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1 Introduction

THIS introduction to solar spectrum formation starts with microscopic ra-
diation processes, macroscopic radiation quantities, the transport equa-

tion, and its formal solution for a given source function. The latter applies
when LTE (Local Thermodynamic Equilibrium) holds, because the source
function then simply equals the Planck function. In that case the emergent
radiation can be attributed directly and simply to the local gas temperature
where it originates. Much of the visible and infrared solar spectrum can be
so explained.

However, most strong lines and ionization edges in the solar spectrum are
much influenced by NLTE scattering. In the outer layers of the solar atmo-
sphere the probability that the detected photon was scattered towards you
becomes much larger than that it came to you directly after its creation from
the thermal pool as LTE supposes. I treat NLTE spectrum formation by us-
ing idealized “two-level” atoms to illustrate the effect of such scattering. It
makes strong solar-spectrum features form non-locally. And more complex,
warranting explanation as given here.

Of course, all electromagnetic radiation is non-local; it conveys energy and in-
formation at the speed of light. In particular from distant objects to us, being
our principal non-textile information carrier – with its spectral lines an infor-
mative encoder of physical circumstances within the distant object. I mean
non-local here in the sense that the detected radiation is not characteristic
for the location where it is seen coming from. Often, such non-locality arises
from scattering. In a fog, one sees car headlight photons long before one sees
the car. These photons are seen to come from the fog, but they were made
in the car lights and they convey headlight radiation properties, not those of
the fog. A spectrum of your nose in daylight, even in cloudy weather, con-
tains thousands of lines made in the Sun, not by your nose, and represents a
color temperature of 6000 K rather than 300 K. Most lines in the spectrum of
the blue or cloudy sky are from the Sun, not from molecules in the air. And
so, a spectral line from the Sun itself may also originate from another solar
location than where it apparently comes from.

Conversion of photons may also happen, giving them the signature of a dif-
ferent spectral regime. The classical example is the bright Hα Balmer line
from cold planetary nebulae. It portrays the presence of a hot, unseen cen-
tral star that radiates mostly in the ultraviolet. The stellar Lyman-continuum
photons ionize hydrogen atoms in the nebula, which subsequently recom-
bine and emit Balmer photons in de-excitation cascades. These cold-nebula
Balmer photons betray the existence of a hot central star.

Photon scattering and photon conversion occur in the Sun in many ways.
Modern computers and solution methods make it possible to compute their
effects in realistic detail. After the foundations were laid (mostly at Harvard
and Boulder) in the 1960s and 1970s, numerical methods were developed to
compute and analyze solar and stellar spectra in great detail. This text is a
start-off tutorial for the underlying physics.
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2 Solar radiation at the particle level

2.1 Solar radiation processes

APART from magnetodynamic complexities, the solar atmosphere repre-
sents a relatively simple medium: an ideal gas, mostly made up by

hydrogen. No fluids or solids. A bit of helium, and just a sniff of all other
elements.

Apart from magnetic complexities, the solar radiation that we receive is gov-
erned by only a few processes:

– bound-free (bf) ionization and recombination, contributing continua.
Those of H− , hydrogen atoms with an extra electron, make the gas in the
solar photosphere much more opaque in the visible and infrared than the
terrestrial air surrounding us. The extra electrons come from abundant
“metals” with lower ionization energy than the 13.6 eV of hydrogen: Mg,
Si, Fe, Al. Their bound-free ionization, in the upper photosphere mostly
by ultraviolet radiation and therefore out of LTE, frees electrons to pro-
duce H− at a density of 10−4 of the hydrogen density, set by the combined
abundance of these electron-donor elements;

– free-free (ff) interactions. H− ff (neutral hydrogen atoms encountering free
electrons) dominates the solar infrared continuum beyond the H− ioniza-
tion limit at λ = 1.6 µm. Hydrogen ff (free protons interacting with free
electrons) dominates in the sub-mm and mm continua (in which the radi-
ation escapes higher up in the atmosphere where hydrogen is ionized);

– Rayleigh scattering of photons off neutral hydrogen atoms. It contributes
continuous opacity especially in the violet (as in our blue sky) and near-
ultraviolet because its cross-section scales with λ−4;

– Thomson scattering of photons off free electrons, important only where
hydrogen is ionized (and therefore in the atmospheres of hot stars that
contain no H− ). Its small cross-section (6.7 × 10−25 cm2 electron−1) is con-
stant with frequency;

– bound-bound (bb) interactions producing spectral lines. To the Sun these
are most important as radiation-loss agents, especially Mg II h&k and
Ca II H&K in the chromosphere, the hydrogen Lyman lines in the tran-
sition region from there to the corona, and numerous high-ion metal lines
in the corona. To us they are important because they represent informative
diagnostics of the physical conditions where they form.

2.2 Bound-bound process combinations

Thomson and Rayleigh scattering are always scatterings: photon in, the same
photon out (apart from a Dopplershift) in a new direction. Isotropic redirec-
tion is a good approximation. Such scattering can put photons into the direc-
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tion to the observer and so contribute to the local gas emissivity, but it can
also redirect photons out of the beam of interest and so contribute extinction;

In contrast, ff interactions are always collisional, converting kinetic energy
into a photon or vice-versa in an encounter with another particle. Assuming
validity of the Maxwell distribution (usually the case in stellar atmospheres),
this represents exchange between the local thermal pool and the radiation
field.

The bb and bf interactions can be of both type. They can go per photon (bb
absorption and bf photoionization up; spontaneous plus induced bb emis-
sion and radiative bf recombination down), but they can also, instead, go
per collision with another particle (collisional excitation and ionization up,
collisional de-excitation and three-body recombination down).

Let us discuss various bb pair combinations:

– collisional excitation up, collisional de-excitation down. No photon in-
volved. Such pairs maintain thermal population ratios between the upper
and lower levels;

creation

amplification

destruction

scattering

conversion

– collisional excitation up, spontaneous radiative de-excitation (photon
emission) down. This combination converts kinetic energy into radiation.
With the Maxwell distribution this represents thermal photon creation;

– collisional excitation up, induced radiative de-excitation (photon emis-
sion) down. Similar photon creation, but the newly created photon comes
along with the stimulating photon;

– radiative excitation up, collisional de-excitation down. Thermal photon
destruction: the photon energy goes into the thermal pool;

– radiative excitation up, radiative de-excitation down (either spontaneous
or induced). This is scattering, in principle comparable to Rayleigh and
Thomson scattering but with an additional complexity: the possibility of
a slight frequency change not due to Dopplershift but to losing coherency.
In coherent scattering the re-emitted photon has the same frequency as the
exciting one. In complete redistribution (CRD) the de-excitation is a fresh
sample of the frequency distribution of the transition probability (the ex-
tinction “profile”). These are the extreme options; in partial redistribution
(PRD) the actual frequency redistribution is evaluated. Most solar lines
are well described by CRD, but the Lyman lines, Mg II h&k, Ca IIH&K
and some others require PRD evaluation;

– radiative excitation up, radiative de-excitation down but into another
level. This describes photon conversion from one wavelength domain to
another. Similar multi-level complexity arises when the excited atom is
subsequently ionized (radiatively or per collision), etc. To avoid such com-
plexities, radiative-transfer articles and textbooks usually limit the discus-
sion to “two-level” atoms in which whatever goes up has to come down
in the same transition, without crosstalk to other wavelength domains.

The same paired combinations as these bb ones can occur for bf transitions,

3
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Figure 1: All up-down two-level-atom sequences involving photons in a given beam. The
beam direction is to the right. The upper three pairs split the extinction of photons from the
beam between collisional destruction and spontaneous and induced scattering. The lower
four pairs split the emission of photons into the beam between spontaneous and induced
thermal creation and scattering. The induced scattering pairs (c) and (g) both use a beam
photon and one with arbitrary direction and so cancel against each other.

with as differences that the frequency range is much wider (an extended edge
rather than a narrow line) and that in bound-free scattering the frequency
redistribution over the edge profile is always complete (since the electron that
is caught for recombination represents a fresh sample of the kinetic energy
distribution).

2.3 Two-level-atom equilibria

For two-level atoms, each extinction (radiative excitation) is followed either
by collisional de-excitation (photon destruction) or radiative de-excitation
(photon scattering). This split depends on what happens after the initial ex-
tinction. Figure 1 details such splitting for the extinction of photons in a given
beam and for the emission of photons into that beam. It shows the full set of
up-down pairs involving photons:

(a) thermal extinction = radiative excitation by a beam photon followed by
collisional de-excitation,

(b) spontaneous scattering extinction = radiative excitation by a beam pho-
ton followed by spontaneous de-excitation,

(c) induced scattering extinction = radiative excitation by a beam photon
followed by induced de-excitation,

(d) spontaneous thermal emission = collisional excitation followed by spon-
taneous emission of a photon into the beam,

(e) induced thermal emission = collisional excitation followed by induced
emission of a photon into the beam,

(f) spontaneous scattering emission = radiative excitation followed by spon-
taneous emission of a photon into the beam,
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(g) induced scattering emission = radiative excitation followed by induced
emission of a photon into the beam.

The type of equilibrium that may be attained in a two-level-atomgas depends
on which of these pairs dominate:

– LTE = large collision frequency, small photon losses

– up: mostly collisional = thermal creation (d + e);

– down: mostly collisional = large destruction probability (a);

– photon travel: short distances only (the photons acting as “honorary
gas particles”), or only a negligible leak of escaping photons.

