2009astro2010S.207M Altcode: 2009arXiv0902.4677M If a black hole has a low spin value, it must double its mass to reach a high spin parameter. Although this is easily accomplished through mergers or accretion in the case of supermassive black holes in galactic centers, it is impossible for stellar-mass black holes in X-ray binaries. Thus, the spin distribution of stellar-mass black holes is almost pristine, largely reflective of the angular momentum imparted at the time of their creation. This fact can help provide insights on two fundamental questions: What is the nature of the central engine in supernovae and gamma-ray bursts? and What was the spin distribution of the first black holes in the universe? Title: DECIGO pathfinder Authors: Ando, M.; Kawamura, S.; Nakamura, T.; Tsubono, K.; Tanaka, T.; Funaki, I.; Seto, N.; Numata, K.; Sato, S.; Ioka, K.; Kanda, N.; Takashima, T.; Agatsuma, K.; Akutsu, T.; Akutsu, T.; Aoyanagi, K. -s.; Arai, K.; Arase, Y.; Araya, A.; Asada, H.; Aso, Y.; Chiba, T.; Ebisuzaki, T.; Enoki, M.; Eriguchi, Y.; Fujimoto, M. -K.; Fujita, R.; Fukushima, M.; Futamase, T.; Ganzu, K.; Harada, T.; Hashimoto, T.; Hayama, K.; Hikida, W.; Himemoto, Y.; Hirabayashi, H.; Hiramatsu, T.; Hong, F. -L.; Horisawa, H.; Hosokawa, M.; Ichiki, K.; Ikegami, T.; Inoue, K. T.; Ishidoshiro, K.; Ishihara, H.; Ishikawa, T.; Ishizaki, H.; Ito, H.; Itoh, Y.; Kamagasako, S.; Kawashima, N.; Kawazoe, F.; Kirihara, H.; Kishimoto, N.; Kiuchi, K.; Kobayashi, S.; Kohri, K.; Koizumi, H.; Koima, Y.; Kokeyama, K.; W-Kokuyama; Kotake, K.; Kozai, Y.; Kudoh, H.; Kunimori, H.; Kuninaka, H.; Kuroda, K.; Maeda, K. -i.; Matsuhara, H.; Mino, Y.; Miyakawa, O.; Miyoki, S.; Morimoto, M. Y.; Morioka, T.; Morisawa, T.; Moriwaki, S.; Mukohyama, S.; Musha, M.; Nagano, S.; Naito, I.; Nakagawa, N.; Nakamura, K.; Nakano, H.; Nakao, K.; Nakasuka, S.; Nakayama, Y.; Nishida, E.; Nishiyama, K.; Nishizawa, A.; Niwa, Y.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Okutomi, A.; Onozato, K.; Oohara, K.; Sago, N.; Saijo, M.; Sakagami, M.; Sakai, S. -i.; Sakata, S.; Sasaki, M.; Sato, T.; Shibata, M.; Shinkai, H.; Somiya, K.; Sotani, H.; Sugiyama, N.; Suwa, Y.; Tagoshi, H.; Takahashi, K.; Takahashi, K.; Takahashi, T.; Takahashi, H.; Takahashi, R.; Takahashi, R.; Takamori, A.; Takano, T.; Taniguchi, K.; Taruya, A.; Tashiro, H.; Tokuda, M.; Tokunari, M.; Toyoshima, M.; Tsujikawa, S.; Tsunesada, Y.; Ueda, K. -i.; Utashima, M.; Yamakawa, H.; Yamamoto, K.; Yamazaki, T.; Yokoyama, J.; Yoo, C. -M.; Yoshida, S.; Yoshino, T. Bibcode: 2008JPhCS.120c2005A Altcode: DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article. Title: The Japanese space gravitational wave antenna; DECIGO Authors: Kawamura, S.; Ando, M.; Nakamura, T.; Tsubono, K.; Tanaka, T.; Funaki, I.; Seto, N.; Numata, K.; Sato, S.; Ioka, K.; Kanda, N.; Takashima, T.; Agatsuma, K.; Akutsu, T.; Akutsu, T.; Aoyanagi, K. -s.; Arai, K.; Arase, Y.; Araya, A.; Asada, H.; Aso, Y.; Chiba, T.; Ebisuzaki, T.; Enoki, M.; Eriguchi, Y.; Fujimoto, M. -K.; Fujita, R.; Fukushima, M.; Futamase, T.; Ganzu, K.; Harada, T.; Hashimoto, T.; Hayama, K.; Hikida, W.; Himemoto, Y.; Hirabayashi, H.; Hiramatsu, T.; Hong, F. -L.; Horisawa, H.; Hosokawa, M.; Ichiki, K.; Ikegami, T.; Inoue, K. T.; Ishidoshiro, K.; Ishihara, H.; Ishikawa, T.; Ishizaki, H.; Ito, H.; Itoh, Y.; Kamagasako, S.; Kawashima, N.; Kawazoe, F.; Kirihara, H.; Kishimoto, N.; Kiuchi, K.; Kobayashi, S.; Kohri, K.; Koizumi, H.; Kojima, Y.; Kokeyama, K.; Kokuyama, W.; Kotake, K.; Kozai, Y.; Kudoh, H.; Kunimori, H.; Kuninaka, H.; Kuroda, K.; Maeda, K. -i.; Matsuhara, H.; Mino, Y.; Miyakawa, O.; Miyoki, S.; Morimoto, M. Y.; Morioka, T.; Morisawa, T.; Moriwaki, S.; Mukohyama, S.; Musha, M.; Nagano, S.; Naito, I.; Nakagawa, N.; Nakamura, K.; Nakano, H.; Nakao, K.; Nakasuka, S.; Nakayama, Y.; Nishida, E.; Nishiyama, K.; Nishizawa, A.; Niwa, Y.