This simple equilibrium holds verywell in the solar interior and is a good
approximation for continua and lines from the lower photosphere. The
atomic level populations are given by the Boltzmann and Saha equations,
the source function by the Planck function. Treated in the first half of this
text;

– NLTE = statistical equilibrium or time-dependent populations, large photon loss
with much scattering

– photon travel: non-local radiation important;

– much scattering, with coherent or complete or partial frequency re-
distribution;

– multi-level processes: photon conversion, sensitivity transcription;

– time dependence: ionization/recombination speed imbalances.

Statistical equilibrium (meaning time-constant atomic level populations)
may still apply in the upper photosphere, but in the chromosphere and
transition region the populations are governed by time-dependent ion-
ization and recombination, especially for helium and hydrogen. Source
functions are often dominated by the radiation field, for multi-level in-
terlocking also at other frequencies. Treated in the second half of this
text;

– coronal equilibrium = hot, tenuous

– up: only collisional = thermal creation (only d);

– down: only spontaneous (only d);

– photons either escape, or drown in the Sun, or scatter to otherwave-
lengths in the H I, He I, or He II bf edges.

This simple equilibrium describes coronal EUV radiation from highly-
ionized metals very well. Each observed photon is thermally created,
but LTE does not apply because the corona is optically thin. Note that
the dependencies on temperature and density are the reverse of those in
Boltzmann-Saha LTE equilibria: the degree of ionization is a function of
temperature only, the degree of excitation depends on both the tempera-
ture and the electron density. Dielectronic recombination (in which part
of the energy of the incoming electron is used to excite an already bound
electron) is important. Not treated in this text.
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Figure 2: Cones (“pencils”) of radiation. Photons are emitted by a circular surface with area
∆A around P1 in all directions. The photons that leave a particular point of ∆Awith directions
within solid angle ∆Ω around direction P1P2 constitute a cone of radiation emerging from
that point (top). The cones from all such points on ∆A merge into a larger, truncated cone
with opening angle ∆Ω (middle). Likewise for beams of parallel rays from elsewhere that
pass through A1 with the same opening angle ∆Ω (bottom). The angle is the same in the
propagation direction towards the right and in the line-of-sight direction towards the left. The
amount of energy in the cone is proportional to ∆A and ∆Ω, and also to the duration ∆t and
the frequency bandwidth ∆ν of the measurement. After Figure 2-2 of Novotny (1973).
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Figure 3: Demonstration that intensity does not vary with travel distance in vacuum. Con-
sider all photons within frequency bandwidth ∆ν that travel from left to right first through
sampling area ∆A1 at P1 and then as well through sampling area ∆A2 at P2 during the mea-
surement duration ∆t (retard that over the photon travel time r/c from P1 to P2 if you want to
be finicky). One such photon path is drawn. The first sample sees, according to (1), an amount
of energy ∆E1 ≡ I1 cos θ1 ∆A1 ∆t∆ν∆Ω1. The second sees ∆E2 ≡ I2 cos θ2 ∆A2 ∆t∆ν∆Ω2. The two
spread angles are ∆Ω1 = cos θ2 ∆A2/r

2 and ∆Ω2 = cos θ1 ∆A1/r
2, each seeing the other on its sky.

Entering these makes the two expressions the same. Make all ∆′s sufficiently small that you
can believe these proportionalities. Since the same photons are measured at both locations,
∆E1 = ∆E2 . Since the two expressions are the same, the two proportionality factors I1 and I2

must be identical.

3 Macroscopic radiation quantities

3.1 Intensity, mean intensity, flux

THE intensity Iν is the coefficient of proportionality in:

Ωd

dA

l

r

θ

n

 (0,0,0)

dEν ≡ Iν(~r,~l, t) (~l.~n) dA dt dν dΩ (1)

= Iν(x, y, z, θ, ϕ, t) cos θ dA dt dν dΩ,

where dEν is the amount of energy that is transported through area dA, at

ν+∆νν

νd

the location ~r and with ~n the normal to dA, during the time interval between
t and t + dt, in the frequency bandpass between ν and ν + dν and in the solid

angle dΩ around direction ~l. This definition expresses the heuristic insight
that the measured amount of energy increases linearly with the detector area,
measurement duration, spectral bandwidth, and amount of beam spreading,
at least in the infinitesimal limits ∆→ d where all these sampling dimensions
are sufficiently small. Better names for Iν are surface brightness and specific
intensity. Dimension: [erg s−1 cm−2 Hz−1 ster−1] or [W m−2 Hz−1 ster−1]. This
is the monochromatic intensity; the total intensity is I ≡

∫ ∞
0

Iν dν.

Intensity specifies the flow of energy along a beam of radiation both at de-
parture and at arrival. It describes the radiation along a “ray” connecting the
departure and arrival points – for example the solar origin and our detector.
A single, infinitely thin ray doesn’t contain energy, so we speak of a bundle or
beam of rays. A “pencil of radiation” has angular spreading over a cone ∆Ω
around the ray direction. The rays travel towards us in the direction of prop-
agation; their spreading is also measured when looking backwards along the
line of sight. See Figure 2.

r

r

l

A

α

Ω

The measurement per steradian and per Hz are less intuitive than the mea-
surement per cm2 and per second, where the latter get rid of the actual de-
tector size and measurement duration. A cone of rays spreads, but since in-
tensity is measured per unit of spreading (a steradian being the spherical
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analogue to the circular radian), the beam spreading does not affect its inten-
sity, at least not in vacuum where there is no matter present to absorb or emit
photons. The solar intensity is the same where it escapes at the solar surface
and where it hits you on the beach, or in the focal plane of your telescope1.See
Figure 3. This property makes intensity the macroscopic quantity of choice
to formulate radiative transfer with, i.e., to describe processes by which mat-
ter and photons interact. Using intensity ensures that only such interactions
affect the measure of radiation, not the distance over which it travels.

λ+∆λλwavelength

ν+∆ν ν frequency

∆E Conversion to wavelength for the measurement per unit of bandwidth: Iλ =
Iν c/λ

2, with dλ and dν both defined positive for increase.

y
x

z

θ

ϕ  

A∆
sinθ ∆ϕ

∆θ

 (0,0,0)r

∆Ω

θ

ln

The mean intensity Jν is defined as:

Jν(~r, t) ≡
1

4π

∫

Iν dΩ =
1

4π

∫ 2π

0

∫ π

0

Iν sin θ dθ dϕ, (2)

i.e., intensity averaged over all directions. Dimension: [erg cm−2 s−1 Hz−1

ster−1], just as Iν (averaging a quantity does not change its nature). This quan-
tity is of interest to the atoms in the atmosphere as specifying the availability
of photons with the proper energy for photo-excitation, regardless of where
they come from. For axial symmetry with the z-as (θ ≡ 0) along the axis of
symmetry (only vertical stratification, “plane parallel layers”), with

dΩ = 2π sin θ dθ = −2π dµ (3)

and

Iνθ

z = h µ ≡ cos θ (4)

we find:

Jν(z) =
1

4π

∫ π

0

Iν(z, θ) 2π sin θ dθ =
1

2

∫

+1

−1

Iν(z, µ) dµ. (5)

ν
F

+

F
ν
-

The monochromatic flux Fν is:

Fν(~r, ~n, t) ≡
∫

Iν cos θ dΩ =

∫ 2π

0

∫ π

0

Iν cos θ sin θ dθ dϕ. (6)

Dimension: [erg s−1 cm−2 Hz−1] or [W m−2 Hz−1]. This is the net flow of
energy per sec through an area of one cm2 which is placed at ~r perpendicular
to direction ~n, with:

Fν =
∫ 2π

0

∫ π/2

0

Iν cos θ sin θ dθ dϕ +

∫ 2π

0

∫ π

π/2

Iν cos θ sin θ dθ dϕ

=

∫ 2π

0

∫ π/2

0

Iν cos θ sin θ dθ dϕ −
∫ 2π

0

∫ π/2

0

Iν cos(π − θ) sin(π − θ) d(π − θ) dϕ

≡ F +ν − F −ν , (7)

1Assuming loss-free optics that only affect the cone opening angle. But even with a perfect
telescope you cannot observe the intensity of a distant star when its angular extent is below the
resolving power. From unresolved stars we measure only irradiance, the flux at the telescope
given by (6) but limiting the angular integration to the stellar image.
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with the upward flux F +ν and the downward flux F −ν both positive. Isotropic
radiation has F +ν = F −ν = πIν en Fν = 0. For axial symmetry:

Fν(z) = 2π

∫ π

0

Iν cos θ sin θ dθ

= 2π

∫ 1

0

µIν dµ − 2π

∫ −1

0

µIν dµ

= F +ν (z) − F −ν (z). (8)

The net flux is of interest to the star in maintaining equilibrium. When the
whole energy flux is transported by radiation, radiative equilibrium holds
when dF /dz = 0, with F ≡

∫

Fν dν. Flux is often used by astronomers as the
outward energy stream that leaves the stellar surface. And by observers as
the energy stream from the (unresolved) object hitting their detector. These
varied uses imply that one must carefully define where the measurement lo-
cation is and what the positive direction is.