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Okutomi, A.; Onozato, K.; Oohara, K.; Sago, N.; Saijo, M.; Sakagami, M.; Sakai, S. -i.; Sakata, S.; Sasaki, M.; Sato, T.; Shibata, M.; Shinkai, H.; Somiya, K.; Sotani, H.; Sugiyama, N.; Suwa, Y.; Tagoshi, H.; Takahashi, K.; Takahashi, K.; Takahashi, T.; Takahashi, H.; Takahashi, R.; Takahashi, R.; Takamori, A.; Takano, T.; Taniguchi, K.; Taruya, A.; Tashiro, H.; Tokuda, M.; Tokunari, M.; Toyoshima, M.; Tsujikawa, S.; Tsunesada, Y.; Ueda, K. -i.; Utashima, M.; Yamakawa, H.; Yamamoto, K.; Yamazaki, T.; Yokoyama, J.; Yoo, C. -M.; Yoshida, S.; Yoshino, T. Bibcode: 2008JPhCS.120c2004K Altcode: DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry-Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre-DECIGO first and finally DECIGO in 2024. Title: The Japanese space gravitational wave antenna - DECIGO Authors: Kawamura, S.; Ando, M.; Nakamura, T.; Tsubono, K.; Tanaka, T.; Funaki, I.; Seto, N.; Numata, K.; Sato, S.; Ioka, K.; Kanda, N.; Takashima, T.; Agatsuma, K.; Akutsu, T.; Akutsu, T.; Aoyanagi, Koh-Suke; Arai, K.; Arase, Y.; Araya, A.; Asada, H.; Aso, Y.; Chiba, T.; Ebisuzaki, T.; Enoki, M.; Eriguchi, Y.; Fujimoto, M. -K.; Fujita, R.; Fukushima, M.; Futamase, T.; Ganzu, K.; Harada, T.; Hashimoto, T.; Hayama, K.; Hikida, W.; Himemoto, Y.; Hirabayashi, H.; Hiramatsu, T.; Hong, F. -L.; Horisawa, H.; Hosokawa, M.; Ichiki, K.; Ikegami, T.; Inoue, K. T.; Ishidoshiro, K.; Ishihara, H.; Ishikawa, T.; Ishizaki, H.; Ito, H.; Itoh, Y.; Kamagasako, S.; Kawashima, N.; Kawazoe, F.; Kirihara, H.; Kishimoto, N.; Kiuchi, K.; Kobayashi, S.; Kohri, K.; Koizumi, H.; Kojima, Y.; Kokeyama, K.; Kokuyama, W.; Kotake, K.; Kozai, Y.; Kudoh, H.; Kunimori, H.; Kuninaka, H.; Kuroda, K.; Maeda, K. -i.; Matsuhara, H.; Mino, Y.; Miyakawa, O.; Miyoki, S.; Morimoto, M. Y.; Morioka, T.; Morisawa, T.; Moriwaki, S.; Mukohyama, S.; Musha, M.; Nagano, S.; Naito, I.; Nakagawa, N.; Nakamura, K.; Nakano, H.; Nakao, K.; Nakasuka, S.; Nakayama, Y.; Nishida, E.; Nishiyama, K.; Nishizawa, A.; Niwa, Y.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Okutomi, A.; Onozato, K.; Oohara, K.; Sago, N.; Saijo, M.; Sakagami, M.; Sakai, S. -i.; Sakata, S.; Sasaki, M.; Sato, T.; Shibata, M.; Shinkai, H.; Somiya, K.; Sotani, H.; Sugiyama, N.; Suwa, Y.; Tagoshi, H.; Takahashi, K.; Takahashi, K.; Takahashi, T.; Takahashi, H.; Takahashi, R.; Takahashi, R.; Takamori, A.; Takano, T.; Taniguchi, K.; Taruya, A.; Tashiro, H.; Tokuda, M.; Tokunari, M.; Toyoshima, M.; Tsujikawa, S.; Tsunesada, Y.; Ueda, K. -i.; Utashima, M.; Yamakawa, H.; Yamamoto, K.; Yamazaki, T.; Yokoyama, J.; Yoo, C. -M.; Yoshida, S.; Yoshino, T. Bibcode: 2008JPhCS.122a2006K Altcode: DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to launch DECIGO pathfinder first to demonstrate the technologies required to realize DECIGO and, if possible, to detect gravitational waves from our galaxy or nearby galaxies. Title: Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Ageev, A.; Agresti, J.; Ajith, P.; Allen, B.; Allen, J.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Araya, M.; Armandula, H.; Ashley, M.; Asiri, F.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Ballmer, S.; Barish, B. C.; Barker, C.; Barker, D.; Barnes, M.; Barr, B.; Barton, M. A.; Bayer, K.; Beausoleil, R.; Belczynski, K.; Bennett, R.; Berukoff, S. J.; Betzwieser, J.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Black, E.; Blackburn, K.; Blackburn, L.; Bland, B.; Bochner, B.; Bogue, L.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burgess, R.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castiglione, J.; Chandler, A.; Chapsky, J.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chickarmane, V.; Chin, D.; Christensen, N.; Churches, D.; Cokelaer, T.; Colacino, C.; Coldwell, R.; Coles, M.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Crooks, D. R. M.; Csatorday, P.; Cusack, B. J.; Cutler, C.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Daw, E.; Debra, D.; Delker, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; di Credico, A.; Díaz, M.; Ding, H.; Drever, R. W. P.; Dupuis, R. J.; Edlund, J. A.; Ehrens, P.; Elliffe, E. J.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fallnich, C.; Farnham, D.; Fejer, M. M.; Findley, T.; Fine, M.; Finn, L. S.; Franzen, K. Y.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Ganezer, K. S.; Garofoli, J.; Giaime, J. A.; Gillespie, A.; Goda, K.; Goggin, L.; González, G.; Goßler, S.; Grandclément, P.; Grant, A.; Gray, C.; Gretarsson, A. M.; Grimmett, D.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E.; Gustafson, R.; Hamilton, W. O.; Hammond, M.; Hanna, C.; Hanson, J.; Hardham, C.; Harms, J.; Harry, G.; Hartunian, A.; Heefner, J.; Hefetz, Y.; Heinzel, G.; Heng, I. S.; Hennessy, M.; Hepler, N.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hindman, N.; Hoang, P.; Hough, J.; Hrynevych, M.; Hua, W.; Ito, M.; Itoh, Y.; Ivanov, A.; Jennrich, O.; Johnson, B.; Johnson, W. W.; Johnston, W. R.; Jones, D. I.; Jones, G.; Jones, L.; Jungwirth, D.; Kalogera, V.; Katsavounidis, E.; Kawabe, K.; Kells, W.; Kern, J.; Khan, A.; Killbourn, S.; Killow, C. J.; Kim, C.; King, C.; King, P.; Klimenko, S.; Koranda, S.; Kötter, K.; Kovalik, J.; Kozak, D.; Krishnan, B.; Landry, M.; Langdale, J.; Lantz, B.; Lawrence, R.; Lazzarini, A.; Lei, M.; Leonor, I.; Libbrecht, K.; Libson, A.; Lindquist, P.; Liu, S.; Logan, J.; Lormand, M.; Lubiński, M.; Lück, H.; Luna, M.; Lyons, T. T.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majid, W.; Malec, M.; Mandic, V.; Mann, F.; Marin, A.; Márka, S.; Maros, E.; Mason, J.; Mason, K.; Matherny, O.; Matone, L.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McHugh, M.; McNabb, J. W. C.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mueller, G.; Mukherjee, S.; Murray, P.; Myers, E.; Myers, J.; Nagano, S.; Nash, T.; Nayak, R.; Newton, G.; Nocera, F.; Noel, J. S.; Nutzman, P.; Olson, T.; O'Reilly, B.; Ottaway, D. J.; Ottewill, A.; Ouimette, D.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.; Pedraza, M.; Penn, S.; Pitkin, M.; Plissi, M.; Prix, R.; Quetschke, V.; Raab, F.; Radkins, H.; Rahkola, R.; Rakhmanov, M.; Rao, S. R.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Redding, D.; Regehr, M. W.; Regimbau, T.; Reid, S.; Reilly, K. T.; Reithmaier, K.; Reitze, D. H.; Richman, S.; Riesen, R.; Riles, K.; Rivera, B.; Rizzi, A.; Robertson, D. I.; Robertson, N. A.; Robinson, C.; Robison, L.; Roddy, S.; Rodriguez, A.; Rollins, J.; Romano, J. D.; Romie, J.; Rong, H.; Rose, D.; Rotthoff, E.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Salzman, I.; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Sarin, P.; Sathyaprakash, B.; Saulson, P. R.; Savage, R.; Sazonov, A.; Schilling, R.; Schlaufman, K.; Schmidt, V.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Seader, S. E.; Searle, A. C.; Sears, B.; Seel, S.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shapiro, C. A.; Shawhan, P.; Shoemaker, D. H.; Shu, Q. Z.; Sibley, A.; Siemens, X.; Sievers, L.; Sigg, D.; Sintes, A. M.; Smith, J. R.; Smith, M.; Smith, M. R.; Sneddon, P. H.; Spero, R.; Spjeld, O.; Stapfer, G.; Steussy, D.; Strain, K. A.; Strom, D.; Stuver, A.; Summerscales, T.; Sumner, M. C.; Sung, M.; Sutton, P. J.; Sylvestre, J.; Tanner, D. B.; Tariq, H.; Tarallo, M.; Taylor, I.; Taylor, R.; Taylor, R.; Thorne, K. A.; Thorne, K. S.; Tibbits, M.; Tilav, S.; Tinto, M.