3.2 Emissivity, extinction, source function

The monochromatic emissivity jν is per cm
3 the constant of proportionality in:

d

d
d

Iν

V

s
A

dEν = jν dV dt dν dΩ, (9)

with dEν the energy which is added to the local radiation by local genera-
tion of photons, in a volume dV , per bandwidth dν, during a period dt and
in the directions dΩ. Dimension jν: [erg cm−3 s−1 Hz−1 ster−1]. This is an-

Iν

Ωd

s = D

dA

s = 0 s s +   s∆

other heuristic truth for sufficiently small (∆ → d) sampling extents. We can
also define jν as the amount of intensity that is added along a beam by local
emission:

dIν(s) = jν(s) ds. (10)

The extinction coefficient may (just as the emissivity) be defined per particle,
per cm, or per gram.
Per particle:

dIν = −Iν σν n ds (11)

with σν the monochromatic extinction coefficient = “cross-section” per parti-
cle ([cm2]) and n the density of the absorbing particles ([cm−3]).
Per unit of path length:

dIν = −Iν αν ds (12)

with αν the monochromatic linear extinction coefficient ([cm−1]), identical to
cross-section per unit of volume ([cm2 cm−3] = [cm−1]).
Per unit of mass:

dIν = −Iν κν ρ ds (13)

with κν themonochromatic mass extinction coefficient = cross-section per unit
of mass ([cm2 g−1]) and ρ the mass density ([g cm−3]).
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Physicists are interested in single particles and use σν. Astronomers are in-
terested in gas opacities and prefer κν. Here our interest is in the transport of
radiation, so I follow Rybicki & Lightman and use αν.

The source function is:
S ν ≡ jν/αν. (14)

Dimension: [erg cm−2 s−1 Hz−1 ster−1], the same as intensity. As the name
suggests it measures the energy of new photons in the given beam, normal-
ized by the local extinction. At a given frequency multiple processes may
contribute to the local emission and/or extinction. In that case:

S total
ν =

∑

jν
∑

αν
, (15)

as for the combination of continuum and line processes (Figure 7).

3.3 Radiation transport equation

The equation for radiation transfer is:

s+∆s

j
ν

Iν

Ds0

dIν(s) = Iν(s + ds) − Iν(s) = jν(s) ds − αν(s) Iν(s) ds (16)

or
dIν

ds
= jν − αν Iν (17)

with s measured along the beam. This equation expresses the conservation
of intensity along a beam in vacuum. It is only changed by matter–radiation
interactions specified by jν and αν.

The monochromatic optical path length dτν of a thin layer with thickness ds
along the beam is

dτν(s) ≡ αν(s) ds, (18)

the monochromatic optical thickness of a layer with geometrical thickness D is:

τν(D) =

∫ D

0

αν(s) ds, (19)

again measured along the beam. For pure extinction:

ντ

e−τν

Iν

νI (0)

0 1 2 3 4

1.0

0.0

0.5

Iν(D) = Iν(0) e−τν(D). (20)

The transition between little and much extinction lies at the 1/e value, i.e.,
at optical thickness τν = 1. A layer is called optically thick for τν(D) > 1 and
optically thin for τν(D) < 1. The mean photon free path in optical units <τν(s)> is:

<τν(s)> ≡
∫ ∞

0
τν(s) e−τν(s) dτν(s)

∫ ∞
0

e−τν(s) dτν(s)
= 1, (21)
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Figure 4: Emergent intensity Iν(D) from a homogeneous object against its optical thickness
τν(D), as given by (25). Optically thin objects without impinging radiation in the beam di-
rection have Iν = τν(D) S ν (lowest curve with dashed limit). If a background intensity Iν(0)

illuminates the object from behind in the beam direction, there is enhancement of the inten-
sity for Iν(0) < S ν (middle curve), reduction for Iν(0) > S ν (highest curve). Iν(D) approaches S ν

for optical thickness τν(D) > 1.

and the mean photon free path in geometrical units is, if the medium is homoge-
neous:

lν =
<τν(s)>

αν
=

1

αν
=

1

κν ρ
. (22)

In an inhomogeneous medium this is a representative local mean free path.

With τν and S ν the transport equation in differential form becomes:

dIν

dτν
= S ν − Iν, (23)

from which the transport equation in integral form follows:

Iν(τν) = Iν(0) e−τν +

∫ τν

0

S ν(tν) e−(τν−tν) dtν. (24)

For a homogeneous object with constant S ν(s):

IνSν
D

0

Iν(D) = Iν(0) e−τν(D)
+ S ν

(

1 − e−τν(D)
)

. (25)

If it is optically thick, then
Iν(D) ≈ S ν (26)

but if it is optically thin, then

Iν(D) ≈ Iν(0) + [S ν − Iν(0)] τν(D). (27)

These results are illustrated in Figures 4 and 5. If the homogeneous object is
optically thick, you observe its source function irrespective of the nature of
the extinction coefficient. It won’t show spectral lines.
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Figure 5: Spectral line formation in a homogeneous object with constant and equal continuum
source function and line source function, as given by (25)–(27). An example would be an
isothermal cloud obeying LTE. If the cloud is optically thick it shows no spectral lines since
the same source function is sampled whether the thickness is even larger at the line frequency
or less so in the continuum adjacent to the line. If the cloud is optically thin the additional line
extinction enhances the positive or negative contribution by the cloud to the irradiation from
behind. Right: when the cloud becomes optically thick at line center, the intensity saturates to
the source function of the cloud.

The monochromatic optical depth is the optical pathlength along the line of
sight, against the direction of photon propagation, from outside the object
into it:

Iν

τν

0

0

s D

0

s+∆s

τν

Iν

τν

zh

dτ′ν(s) ≡ −αν(s) ds. (28)

It is used instead of path length for objects that are hugely thick, such as
stars, where it makes more sense to describe how deep one’s view penetrates
(i.e., where the photons come out) then to count optical thickness from the
backside.

In the case of axial symmetry (plane-parallel layers) the radial optical depth is
used more commonly, also here. With the z-axis along the axis of symmetry
the radial optical depth of a location with z = z0 is:

τ′ν(z0) =

∫ z0

∞
αν dz. (29)

It represents the opaqueness increase along a line of sight perpendicular to
the plane layers, with your eye in z = ∞. In axial symmetry and along a
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Figure 6: The Eddington-Barbier approximation. It does not mean that all observed photons
escape at optical depth τ′ν = 1, even though this is often said (“the photons come from τ = 1”).
The integrand S ν exp (−τ′ν) extends over a broad domain in τ′ν, from the surface with τ′ν = 0 to
τ′ν ≈ 10 where the factor exp (−τ′ν) cuts it off. Photons escape from this entire slab; collectively
they represent the value of the source function at τ′ν = 1 in radial (vertical) viewing. In slanted
viewing the characteristic path length ∆τ=1 must bemeasured along the line of sight, yielding
τ′ν = µ as characteristic radial optical depth.

slanted line of sight with µ = cos θ the inwards directed (µ < 0) intensity is,
using t′ν =

∫ z

∞ αν(z
′) dz′ as integration variable:

I−ν (τ′ν, µ) = −
∫ τ′ν

0

S ν(t
′
ν) e−(t′ν−τ′ν)/µ dt′ν/µ (30)

and the outwards directed (µ > 0) intensity is:

I+ν (τ′ν, µ) = +

∫ ∞

τ′ν

S ν(t
′
ν) e−(t′ν−τ′ν)/µ dt′ν/µ. (31)

The emergent intensity is:

ντ

Sν

0 1 2 3 4
0

−τνe

I+ν (τ′ν=0, µ) =

∫ ∞

0

S ν(t
′
ν) e−t

′
ν/µ dt′ν/µ. (32)

With

S ν(τ
′
ν) =

∞
∑

n=0

anτ
′
ν
n
= a0 + a1τ

′
ν + a2τ

′
ν

2
+ ..., (33)

and
∫ ∞

0
xn e−x dx = n! one finds that:

I+ν (τ′ν=0, µ) = ao + a1µ + 2a2µ
2
+ . . . + n! anµ

n, (34)

and the very important Eddington-Barbier approximation:

I+ν (τ′ν=0, µ) ≈ S ν(τ
′
ν = µ), (35)

which holds exactly if S ν varies linearly with τ′ν. The radiation which exits
at the surface is then characterized by the conditions at one free path length
below the surface. See Figure 6.

Ιν νS

ντ
0

210

+

We conclude that a knowledge of the local source function S ν(τ
′
ν) is required

in order to interpret the radiation from an object, both for the optically thick
case with

I+ν ≈ S ν(τ
′
ν = 1) (36)
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Figure 7: Combination of continuous and line extinction into the source function. The spectral
line at left represents a narrow-band addition to the extinction at the line frequency. The total
source source at right is the extinction-weighted combination given by (39).

and for the optically thin case with

Iν(D) ≈ Iν(0) + [S ν − Iν(0)] τν(D). (37)

In each case the τ scaling must be known as well. For the thick case, it sets
the sampling depth at which the emergent radiation is characterized by the
source function (Figure 6). In the thin case, the emergent emission or absorp-
tion scales linearly with the optical thickness of the object (Figure 5).

3.4 Spectral lines

ν
0

αν

line

0
ν

A spectral line is always the result of a discrete bound-bound (bb) transition,
i.e., of an extra process above and beyond the continuous processeswhich op-
erate at the relevant frequency. A “line” is not an infinitely sharp δ-function
but has a narrow distribution in frequency. The line extinction coefficient it-
self has such shape, the “extinction profile” which is somewhat smeared out
in frequency via various types of line broadening (Section 5.3). This statisti-
cal distribution is bell-shaped: a Gaussian core with broad wings. It affects
the emergent line profile, but the latter is not equal to it (unless the object is
optically thin and homogeneous as in Figure 5).