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Vallisneri, M.; van Putten, M.; Vass, S.; Vecchio, A.; Veitch, J.; Vorvick, C.; Vyachanin, S. P.; Wallace, L.; Walther, H.; Ward, H.; Ward, R.; Ware, B.; Watts, K.; Webber, D.; Weidner, A.; Weiland, U.; Weinstein, A.; Weiss, R.; Welling, H.; Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems, P. A.; Williams, P. R.; Williams, R.; Willke, B.; Wilson, A.; Winjum, B. J.; Winkler, W.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yoshida, S.; Zaleski, K. D.; Zanolin, M.; Zawischa, I.; Zhang, L.; Zhu, R.; Zotov, N.; Zucker, M.; Zweizig, J.; Akutsu, T.; Akutsu, T.; Ando, M.; Arai, K.; Araya, A.; Asada, H.; Aso, Y.; Beyersdorf, P.; Fujiki, Y.; Fujimoto, M. -K.; Fujita, R.; Fukushima, M.; Futamase, T.; Hamuro, Y.; Haruyama, T.; Hayama, K.; Iguchi, H.; Iida, Y.; Ioka, K.; Ishitsuka, H.; Kamikubota, N.; Kanda, N.; Kaneyama, T.; Karasawa, Y.; Kasahara, K.; Kasai, T.; Katsuki, M.; Kawamura, S.; Kawamura, M.; Kawazoe, F.; Kojima, Y.; Kokeyama, K.; Kondo, K.; Kozai, Y.; Kudoh, H.; Kuroda, K.; Kuwabara, T.; Matsuda, N.; Mio, N.; Miura, K.; Miyama, S.; Miyoki, S.; Mizusawa, H.; Moriwaki, S.; Musha, M.; Nagayama, Y.; Nakagawa, K.; Nakamura, T.; Nakano, H.; Nakao, K.; Nishi, Y.; Numata, K.; Ogawa, Y.; Ohashi, M.; Ohishi, N.; Okutomi, A.; Oohara, K.; Otsuka, S.; Saito, Y.; Sakata, S.; Sasaki, M.; Sato, N.; Sato, S.; Sato, Y.; Sato, K.; Sekido, A.; Seto, N.; Shibata, M.; Shinkai, H.; Shintomi, T.; Soida, K.; Somiya, K.; Suzuki, T.; Tagoshi, H.; Takahashi, H.; Takahashi, R.; Takamori, A.; Takemoto, S.; Takeno, K.; Tanaka, T.; Taniguchi, K.; Tanji, T.; Tatsumi, D.; Telada, S.; Tokunari, M.; Tomaru, T.; Tsubono, K.; Tsuda, N.; Tsunesada, Y.; Uchiyama, T.; Ueda, K.; Ueda, A.; Waseda, K.; Yamamoto, A.; Yamamoto, K.; Yamazaki, T.; Yanagi, Y.; Yokoyama, J.; Yoshida, T.; Zhu, Z. -H. Bibcode: 2006PhRvD..73j2002A Altcode: 2005gr.qc....12078L We search for coincident gravitational wave signals from inspiralling neutron star binaries using LIGO and TAMA300 data taken during early 2003. Using a simple trigger exchange method, we perform an intercollaboration coincidence search during times when TAMA300 and only one of the LIGO sites were operational. We find no evidence of any gravitational wave signals. We place an observational upper limit on the rate of binary neutron star coalescence with component masses between 1 and 3M of 49 per year per Milky Way equivalent galaxy at a 90% confidence level. The methods developed during this search will find application in future network inspiral analyses. Title: Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Ageev, A.; Agresti, J.; Ajith, P.; Allen, B.; Allen, J.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Araya, M.; Armandula, H.; Ashley, M.; Asiri, F.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Ballmer, S.; Barish, B. C.; Barker, C.; Barker, D.; Barnes, M.; Barr, B.; Barton, M. A.; Bayer, K.; Beausoleil, R.; Belczynski, K.; Bennett, R.; Berukoff, S. J.; Betzwieser, J.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Black, E.; Blackburn, K.; Blackburn, L.; Bland, B.; Bochner, B.; Bogue, L.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burgess, R.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castiglione, J.; Chandler, A.; Chapsky, J.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chickarmane, V.; Chin, D.; Christensen, N.; Churches, D.; Cokelaer, T.; Colacino, C.; Coldwell, R.; Coles, M.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Crooks, D. R. M.; Csatorday, P.; Cusack, B. J.; Cutler, C.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Daw, E.; Debra, D.; Delker, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; di Credico, A.; Díaz, M.; Ding, H.; Drever, R. W. P.; Dupuis, R. J.; Edlund, J. A.; Ehrens, P.; Elliffe, E. J.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fallnich, C.; Farnham, D.; Fejer, M. M.; Findley, T.; Fine, M.; Finn, L. S.; Franzen, K. Y.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Ganezer, K. S.; Garofoli, J.; Giaime, J. A.; Gillespie, A.; Goda, K.; Goggin, L.; González, G.; Goßler, S.; Grandclément, P.; Grant, A.; Gray, C.; Gretarsson, A. M.; Grimmett, D.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E.; Gustafson, R.; Hamilton, W. O.; Hammond, M.; Hanna, C.; Hanson, J.; Hardham, C.; Harms, J.; Harry, G.; Hartunian, A.; Heefner, J.; Hefetz, Y.; Heinzel, G.; Heng, I. S.; Hennessy, M.; Hepler, N.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hindman, N.; Hoang, P.; Hough, J.; Hrynevych, M.; Hua, W.; Ito, M.; Itoh, Y.; Ivanov, A.; Jennrich, O.; Johnson, B.; Johnson, W. W.; Johnston, W. R.; Jones, D. I.; Jones, G.; Jones, L.; Jungwirth, D.; Kalogera, V.; Katsavounidis, E.; Kawabe, K.; Kells, W.; Kern, J.; Khan, A.; Killbourn, S.; Killow, C. J.; Kim, C.; King, C.; King, P.; Klimenko, S.; Koranda, S.; Kötter, K.; Kovalik, J.; Kozak, D.; Krishnan, B.; Landry, M.; Langdale, J.; Lantz, B.; Lawrence, R.; Lazzarini, A.; Lei, M.; Leonor, I.; Libbrecht, K.; Libson, A.; Lindquist, P.; Liu, S.; Logan, J.; Lormand, M.; Lubiński, M.; Lück, H.; Luna, M.; Lyons, T. T.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majid, W.; Malec, M.; Mandic, V.; Mann, F.; Marin, A.; Márka, S.; Maros, E.; Mason, J.; Mason, K.; Matherny, O.; Matone, L.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McHugh, M.; McNabb, J. W. C.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mueller, G.; Mukherjee, S.; Murray, P.; Myers, E.; Myers, J.; Nagano, S.; Nash, T.; Nayak, R.; Newton, G.; Nocera, F.; Noel, J. S.; Nutzman, P.; Olson, T.; O'Reilly, B.; Ottaway, D. J.; Ottewill, A.; Ouimette, D.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.; Pedraza, M.; Penn, S.; Pitkin, M.; Plissi, M.; Prix, R.; Quetschke, V.; Raab, F.; Radkins, H.; Rahkola, R.; Rakhmanov, M.; Rao, S. R.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Redding, D.; Regehr, M. W.; Regimbau, T.; Reid, S.; Reilly, K. T.; Reithmaier, K.; Reitze, D. H.; Richman, S.; Riesen, R.; Riles, K.; Rivera, B.; Rizzi, A.; Robertson, D. I.; Robertson, N. A.; Robinson, C.; Robison, L.; Roddy, S.; Rodriguez, A.; Rollins, J.; Romano, J. D.; Romie, J.; Rong, H.; Rose, D.; Rotthoff, E.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Salzman, I.; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Sarin, P.; Sathyaprakash, B.; Saulson, P. R.; Savage, R.; Sazonov, A.; Schilling, R.; Schlaufman, K.; Schmidt, V.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Seader, S. E.; Searle, A. C.; Sears, B.; Seel, S.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shapiro, C. A.; Shawhan, P.; Shoemaker, D. H.; Shu, Q. Z.; Sibley, A.; Siemens, X.; Sievers, L.; Sigg, D.; Sintes, A. M.; Smith, J. R.; Smith, M.; Smith, M. R.; Sneddon, P. H.; Spero, R.; Spjeld, O.; Stapfer, G.; Steussy, D.; Strain, K. A.; Strom, D.; Stuver, A.; Summerscales, T.; Sumner, M. C.; Sung, M.; Sutton, P. J.; Sylvestre, J.; Tanner, D. B.; Tariq, H.; Tarallo, M.; Taylor, I.; Taylor, R.; Taylor, R.; Thorne, K. A.; Thorne, K. S.; Tibbits, M.; Tilav, S.; Tinto, M.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Vallisneri, M.; van Putten, M.; Vass, S.; Vecchio, A.; Veitch, J.; Vorvick, C.; Vyachanin, S. P.; Wallace, L.; Walther, H.; Ward, H.; Ward, R.; Ware, B.; Watts, K.; Webber, D.; Weidner, A.; Weiland, U.; Weinstein, A.; Weiss, R.; Welling, H.; Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems, P. A.; Williams, P. R.; Williams, R.; Willke, B.; Wilson, A.; Winjum, B. J.; Winkler, W.