The existence of a bb transition probability at a given frequency has two con-
sequences:

– the bb process provides an extra possibility for extinction, superimposed
on the continuous extinction: at the frequency of a spectral line the ex-
tinction coefficient in the medium is larger than for the adjacent frequen-
cies;

– the source function associated with the bb process may differ from that
of the continuous processes at that frequency.

Taken together, these two possibilities can lead to a spectral line that is ob-
servable in the emergent intensity, either in emission or in absorption with
respect to the continuous background.
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The bb extinction peak contributes to the total optical thickness:

τν =

∫

αν ds =

∫

αcont
ν ds +

∫

αline
ν ds, (38)

The source functions for the bb and the continuum processes are respectively:

S l
ν =

jline
ν

αline
ν

and S c
ν =

jcont
ν

αcont
ν

,

and the total source function is the opacity-weighted combination of these
process source functions (Figure 7):

S tot
ν =

∑

jν
∑

αν
=

jcont
ν + jline

ν

αcont
ν + αline

ν

=
αcont
ν S cont

ν + αline
ν S line

ν

αcont
ν + αline

ν

. (39)

The existence of extra bb processes also increases the emissivity jν but we
choose the combination extinction + source function in place of extinction +
emission to describe line formation because this is a more orthogonal choice.
Extinction measures the local processes that govern opacity; the source func-
tion measures quantities that govern the production of new photons into the
beam. For example, when LTE holds with S cont

ν = S line
ν = Bν(T ) there is no bb

signature whatsoever in the total source function.

ν0

j
ν

Sν

αν

ν

4 LTE solar spectrum formation

4.1 LTE solar line formation

IN an optically thick inhomogeneous medium in which the source function
is not everywhere the same, the influence of the extra bb processes on the

extinction mixes with the influence of the extra bb processes on the source
function. The extra line extinction provides for a shallower depth of forma-
tion of the emergent intensity at the line wavelength than for the adjacent
continuum. The source function at the line wavelength is sampled at a shal-
lower level; it will in general be different there from its value at the larger
depth of formation of the emergent continuum intensity.

We now examine the case that the continuum source function S c
ν and the line

source function S l
ν are everywhere equal to each other, but vary along with

depth in the medium. We so focus on the effect of the extra bb extinction, and
neglect the effect a line may have on the total source function. This descrip-
tion is applicable to LTE line formation, because then S l

ν = S c
ν = Bν(T ).

The effect of the extra line extinction is that the location of the optical depth
τ′ν = 1, which is representative of the escaping photons, lies farther outward
at the line frequency than for the continuum on each side of the line in the
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Figure 8: LTE line formation in the solar atmosphere. The depth-dependent extinction coeffi-
cient (first panel) determines the optical depth scales (top center). They differ per frequency,
depending on the extinction profile. Generally extinction decreases roughly exponentially
with height (h) with the diminishing density of the absorbing particles, so that log τ′ν decreases
approximately linearly with h at each frequency. The larger the extinction αν, the farther out
the Eddington-Barbier representative height of formation log τ′ν = 0. The emergent intensity
at each frequency (lower left) maps the temperature at this sampling height per frequency
folded through the temperature dependence of the Planck function (bottom right; linear in
the Rayleigh-Jeans domain and exponential in the Wien domain). When the temperature di-
minisheswith height, absorption lines result. Emission lines are formedwhen the temperature
increases outward.

spectrum. In other words: at the line frequency your sight penetrates less
deep into the medium because extra bb extinction blocks your view.

From an optically thick medium in which S c
ν = S l

ν one observes spectral
lines only if the source function varies with depth, so that sampling differ-
ent depths results in different intensities. In Figure 8 the source function
S ν(h) ≈ Bν(T [h]) decreases outward so that the resulting spectral lines are in
absorption. Thus, in the case of optically thick LTE line formation, absorption
lines result when and only when the temperature decreases outwards. The
Planck function decreases outward with the temperature; the higher loca-
tion that is characteristic for the emergent line-center radiation in Eddington-
Barbier fashion samples a smaller Planck function than the continuum for-
mation region does.

Thus, the observed shape of a spectral line from a stellar atmosphere does
not portray directly the variation of the extinction coefficient with frequency,
but reflects the variation of the source function with depth as sampled by the
optical depth scaling which is set by the local extinction coefficient.

Only if a very weak line adds negligible opacity to the continuous opacity
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Figure 9: LTE line formation in an atmosphere with a temperature minimum. The core of a
very strong line senses the outward temperature rise and maps that into a “self-reversal”.

will its shape reflect the line extinction coefficient along the line of sight. For
example, this is the case for weak telluric lines that the Earth’s atmosphere
adds into the observed solar spectrum.

The effect of the line extinction at the depth of the emerging photons can be
quite large because the bb extinction coefficient in the center of the line profile
often exceeds the continuous extinction coefficient by orders of magnitude. A
“strong” spectral line provides sampling throughout a large height range. If
a very strong line were formed in LTE in an atmosphere with a temperature
minimum it would show a core reversal as in Fig. 9. In the solar case, lines
that strong are not formed in LTE, and photospheric lines that display emis-
sion humps are all formed out of LTE. But the LTE description given here
holds rather well for many weaker lines in the optical and infrared parts of
the solar spectrum, in particular with respect to their source functions. For
example, most optical Fe I lines have S line

ν ≈ Bν, but their extinction αline
ν is

smaller than LTE predicts via the Saha-Boltzmann equations, due to radia-
tive overionization in the ultraviolet.

Local motions and magnetic fields in specific layers of the atmosphere cause
changes in the local extinction profile. Motions cause Dopplershifts; magnetic
fields cause Zeeman splitting. These changes of the extinction coefficient af-
fect the mapping of the local source function into the emergent line profile.

For example, if the whole atmosphere moves upward the result is simply
that the whole line shifts blueward. If a deep layer moves downward but
a higher layer moves upward, the core of the emergent line is displaced to
the blue while the wings shift to the red; the line becomes asymmetrical. If
such motions are correlated with temperature changes, the emergent intensi-

17



Figure 10: The continuous extinction coefficient in the photosphere of the Sun. FromE. Böhm-
Vitense.

ties change accordingly. Similar profile encoding follows from the presence
of magnetic fields. Thus, in an optically thick atmosphere, the encoding of
Doppler motions and magnetic fields into observable line profile information
takes the form of changing the local extinction coefficient which affects the
mapping of the local source function into emergent intensity.

4.2 LTE solar continuum formation

The discussion above holds not only for spectral lines (in which the extinction
varies rapidly across the narrow-band profile), but also for the differences in
emergent continua between different wavelength regions. For visible and
infrared wavelengths LTE is a reasonably good assumption for the formation
of the continuum, at least with respect to the source function. For example,
the H− ff and H I ff processes have LTE source functions since they are always
collisional, but their opacity may be far out of LTE due to NLTE hydrogen
ionization.
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Figure 11: A six-panel computation of solar continuum formation in the visible and near-
infrared. Assumptions: LTE, continuous extinction only from H I bf, H I ff, H− bf, and H−

ff transitions, and the FALC up date by Fontenla et al. (1993) of the famous VAL3C stan-
dard model of Vernazza et al. (1981). First panel: total continuous hydrogen extinction at
h = −50, 0,+50 km. H I contributes significantly only at the high temperature in the deepest
layers; the top curve shows the Balmer, Paschen and Brackett edges. The steep decrease with
height comes from the H− dependence of the electron density, which decays much steeper
than the neutral hydrogen density due to increasing hydrogen recombination. Second panel:
two resulting τλ(h) curves, respectively for the maximum of the H− bb extinction at λ=0.9 µm
and the opacity minimum at the H− bf ionization threshold of λ=1.6 µm. Second row, righthand
panel: the FALC temperature stratification in the deep photosphere. The dashed curves show
the normalized intensity contribution functions, i.e., the integrands dIλ/dh = Bλ e−τλ αλ = jλ e−τλ

at the two wavelengths. The dashed lines mark the corresponding mean heights of formation
< h >≡

∫ ∞
0

h (dIλ/dh) dh /
∫ ∞

0
(dIλ/dh) dh =

∫ ∞
0

h Bλ e−τλ dτλ /
∫ ∞

0
Bλ e−τλ dτλ. The Eddington-

Barbier approximation suggests that these should coincide with the τλ = 1 locations, but the
latter lie deeper from lack of linearity. Note the wide extent of the integrands: the large width
of stellar-atmosphere radiative-transfer kernels often make the notion “height of formation”
naı̈ve or inapplicable. Second row, lefthand panel: emergent spectra in the form of brightness
temperatures Tb. The computed FALC values at λ=0.9 and 1.6 µmagree closelywith the FALC
temperature at the correspondingmean formation height. The computation overestimates the
observed solar spectrum (disk-center continuum between lines, taken from Allen, 1976), or
the latter is too low. The computation fails for λ < 5 µm due to the neglect of metal ioniza-
tion edges. Bottom panels: emergent spectra at left, Planck functions for the two wavelengths
at right. For this wide spectral range the variation of the Planck function with wavelength
dominates, so that the lefthand plot is not obviously a mapping of the extinction variation
with wavelength. The slight differences with Bλ(6300K), added as reference, appear much
clearer in the Tb panel, especially at longer wavelengths where a given Iλ difference translates
into larger temperature difference through the smaller Rayleigh-Jeans temperature sensitivity
than in the Wien part.
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Figure 12: Brightness temperature of the VAL3C model for the Sun and the relative contribu-
tion of the principal sources of continuous extinction, always at the height where τ′ν = 1, as a
function of wavelength across the whole spectrum. From Avrett (1990).

Even in LTE the solar continuum intensities differ between different wave-
length regions, first because different extinction samples different layers of
the temperature stratification through the atmosphere; second, because the
temperature sensitivity of the Planck function varies with wavelength.

Figure 10 shows the behavior of the continuous extinction coefficient with
wavelength in the atmosphere. The curve changes somewhat in shape with z

while the value at a given wavelength decreases roughly exponentially with z

due to the density decay. In the ultraviolet at left, the extinction is dominated
by bound-free edges of “metals” includingMg I, Al I, Si I and C I. These edges
suffer from strong NLTE scattering. In the optical part of the spectrum, H− bf
provides most extinction, in near LTE because the energy jumps are relatively
small. H− ff takes over above λ = 1.6 µm in the infrared, with an LTE source
function.

Figure 11 presents a computation of solar continuum formation in the visible
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and near-infrared. The caption provides explanation. Note that the bright-
ness temperature is defined as the formal temperature that reproduces the
intensity when inserted into the Planck function, by Iν ≡ Bν(Tb). In the case of
an LTE total source function and validity of the Eddington-Barbier approxi-
mation, Tb = T (τ′ν=1) for the disk-center intensity.

Figure 12 is an informative cartoon of the formation of the whole solar spec-
trum in terms of the brightness temperature emitted by the VAL3C stan-
dard atmosphere of Vernazza et al. (1981). The lower panel shows the frac-
tional contributions to the opacity. The dashed curves represent the quasi-
continuum contributed by the dense haze of spectral lines in the violet and
ultraviolet. Optical depth τ′λ = 1 samples the temperature minimum of the
VAL3Cmodel at λ=160 µm and 160 nm. The deepest sampling is again at the
H− bf threshold at 1.6 µm. From there to 160 µm and 160 nm the sampling is
increasingly higher in the photosphere, with the hump of the H− bf opacity
(Figure 10) causing a little dip in Tb.

5 NLTE formalisms

5.1 Einstein coefficients for bb processes

BETWEEN two energy levels u (upper) and l (lower) five processes are pos-
sible:

– spontaneous radiative de-excitation;
– radiative excitation;
– induced radiative de-excitation;
– collisional de-excitation;
– collisional excitation.
The same five processes occur in bf transitions. In ff transitions there is al-
ways collisional interaction, with kinetic energy loss or gain in the form of
an emitted or absorbed photon. In the bb and bf processes the excitation or
ionization energy operates as a temporal energy storage, acting as a memory
in process sequences.

Spontaneous de-excitation:

Aul ≡ transition probability for spontaneous de-excitation per second
per particle in state u.

(40)

The rate (number of de-excitations per second per cm3) is given by Rul = nuAul

with nu the density of the particles in state u (the population). The population
diminishes as:

nu(t) = nu(0) e−Ault.

For more de-excitation routes, the total damping constant is:

Γu ≡
∑

l

Aul. (41)
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The mean lifetime of a particle in state u is Γ−1
u s. With Heisenberg:

∆E = ~/∆t ≈ ~Γu,

so that the energy spread per level is ∆ω ≈ Γu. The corresponding emission
profile function is the area-normalized Lorentz profile:

ψ(ν−ν0) =
Γu/4π

2

(ν−ν0)2 + (Γu/4π)2
. (42)

Its wings fall off less steeply than a Gaussian, only quadratically: ψ ∼ 1/(ν−
ν0)2. This line broadening is called radiation damping or natural line width.

Radiative excitation:

BluJ
ϕ

ν0
≡ number of radiative excitations per second per particle in state l. (43)

The extinction profile function ϕ(ν−ν0) is employed in the frequency averaging
of the angle-averaged exciting radiation field:

J
ϕ

ν0
≡

∫ ∞
0

Jν ϕ(ν−ν0) dν
∫ ∞

0
ϕ(ν−ν0) dν

=

∫ ∞

0

Jν ϕ(ν−ν0) dν. (44)

Induced de-excitation:

BulJ
χ

ν0
≡ number of induced de-excitations per second per particle in
state u,

(45)

analogous to Blu, with

J
χ

ν0
≡

∫ ∞

0

Jν χ(ν−ν0) dν,

with χ(ν−ν0) the area-normalized profile function for induced (stimulated)
emission.

Collisional excitation and collisional de-excitation:

Cul ≡ number of collisional de-excitations per second per particle
in state u

(46)

Clu ≡ number of collisional excitations per second per particle in
state l.

(47)

The C’s depend on the particle velocities and on the nature of the interaction.
For example, for transitions of state i to state j via collisions with electrons:

niCi j = niNe

∫ ∞

v0

σi j(v) f (v)v dv

with v0 the threshold energy (minimum kinetic energy required is (1/2)mv2
0
=

hν0), Ne the electron density, σ the collisional cross-section and f (v) the veloc-
ity distribution (generally Maxwellian).
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The Einstein relations are:

Blu

Bul

=
gu

gl
and

Aul

Bul

=
2hν3

c2
. (48)

These are two equations with three unknown radiation coefficients. They
hold in any circumstance. Similarly for the collisional Einstein relation:

Cul

Clu

=
gl

gu
eElu/kT . (49)

The latter is easily understood. If thermodynamical equilibrium holds, the
collision rate upwards must be equal to the collisional rate downward (“de-
tailed balancing”). Since in TE the population ratio nu/nl = (gu/gl) exp−hν/kT
(Boltzmann), the above relation must then hold. Einstein reasoned that if it
holds somewhere, it should hold everywhere, also outside TE. He used the
same argument to establish relations (48) in his derivation of the Planck func-
tion.

5.2 Line emissivity and extinction

First spontaneous de-excitation:

Aul = number of spontaneous de-excitations per second per particle in the
upper level,

nu Aul = number of de-excitations per second per cm3,

hν0 nu Aul = energy radiated per second per cm3,

hν0 nu Aul ψ(ν−ν0) = energy radiated per second per cm3 per Hz,

hν0 nu Aul ψ(ν−ν0)/4π = energy radiated per second per cm3 per Hz per
steradian.

The line emissivity due to spontaneous de-excitation is therefore:

j
spont
ν =

hν0

4π
nu Aul ψ(ν−ν0). (50)

Now radiative excitation. The total energy in a volume dV that is extin-
guished by radiative excitation during dt is:

dEtot
= −hν0 nl BluJ

ϕ

ν0
dV dt

= −hν0 nl Blu dV dt

∫

Jν ϕ(ν−ν0) dν

= −hν0

4π
nl Blu dV dt

∫∫

Iν ϕ(ν−ν0) dΩ dν,

thus the energy dEbundle that is extinguished during a time dt in a given bun-
dle with intensity Iν, opening angle dΩ and bandwidth dν in volume dV is:

dEbundle
= −hν0

4π
nl Blu Iνϕ(ν−ν0) dV dt dΩ dν,
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and from dV = dA ds and the definitions of intensity and extinction coeffi-
cient:

αexcitation
ν =

hν0

4π
nl Blu ϕ(ν−ν0).

Now stimulated emission. This is actually more similar to radiative excitation
than to spontaneous de-excitation, since it similarly depends on the availabil-
ity of photons measured by Jν. Consequently, stimulated emission is treated
as “negative extinction”, i.e., as a negative correction to the extinction when
defining the extinction per cm or per gram:

αlν =
hν0

4π

[

nlBluϕ(ν−ν0) − nuBulχ(ν−ν0)
]

(51)

and so jlν ≡ j
spont
ν = (hν0/4π) nu Aul ψ(ν−ν0) without adding stimulated photons.

With αlν, Blu, Bul and Aul, we have now four parameters that describe how
readily a bb transition occurs: the bb transition probability. Usually one em-
ploys a fifth parameter: the oscillator strength f . The term stems from the
classical description of a spectral line as a harmonic oscillator, in which the
extinction coefficient per particle σ(ν) is:

σ(ν) =
πe2

mec

Γ/4π2

(ν−ν0)2 + (Γ/4π)2
=
πe2

mec
ϕ(ν−ν0)

with

σ ≡
∫ ∞

0

σ(ν) dν =
πe2

mec
= 0.02654 cm2 Hz.

The oscillator strength flu is introduced as a correction factor to this classi-
cal value, without correction for stimulated emission (conventionally not ap-
plied to the extinction coefficient per particle):

σl
=

∫ ∞

0

αlν
nl

dν =
hν0

4π
Blu ≡

πe2

mec
flu.

For resonance lines such as Lyα the classical oscillator is a good approxima-
tion so that flu ≈ 1, and so the oscillator strength has a reasonable numerical
size. Other permitted transitions have 10−4 ≤ flu ≤ 10−1; forbidden transitions
have flu ≤ 10−6.