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yoshida, S.; Zaleski, K. D.; Zanolin, M.; Zawischa, I.; Zhang, L.; Zhu, R.; Zotov, N.; Zucker, M.; Zweizig, J.; Akutsu, T.; Akutsu, T.; Ando, M.; Arai, K.; Araya, A.; Asada, H.; Aso, Y.; Beyersdorf, P.; Fujiki, Y.; Fujimoto, M. -K.; Fujita, R.; Fukushima, M.; Futamase, T.; Hamuro, Y.; Haruyama, T.; Hayama, K.; Iguchi, H.; Iida, Y.; Ioka, K.; Ishizuka, H.; Kamikubota, N.; Kanda, N.; Kaneyama, T.; Karasawa, Y.; Kasahara, K.; Kasai, T.; Katsuki, M.; Kawamura, S.; Kawamura, M.; Kawazoe, F.; Kojima, Y.; Kokeyama, K.; Kondo, K.; Kozai, Y.; Kudoh, H.; Kuroda, K.; Kuwabara, T.; Matsuda, N.; Mio, N.; Miura, K.; Miyama, S.; Miyoki, S.; Mizusawa, H.; Moriwaki, S.; Musha, M.; Nagayama, Y.; Nakagawa, K.; Nakamura, T.; Nakano, H.; Nakao, K.; Nishi, Y.; Numata, K.; Ogawa, Y.; Ohashi, M.; Ohishi, N.; Okutomi, A.; Oohara, K.; Otsuka, S.; Saito, Y.; Sakata, S.; Sasaki, M.; Sato, N.; Sato, S.; Sato, Y.; Sato, K.; Sekido, A.; Seto, N.; Shibata, M.; Shinkai, H.; Shintomi, T.; Soida, K.; Somiya, K.; Suzuki, T.; Tagoshi, H.; Takahashi, H.; Takahashi, R.; Takamori, A.; Takemoto, S.; Takeno, K.; Tanaka, T.; Taniguchi, K.; Tanji, T.; Tatsumi, D.; Telada, S.; Tokunari, M.; Tomaru, T.; Tsubono, K.; Tsuda, N.; Tsunesada, Y.; Uchiyama, T.; Ueda, K.; Ueda, A.; Waseda, K.; Yamamoto, A.; Yamamoto, K.; Yamazaki, T.; Yanagi, Y.; Yokoyama, J.; Yoshida, T.; Zhu, Z. -H. Bibcode: 2005PhRvD..72l2004A Altcode: 2005gr.qc.....7081L We report on the first joint search for gravitational waves by the TAMA and LIGO collaborations. We looked for millisecond-duration unmodeled gravitational-wave bursts in 473 hr of coincident data collected during early 2003. No candidate signals were found. We set an upper limit of 0.12 events per day on the rate of detectable gravitational-wave bursts, at 90% confidence level. From software simulations, we estimate that our detector network was sensitive to bursts with root-sum-square strain amplitude above approximately 1-3×10-19Hz-1/2 in the frequency band 700-2000 Hz. We describe the details of this collaborative search, with particular emphasis on its advantages and disadvantages compared to searches by LIGO and TAMA separately using the same data. Benefits include a lower background and longer observation time, at some cost in sensitivity and bandwidth. We also demonstrate techniques for performing coincidence searches with a heterogeneous network of detectors with different noise spectra and orientations. These techniques include using coordinated software signal injections to estimate the network sensitivity, and tuning the analysis to maximize the sensitivity and the livetime, subject to constraints on the background. Title: Present status of large-scale cryogenic gravitational wave telescope Authors: Uchiyama, T.; Kuroda, K.; Ohashi, M.; Miyoki, S.; Ishitsuka, H.; Yamamoto, K.; Hayakawa, H.; Kasahara, K.; Fujimoto, M. -K.; Kawamura, S.; Takahashi, R.; Yamazaki, T.; Arai, K.; Tatsumi, D.; Ueda, A.; Fukushima, M.; Sato, S.; Tsunesada, Y.; Zhu, Zong-Hong; Shintomi, T.; Yamamoto, A.; Suzuki, T.; Saito, Y.; Haruyama, T.; Sato, N.; Higashi, Y.; Tomaru, T.; Tsubono, K.; Ando, M.; Numata, K.; Aso, Y.; Ueda, K. -I.; Yoneda, H.; Nakagawa, K.; Musha, M.; Mio, N.; Moriwaki, S.; Somiya, K.; Araya, A.; Takamori, A.; Kanda, N.; Telada, S.; Tagoshi, H.; Nakamura, T.; Sasaki, M.; Tanaka, T.; Ohara, K. -I.; Takahashi, H.; Nagano, S.; Miyakawa, O.; Tobar, M. E. Bibcode: 2004CQGra..21S1161U Altcode: 2004CQGra..21.1161U The large-scale cryogenic gravitational wave telescope (LCGT) is the future project of the Japanese gravitational wave group. Two sets of 3 km arm length laser interferometric gravitational wave detectors will be built in a tunnel of Kamioka mine in Japan. LCGT will detect chirp waves from binary neutron star coalescence at 240 Mpc away with a S/N of 10. The expected number of detectable events in a year is two or three. To achieve the required sensitivity, several