5.3 Line broadening

The profile functions ψ, ϕ and χ are not set by Heisenberg radiation damp-
ing as in (42) alone. Collisional damping and Doppler motions also con-
tribute line broadening. Collisional disturbances are typically described ei-
ther as nearby quasi-static Coulomb charges that affect the term layout of the
atom, or as fast hitters disrupting the wave-train emission. Usually they add
Lorentzian tail widening as in (42). Doppler shifts are added by line-of-sight
velocity of the absorbing or radiating atom, due to the thermal motions and
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Figure 13: The Voigt function H(a, v) for different values of the damping parameter a (written
as α), on a logarithmic scale. From Unsöld (1955).

possibly to small-scale non-thermal motions if these are postulated to exist
as so-called “microturbulence”. Both have a Gaussian distribution, the ther-
mal motions from the Maxwell distribution along the line of sight and the
microturbulence through the definition of the Doppler width as

∆νD ≡
ν0

c

√

2kT

m
+ ξ2

micro
(52)

which expresses that convolution of two Gaussians produces a new Gaus-
sian. It has full half-maximum width FWHM = 2

√
ln(2)∆νD = 1.665∆νD.

The convolution of these Lorentzian and Gaussian components into the ex-
tinction coefficient per particle is:

σl
ν =

[ √
πe2

mec

f

∆νD

e−(∆ν/∆νD)2

]

∗
[

γ/4π2

(ν′−ν0)2 + (γ/4π)2

]

=

√
πe2

mec

f

∆νD

H(a, v) (53)

with

H(a, v) ≡ a

π

∫

+∞

−∞

e−y
2

(v − y)2 + a2
dy (54)

y ≡ ξ

ξ0

=
ξ

c

ν0

∆νD

=
ξ

c

λ0

∆λD

(55)

v ≡ ν − ν0

∆νD

=
λ − λ0

∆λD

(56)

a ≡ γ

4π∆νD

=
λ2

4πc

γ

∆λD

. (57)
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H(a, v) is the Voigt function. The corresponding area-normalized extinction
profile is:

ϕ(ν−ν0) =
H(a, v)
√
π∆νD

. (58)

A rough approximation for a ≪ 1 is simply the sum of the Gaussian and
Lorentzian wing components:

H(a, v) ≈ e−v
2

+
a
√
π v2

. (59)

When partial frequency redistribution occurs the different contributions play
different roles. Scattering may be coherent at line center as seen by the atom,
but the observer sees the atom’s Doppler shift. Their ensemble average is
described as redistribution in the frame of the observer. The Doppler core
so becomes an ensemble of photons with redistribution across it. The inner
damping wings of strong lines are dominated by natural broadening with-
out redistribution. At each wavelength the photon ensemble may be scatter-
ing coherently, again over a Doppler-width-wide segment in the observer’s
frame. Thus, inner line wings may have their own formation independent of
the rest of the line. However, the outer wings form deeper in the atmosphere
where the densities are higher so that collisional damping dominates. This
affects a redistribution over the outer line wings. I do not detail the redistri-
bution formalisms here; see e.g., Jefferies (1968) and Mihalas (1978).

5.4 Line source function

The line source function S l
ν is now given by:

S l
ν ≡ jlν/α

l
ν =

nuAulψ(ν−ν0)

nlBluϕ(ν−ν0) − nuBulχ(ν−ν0)
.

With the Einstein relations, for an arbitrary radiative transition:

S ν =

Aul

Bul

ψ

ϕ

nl

nu

Blu

Bul

− χ
ϕ

=
2hν3

c2

ψ/ϕ
gunl

glnu
− χ
ϕ

. (60)

In complete redistribution (scattering without memory, the photon resulting
from de-excitation is not correlated with the exciting photon) the three fre-
quency distributions are equal: φ(ν−ν0) = ψ(ν−ν0) = χ(ν−ν0), and

S l
ν =

nuAul

nlBlu − nuBul

=
2hν3

c2

1
gunl

glnu
− 1

. (61)

In (L)TE the Boltzmann law nu/nl = (gu/gl) e−hν/kT makes S l
ν equal to Bν.
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5.5 LTE, SE, NLTE

For LTE (Local Thermodynamic Equilibrium) the level populations are given
by the Saha-Boltzmann equations from the local temperature Te

2; the popu-
lations are therefore coupled to the local Maxwell distribution. The source
function (60) simplifies with Boltzmann to:

S ν =
2hν3

c2

ψ/ϕ
gunl

glnu
− χ/ϕ

(62)

=
2hν3

c2

1
(

gunl

glnu

)TE

− 1

(63)

=
2hν3

c2

1

ehν/kT − 1
= Bν(T ). (64)

The correction for induced emission is in LTE

1 − nuBulχ(ν−ν0)

nlBluϕ(ν−ν0)
= 1 − e−hν0/kT . (65)

The LTE line extinction coefficient is

αlν =
πe2

mec
nl flu ϕ(ν−ν0)

[

1 − e−hν0/kT
]

(66)

with nl from Saha-Boltzmann and with the dimensionless oscillator strength
flu defined by

σl
=

∫ ∞

0

αlν
nl

dν =
hν0

4π
Blu ≡

πe2

mec
flu. (67)

The essence of LTE is that collisions maintain the energy partitioning of the
matter states more locally than the partitioning of the photons, so that the
matter does not, but the radiation does, depart from the local conditions as
parametrized by the temperature:

S l
ν(~r) = Bν

[

T (~r)
]

Iν(~r) , Bν
[

T (~r)
]

Jν(~r) , Bν
[

T (~r)
] Fν(~r) , 0. (68)

Assuming statistical equilibrium (SE) implies time-independence of radiation
fields and level populations. The latter then obey the statistical equilibrium
equations:

dni(~r)

dt
=

N
∑

j,i

n j(~r)P ji(~r) − ni(~r)
N

∑

j,i

Pi j(~r) = 0 (69)

with N the total number of levels which influence the population of level ni
in some way or other, and Pi j given by:

Pi j = Ai j + Bi jJν0
+Ci j. (70)

2The definition of LTE is that the material population distributions obey the TE laws at the
local temperature. Bowers and Deeming (1984) write nonsense about it.
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were the bar in Jν0
implies frequency averaging over the line. Analogous

equations describe bf and ff transitions and other similar processes, for ex-
ample with Jν0

averaged over a bf series limit continuum.

The population equations (69) are coupled with the transport equations

dIν(~r)

dτν(~r)
= S ν(~r) − Iν(~r) (71)

for all frequencies ν and all beams (directions) which influence any popula-
tion of interest. The transition probabilities Pi j in the statistical equilibrium
equations depend on Jν, and so on Iν in all directions, whereas the optical
thicknesses τν and the source functions S ν in the transport equations depend
on the populations. This coupling is non-linear.

NLTE or non-LTE simply means that LTE does not hold. Usually one then
adopts SE, the Maxwell distribution and complete redistribution (CRD). The
populations may differ from the local Saha-Boltzmann value.

For “partial” redistribution (NLTE-PRD) the scattering in a line is partially co-
herent, with Doppler redistribution over the line core but monofrequent scat-
tering in the inner line wings as mentioned above. In that case the line source
function is frequency dependent, and monochromatic solutions of the statis-
tical equilibrium equations are required with a redistribution function which
specifies the amount of cross-talk between different parts of the line.

NLTE population departure coefficients bi are defined by:

bl = nl/n
LTE
l bu = nu/n

LTE
u (72)

with n the actual population and nLTE the Saha-Boltzmann population. With
these the line source function becomes:

S l
ν =

2hν3

c2

ψ/ϕ

bl

bu
ehν/kT − χ

ϕ

(73)

and for complete redistribution:

S l
ν =

2hν3

c2

1

bl

bu
ehν/kT − 1

; (74)

in the Wien approximation (hν ≫ /kT ):

S l
ν ≈

bu

bl
S LTE
ν =

bu

bl
Bν. (75)

The line extinction coefficient becomes:

αlν =
hν0

4π
bl n

LTE
l Blu ϕ(ν−ν0)















1 − bu n
LTE
u Bul χ

bl n
LTE
l

Blu ϕ















(76)

=
hν0

4π
bl n

LTE
l Blu ϕ(ν−ν0)

[

1 − bu

bl

χ

ϕ
e−hν/kT

]

(77)

=
πe2

mec
bl n

LTE
l flu ϕ(ν−ν0)

[

1 − bu

bl

χ

ϕ
e−hν0/kT

]

(78)
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with χ/ϕ = 1 for complete redistribution. In the Wien approximation the
correction factor for induced emission is negligible:

αlν ≈ bl
(

αlν
)LTE

(79)

with
(

αlν
)LTE

the Saha-Boltzmann value.

5.6 Scattering by two-level atoms

Aswe saw in Section 2.2, the five bb processesmay be combined in sequential
pairs:

– photon scattering: radiative excitation followed by spontaneous or in-
duced radiative de-excitation;

– photon creation: collisional excitation followed by radiative de-excitation;

– photon destruction: radiative excitation followed by collisional de-
excitation.

These hold also for bf and other processes such as synchrotron radiation. At
repeated scatterings, photons step around in a random walk. Per extinction
and re-emission, they just change direction without information exchange
and sowithout adjustment to local conditions. In photon creation and photon
destruction, however, photons are coupled to the local collision energy, i.e.,
coupled to the thermal pool via the Maxwell distribution.