advanced techniques will be employed such as a low-frequency vibration-isolation system, a suspension point interferometer, cryogenic mirrors, a resonant side band extraction method, a high-power laser system and so on. We hope that the beginning of the project will be in 2005 and the observations will start in 2009. Title: Determination of iron(III)- complexing ligands originated from marine phytoplankton using cathodic stripping voltammetry Authors: Hiroshi, H.; Maki, T.; Asano, K.; Ueda, K.; Ueda, K. Bibcode: 2003GeCAS..67R.137H Altcode: No abstract at ADS Title: Current status of large-scale cryogenic gravitational wave telescope Authors: Kuroda, K.; Ohashi, M.; Miyoki, S.; Uchiyama, T.; Ishitsuka, H.; Yamamoto, K.; Kasahara, K.; Fujimoto, M. -K.; Kawamura, S.; Takahashi, R.; Yamazaki, T.; Arai, K.; Tatsumi, D.; Ueda, A.; Fukushima, M.; Sato, S.; Nagano, S.; Tsunesada, Y.; Zhu, Zong-Hong; Shintomi, T.; Yamamoto, A.; Suzuki, T.; Saito, Y.; Haruyama, T.; Sato, N.; Higashi, Y.; Tomaru, T.; Tsubono, K.; Ando, M.; Takamori, A.; Numata, K.; Aso, Y.; Ueda, K. -I.; Yoneda, H.; Nakagawa, K.; Musha, M.; Mio, N.; Moriwaki, S.; Somiya, K.; Araya, A.; Kanda, N.; Telada, S.; Tagoshi, H.; Nakamura, T.; Sasaki, M.; Tanaka, T.; Oohara, K.; Takahashi, H.; Miyakawa, O.; Tobar, M. E. Bibcode: 2003CQGra..20S.871K Altcode: The large-scale cryogenic gravitational wave telescope (LCGT) project is the proposed advancement of TAMA, which will be able to detect the coalescences of binary neutron stars occurring in our galaxy. LCGT intends to detect the coalescence events within about 240 Mpc, the rate of which is expected to be from 0.1 to several events in a year. LCGT has Fabry Perot cavities of 3 km baseline and the mirrors are cooled down to a cryogenic temperature of 20 K. It is planned to be built in the underground of Kamioka mine. This paper overviews the revision of the design and the current status of the R&D. Title: Detection of bacterial population contributing to organoarsenic decomposition Authors: Maki, T.; Hasegawa, H.; Wachi, S.; Ueda, K. Bibcode: 2003GeCAS..67Q.269M Altcode: No abstract at ADS Title: LCGT Project Observing Gravitational Wave Events at 240 Mpc Authors: Kuroda, K.; Ohashi, M.; Miyoki, S.; Uchiyama, T.; Ishitsuka, H.; Yamamoto, K.; Hayakawa, H.; Kasahara, K.; Fujimoto, M. K.; Kawamura, S.; Takahashi, R.; Yamazaki, T.; Arai, K.; Tatsumi, D.; Ueda, A.; Fukushima, M.; Sato, S.; Nagano, S.; Tsunesada, Y.; Zhu, Z. H.; Shintomi, T.; Yamamoto, A.; Suzuki, T.; Saito, Y.; Haruyama, T.; Sato, N.; Higashi, Y.; Tomaru, T.; Tsubono, K.; Ando, M.; Takamori, A.; Numata, K.; Aso, Y.; Ueda, K. I.; Yoneda, H.; Nakagawa, K.; Musha, M.; Mio, N.; Moriwaki, S.; Somiya, K.; Araya, A.; Kanda, N.; Telada, S.; Tagoshi, H.; Nkakmura, T.; Sasaki, M.; Tanaka, T.; Ohara, K.; Takahashi, H.; Miyakawa, O.; Tobar, M. E. Bibcode: 2003ICRC....5.3103K Altcode: 2003ICRC...28.3103K The large-scale cryogenic gravitational wave telescope (LCGT) project was originally planned in 1998 and was revised in 2002. The design concept of the LCGT was to raise the baseline of TAMA by one order and to decrease the thermal noise of the mirrors by one order by using cryogenics and by locating LCGT at an underground site in Kamioka mine. Two sets of interferometers will be constructed in the same tunnel in order to reject possible fake events. Title: Japanese large-scale interferometers Authors: Kuroda, K.; Ohashi, M.; Miyoki, S.; Ishizuka, H.; Taylor, C. T.; Yamamoto, K.; Miyakawa, O.; Fujimoto, M. -K.; Kawamura, S.; Takahashi, R.; Yamazaki, T.; Arai, K.; Tatsumi, D.; Ueda, A.; Fukushima, M.; Sato, S.; Shintomi, T.; Yamamoto, A.; Suzuki, T.; Saito, Y.; Haruyama, T.; Sato, N.; Higashi, Y.; Uchiyama, T.; Tomaru, T.; Tsubono, K.; Ando, M.; Takamori, A.; Numata, K.; Ueda, K. -I.; Yoneda, H.; Nakagawa, K.; Musha, M.; Mio, N.; Moriwaki, S.; Somiya, K.; Araya, A.; Kanda, N.; Telada, S.; Sasaki, M.; Tagoshi, H.; Nakamura, T.; Tanaka, T.; Ohara, K. Bibcode: 