For a gas made up of two-level atoms the above pairs are all that can happen.
Let us additionally assume for themoment that both levels are infinitesimally
sharp so that the profile functions are just δ functions at the line frequency ν0.
The total transition probability for de-excitation per excited particle and per
second is:

Ptot
ul = Aul + BulJν0

+Cul. (80)

The partial extinction coefficients per particle for photon destruction (also
called “true absorption”) and photon scattering are given by the correspond-
ing fractions:

σa
ν0
= σl

ν0

Cul

Pul

(81)

σs
ν0
= σl

ν0

Aul + BulJν0

Pul

(82)

with σl
ν0
= σa

ν0
+ σs

ν0
.

For the extinction αν0
per cm and κν0

per gram the stimulated emission BulJν0

is inserted as negative extinction. The stimulated contribution to scattering
cancels, as shown already by the (c) and (g) vignette equality in Figure 1. This
cancellation of the (c) contribution in the extinction is desirable because other-
wise summing the (a) + (b) + (c) pairs would overestimate the actual opacity.
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With the subtraction only the destruction part of the correction affects αa
ν0
and

only the spontaneous emission survives in αs
ν0
:

αa
ν0
= αlν0

Cul

[

1 − e−hν0/kT
]

Pul

(83)

αs
ν0
= αlν0

Aul

Pul

(84)

with αlν0
= αa

ν0
+αs

ν0
. The source function for collisional processes is the Planck

function (assuming the Maxwell velocity distribution):

jaν0
= αa

ν0
Bν0

. (85)

For pure scattering in a two-level atom gas the total (scattered) radiation
equals the amount of radiation that is extinguished through scattering (not
absorbed but redirected out of a given beam):

∫

jsν0
dΩ =

∫

αs
ν0
Iν dΩ (86)

so that, with Jν = (1/4π)
∫

Iν dΩ and the isotropy of scattering:

jsν0
= αs

ν0
Jν0
, (87)

expressing that every photon that is scattered into the beam was already a
photon before. Together, with extinction weighting for the two processes:

S l
ν0
≡

∑

jν0
∑

αν0

=
αa
ν0
Bν0
+ αs

ν0
Jν0

αa
ν0
+ αs

ν0

. (88)

The transport equation

dIν0
= −αa

ν0
Iν0

ds − αs
ν0
Iν0

ds + αa
ν0
Bν0

ds + αs
ν0
Jν0

ds (89)

becomes (or rather remains), using dτν0
≡ αlν0

ds = (αa
ν0
+ αs

ν0
) ds:

dIν0

dτν0

=
dIν0

(αa
ν0
+ αs

ν0
) ds
= S l

ν0
− Iν0

. (90)

The photon destruction probability per extinction is

εν0
≡

αa
ν0

αa
ν0
+ αs

ν0

, (91)

in Einstein coefficients

εν0
=

Cul

[

1 − e−hν0/kT
]

Cul

[

1 − e−hν0/kT
]

+ Aul

=
Cul

Aul + BulBν0
+Cul

, (92)

where in the second version the Planck function appears rather than the ac-
tual induced rate BulJν0

due to the cancellation of induced scatterings in αlνo .
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The two-level line source function becomes

S l
ν0
= (1 − εν0

)Jν0
+ εν0

Bν0
. (93)

For real lines with wider profile functions than the δ function this equa-
tion describes the monochromatic source function for coherent scattering (no
change in frequency between incident and outgoing photon):

S l
ν = (1 − εν)Jν + ενBν. (94)

For example, it describes coherent Thomson or Rayleigh scattering in the
presence of other processes that thermally produce photons at this frequency
(say hydrogen Paschen bf transitions in the optical), and so it applies to the
NLTE formation of hot-star continua.

For complete redistribution (per radiative de-excitation a new sampling of the
extinction profile) a similar derivation gives:

S l
ν0
= (1 − εν0

)J
ϕ

ν0
+ εν0

Bν0
(95)

with J
ϕ

ν0
given by (44). This equation also applies to bound-free ionization

edgeswith complete redistribution over the edge profile if one applies similar
frequency averaging to εν and Bν.

l
*

l

The total path lengthwhich a photon travels in N scatterings through a homo-
geneous layer is:

l∗ν ≈
√
N lν, (96)

with

lν =
<τν>

αν
=

1

αa
ν + α

s
ν

(97)

the mean free path per scattering (see eq. 22). The destruction probability per
scattering is εν; a photon travels on the average N = 1/εν scattering steps be-
tween creation and destruction. The characteristic travel length between cre-
ation and destruction, (or identity maintenance path, diffusion length, ther-
malisation length, effective mean free path) l∗ν of a photon is therefore

l∗ν ≈ lν/
√
εν. (98)

A homogeneous layer with thickness D and optical thickness τν = αν D has
effective optical thickness:

τ∗ν = D/l∗ν =
√
εν τν (99)

and is effectively thin if τ∗ν < 1 and effectively thick if τ∗ν > 1. Thus, an object may
well be optically thick but effectively thin – like fog shining with headlight
photons.

The effect of small ε on the emergent line profile is large. A hypothetical
isothermal homogeneous atmosphere (constant Bν and εν) has for coherent
scattering (see problem 1.10 of Rybicki and Lightman, 1979 or Section 6.1 of
Mihalas, 1978):

S ν(τ
′
ν=0) =

√
εν Bν. (100)
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Figure 14: The ratio S/B for two-level scattering with complete redistribution in a homoge-
neous isothermal atmosphere, for different values of the collisional destruction probability ε

(assumed constant with depth). For smaller ε the two-level source function S = (1 − ε)J
ϕ
+ εB

follows the mean radiation field J
ϕ
(not shown) more closely. J

ϕ
and S uncouple from the

Planck function B = 1 at larger depth for smaller ε; similarly to (96), this “thermalization
depth” is given in τ units by Λ ≈ 1/ε for a Gaussian profile shape as assumed here (it would
be even deeper, Λ ≈ 1/ε2, for a Lorentzian profile). This decoupling depth is far deeper than
the log τ= 0 Eddington-Barbier depth. The surface value is given by (100) as S (τ= 0)/B =

√
ε.

The emergent intensity I+(τ = 0) ≈ S (τ = 1) is nearly as small, far smaller than the Planck
function. From the classic analysis by Avrett (1965).

The same result holds for scattering with complete redistribution as illus-
trated in Figure 14. Scattering lines with small εν therefore fall far below the
LTE value for the emergent line-center intensity. The physical reason is that
the scattering reversedly propagates knowledge about the empty and cold
universe outside the star to much deeper layers than τ′ν ≈ 1. The outside
emptiness presents a NLTE photon sink, far from the local kinematic temper-
ature. Radiation depart from a star implies NLTE loss of local conditioning.
When scattering is important, that loss propagates inward over the effective
mean free path (l∗ ≈ l/

√
ε for coherent scattering, but l∗ ≈ l/ε for complete re-

distribution over a Gaussian profile as in Figure 14). Below that depth there
is yet no knowledge of this outside loss; there the radiation is still boxed in,
thermally enclosed, and the intensity isotropic (in this isothermal case; in a
real stellar atmosphere with inward increasing temperature there is slight lin-

ear anisotropywith Jν
ϕ
=Bν). At the surface, however, the radiation is peaked

outward without backradiation, fully escaping out into the universe.
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6 NLTE solar spectrum formation

6.1 Summary

IN summary: the emergent intensity is

I+ν (τ′ν=0, µ) =

∫ ∞

0

S ν(t
′
ν) e−t

′
ν/µ dt′ν/µ, (101)

the total source function is the weighted combination

S tot
ν =

jcont
ν + jline

ν

αcont
ν + αline

ν

=
S c
ν + ηS

l
ν

1 + η
, (102)

the two-level line source function is for coherent scattering

S l
ν0
= (1 − εν0

)Jν0
+ εν0

Bν0
(103)

and for complete redistribution

S l
ν0
= (1 − εν0

)J
ϕ

ν0
+ εν0

Bν0
, (104)

with the frequency-averaged (or summed) mean intensity

J
ϕ

ν0
≡

∫ ∞
0

Jν ϕ(ν−ν0) dν
∫ ∞

0
ϕ(ν−ν0) dν

=

∫ ∞

0

Jν ϕ(ν−ν0) dν, (105)

and, finally, the angle-averaged intensity is

Jν(z) =
1

4π

∫ π

0

Iν(z, θ) 2π sin θ dθ =
1

2

∫

+1

−1

Iν(z, µ) dµ. (106)

So, to compute Iν(0, µ) in (101) one needs to know Iν(z, µ) in (106) at all depths,
in all directions, and at all frequencies which contribute, in whatever manner,
in setting S ν and τν.

In addition, actual atoms have more than two levels, so that the radiation
field must be evaluated for any bb transition that is multi-level coupled to
the line of interest. Similarly, the populations and number densities of the
line-causing atoms (or ions or molecules) are also controlled by the pertinent
amounts of ionization and recombination (dissociation and association). So
these processes must also be included in detail, with similarly sophistication
as above when they are out of LTE.

Such solving requires coupled solution of the population equations

dni(~r)

dt
=

N
∑

j,i

n j(~r)P ji(~r) − ni(~r)
N

∑

j,i

Pi j(~r) (107)

for all N relevant levels, with the rates for bb processes given by

Pi j = Ai j + Bi jJν0
+Ci j (108)
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and by similar expressions for bf and ff processes, simultaneously with the
radiative transfer equations

dIν(~r)

dτν(~r)
= S ν(~r) − Iν(~r) (109)

for all frequencies ν and along all beams that take part in setting the relevant
populations3. If statistical equilibrium cannot be assumed this whole prob-
lem gets time-dependent.