2002CQGra..19.1237K Altcode: No abstract at ADS Title: Combined half-collision approach to the nonadiabatic transitions in the Hg(6s6p3P2)-N2, CO cold and thermal quasimolecules Authors: Ohmori, K.; Kurosawa, T.; Amano, K.; Chiba, H.; Okunishi, M.; Ueda, K.; Sato, Y.; Devdariani, A. Z.; Nikitin, E. E. Bibcode: 1999AIPC..467..389O Altcode: 1999sls..conf..389O No abstract at ADS Title: First observation of the bound Hg-rare-gas complex in the dark c-state using free-bound-bound 2-step laser excitation Authors: Amano, K.; Ohmori, K.; Kurosawa, T.; Chiba, H.; Okunishi, M.; Ueda, K.; Sato, Y.; Devdariani, A. Z.; Nikitin, E. E. Bibcode: 1999AIPC..467..390A Altcode: 1999sls..conf..390A No abstract at ADS Title: Far-wing line-shape study of the inter-excited-state transitions of the Hg-Ar and Hg-Ne collisional quasimolecules Authors: Amano, K.; Ohmori, K.; Okunishi, M.; Chiba, H.; Ueda, K.; Sato, Y. Bibcode: 1999AIPC..467..391A Altcode: 1999sls..conf..391A No abstract at ADS Title: Far-wing line-shape study of the collision-induced c<--X transition in Hg-rare-gas quasimolecules Authors: Sato, Y.; Kurosawa, T.; Ohmori, K.; Chiba, H.; Okunishi, M.; Ueda, K.; Devdariani, A. Z.; Nikitin, E. E. Bibcode: 1999AIPC..467..388S Altcode: 1999sls..conf..388S No abstract at ADS Title: Accurate measurement of the radius of curvature of a concave mirror and the power dependence in a high-finesse Fabry-Perot interferometer Authors: Uehara, N.; Ueda, K. Bibcode: 1995ApOpt..34.5611U Altcode: We describe the accurate measurement of the radius of curvature of a concave mirror in a Fabry-Perot interferometer with a finesse of 78,100. The radius of curvature of the concave mirror is determined by measuring the free spectral range and the transverse-mode range with the frequency response functions. The radii of curvature at two orthogonal (x and y) axes on the mirror surface resulting from the polishing nonisotropy were accurately measured to be rx = 1008.46 mm and ry = 1006.94 mm, respectively, with an accuracy of 8 \times 10 -5. This accuracy is the best to our knowledge. The power dependence of the radii of curvature to the cavity internal intensity at a steady state was measured to be drx/dI c = +60 mu m/(MW/cm2) at the x axis and dr<sub>y/dI<sub>c = +47 mu m/(MW/cm/2) at the y axis to an intensity of 2.1 MW/cm2. Title: Behavior of Japanese tree frogs under microgravity on MIR and in parabolic flight Authors: Izumi-Kurotani, A.; Yamashita, M.; Kawasaki, Y.; Kurotani, T.; Mogami, Y.; Okuno, M.; Oketa, A.; Shiraishi, A.; Ueda, K.; Wassersug, R. J.; Naitoh, T. Bibcode: 1994AdSpR..14h.419I Altcode: 1994AdSpR..14..419I Japanese tree frogs (Hyla japonica) were flown to the space station MIR and spent eight days in orbit during December, 1990/1/. Under microgravity, their postures and behaviors were observed and recorded. On the MIR, floating frogs stretched four legs out, bent their bodies backward and expanded their abdomens. Frogs on a surface often bent their neck backward and walked backwards. This behavior was observed on parabolic flights and resembles the retching behavior of sick frogs on land- a possible indicator of motion sickness. Observations on MIR were carried out twice to investigate the frog's adaptation to space. The frequency of failure in landing after a jump decreased in the second observation period. After the frogs returned to earth, readaptation processes were observed. The frogs behaved normally as early as 2.5 hours after landing. Title: High power LD-pumped solid-state laser. Authors: Ueda, K. Bibcode: 1991AstHe..84..126U Altcode: No abstract at ADS