If LTE holds one simply puts S l
ν = Bν, forgets about such detailed solving,

and does not read these notes beyond Section 4. LTE holds for transitions and
locations with εν0

≈ 1. However, the stronger (and usually more interesting)
lines tend to have εν0

≪ 1 for z > z[τ′∗ν ≈ 1]. Typically εν0
≈ 10−4 near τ′ν = 1.

The same holds for the important bf edges of the electron-donor elements in
the ultraviolet. They scatter as much as strong lines.

The above has here been formulated for the simplified case of axial symmetry,
“1-dimensional” radiative transfer, in which the state parameters vary only
along the z-axis. However, all of the physics above and the basic problems of
radiative transfer are the same in more realistic 3-D situations. In 3D NLTE
radiative transfer modeling one needs to solve for the radiation from any di-
rection and at all frequencies at every spatial location. If the statistical equi-
librium equations don’t hold, one needs to solve the population equations
and transport equations time-dependently (i.e., solve for mass conservation).
The research frontier is to do so within 3D time-dependent magnetohydro-
dynamic simulations of the solar atmosphere.

6.2 Example: VAL3C continua

Figure 15 copies two panels out of the extensive and informative collection
of such figures for many more wavelengths in Figure 36 of Vernazza et al.
(1981). The standard VAL3Cmodel described in this monumental paper may
not describe the real Sun, but it provides a perfect way to produce the time-
averaged solar spectrum from a plane-parallel hydrostatic non-magnetic em-
ulation of the Sun (that I call the computationally existing “star” VAL3C).
This modeling obeys all the equations above, and so you should be able to ex-
plain every detail of the VAL3C spectrum formation, including these graphs.

In the lefthand figure the formation of the optical VAL3C continuum at
λ = 500nm confirms the assumption of LTE in Figure 11: S ν ≈ Bν to large
height. Notice the limb darkening (an atmosphere that produces absorption

3For example, in a recent analysis of NLTE departures in the solar infrared, Mats Carlsson
and I constructed a model Mg atom with 66 levels (65 of Mg I, 1 of Mg II) and 315 Mg I lines,
each sampled in 1–3 dozen frequencies, and solved the resulting equations for a mesh of some
70 z values (Carlsson et al., 1992). Such setups used to be impossible; Mats’ fast computer code
(Carlsson, 1986) and the new workstations make them work. One iteration run took only
5 minutes on a DEC/5000 to reach a converged solution (but Mats ran it over 4000 times).
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Figure 15: Continuum formation in the VAL3C atmosphere as function of height at λ = 500nm
(left) and at λ = 176, 7nm (right). The upper panels show the fractional contributions of the
most important processes to the extinction (rab) and emissivity (rem. At left H− bf dointes, at
right an Fe I ionization edge. The lower levels show Jν, S ν and Bν in ergs cm−2 s−1 Hz−1 ster−1.
The dashes specify the emergent intensity at disk center (µ = 1) and near the limb (µ = 0.3).
The dotted curve is the intensity contribution function dI/dh = jν exp(−τν). The log τν scale is
also given. At left LTE is an excellent approximation for the continuum source function but at
right S ν ≈ Jν due to strong scattering in the Fe I edge.

lines from an outward declining temperature must also show limb darken-
ing). The outward tail of the contribution function follows the density decay;
the inward tail is set by the exp(−τν) cutoff. The Eddington-Barbier approxi-
mation applies very well.

In the righthand figure the uncoupling of Jν from Bν (at the thermalization
depth) occurs already outside the frame. At these short wavelengths the
Planck function drops so steeply with temperature that it dips deep below Jν
on its way out towards the temperature minimum of the VAL3C atmosphere.
This Jν > Bν behavior is opposite to that in the isothermal atmosphere of
Figure 14; in scattering, Jν > Bν excesses arise for steep Bν gradients. The
scattering in the Fe I edge is so strong that S ν follows Jν (small εν) and so the
continuum is brighter than it would be in LTE, especially towards the limb.
Since this is an important Fe I edge and the ionization follows the higher Jν,
Fe I is considerably overionized at this height4. Actual Fe I line opacities are
smaller by about the Jν/Bν ratio than in LTE (equation (75)).

4But part of this overionization was undone in the FALC update by Fontenla et al. (1993) of
the VAL3C model, since the outward temperature gradient became less steep. For detail see
Rutten (1988).
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Figure 16: The Na I D lines in the solar disk-center intensity spectrum. These are the resonance
lines (the strongest lines arising from the ground level) of Na I; the name “D” is due to Fraun-
hofer who alphabetized the more striking features in the solar spectrum. They correspond to
the two transitions between the ground level and the first two excited levels of the neutral
sodium atom, and are the same spectral lines which appear in the yellow sodium lamps along
highways. These are the lines which gave Fraunhofer the idea that dark lines in the solar spec-
trum and bright lines in flame spectra might have something to do with each other, followed
by the realization by Kirchhoff and Bunsen (while strolling the evening after they did sodium
flame spectroscopy from Heidelberg on a fire in Mannheim) that solar line strength might be
an indicator of solar sodium abundance, i.e., that spectrometry works over distance. That was
the birth of astrophysical spectroscopy. The solar sodium lines are in absorption: the solar
brightness is lower in the lines than in the adjacent continuum.

The second figure is representative of VAL3C (and solar) continuum forma-
tion across the ultraviolet. The strong edges of the electron-donor elements
that supply the ultraviolet opacity are well characterized as two-level scatter-
ers, with the upper level a bound-free continuum rather than a bound one.

6.3 Example: the Na I D lines

Figure 16 shows the two yellow Na ID lines in the solar spectrum. Detailed
numerical solution of the statistical-equilibrium equations for the excitation
and ionization of sodium atoms in the solar atmosphere shows that the two-
level approximation is valid for these resonance lines (Bruls, 1992, Bruls et al.,
1992). Therefore, the result in Figure 17 is readily understood. As the density
drops, the collisional probability Cul falls sharply with the height h; since Aul

is large for these resonance lines and does not depend on height, the photon
destruction probability ε ≈ Cul/Aul also falls sharply with h; in deep layers
ε ≈ 1. The line source function follows Jν0

in the higher layers and approaches
the Planck function only in the deep photosphere where ε ≈ 1.

The line wings are formed in sufficiently deep layers that LTE holds for
them (large density = frequent collisions). The line extinction αl in the
wings decreases monotonically with wavelength separation from line cen-
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Figure 17: Formation of the Na I D2 line in the solar spectrum. The source function follows the
Planck function in the deepest layers; in higher layers the source function follows the angle-
averaged intensity Jν with Jν0

< Bν due to photon losses. For the wings of the lines LTE holds
to larger height until Thomson scattering becomes important. The line core, which has τν = 1

near h = 600 km, is very much deeper than it would be in LTE. From Uitenbroek and Bruls
(1992).

ter ∆λ = λ − λ0; the larger ∆λ, the deeper the emergent intensity originates.
Moreover, for sufficiently large ∆λ, αl ≪ αc: the continuum source function
dominates the total source function and LTE formation is ensured because
the H−

bf
extinction process is an LTE one.

The line cores have αl ≫ αc. The cores are formed much higher, around
h = 600 km; for them, the emergent intensity is determined in the regime
where S ν ≈ Jν0

. This is much lower than the Planck function at that height.
The source function (≈ line source function) is not influenced by the ambi-
ent temperature there; the existence of the temperature minimum does not
affect the line source function or the emergent line profile. The line cores
are entirely determined by the strong resonant scattering of photons formed
deeper, and so their intensities dropmuch lower than theywould under LTE.
The drop is due to large photon losses in the line whose effect on the source
function is noticeable until well below the τ′ ≈ 1 formation depth, down to
the τ′⋆≈1 effective formation depth.

6.4 Example: the Ca II K line

Figure 19 sketches an extension of Figure 8 for the formation of the strong
Ca II K line in the solar spectrum (Figure 18).
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Figure 18: The Ca II K line in the solar spectrum. The broad deep absorption dip in this part
of the solar spectrumwas called “K” by Fraunhofer. It is a resonance line of the Ca+ ion, and is
the strongest line in the visually observable part of the solar spectrum. Superimposed on the
broad line wings are many weaker spectral lines (“blends”); most arise from neutral “metals”
such as Fe I. In its core the K line shows two minuscule peaks. These are extensively studied
both for the Sun and for other cool stars, because they turn out to be excellent magnetometers.
Their height is a good indicator for the number of magnetic fluxtubes that stick out of a star. In
addition, their width present a very sharp luminosity indicator (the “Wilson-Bappu effect”).
Why the peaks provide such good gauges is not understood.
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Figure 19: Cartoon for the formation of the Ca II K resonance line in the solar spectrum.

The extinction coefficient varies strongly with the wavelength because the bb
processes offer an extra possibility for absorption and scattering. The size of
the bb peak varies much with height, being dependent on the level popu-
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lations which are sensitive to the density, the temperature and (in NLTE) the
radiation field. The shape of the bb peak varies also with height, being depen-
dent on the density (collisional damping) and on the temperature (collisional
damping and Doppler broadening).

The extinction coefficient determines where the representative height of for-
mation h, with log τ′ν = 0, lies. Each frequency has its own optical depth
scale τ′ν(h), roughly exponential in h near log τν(h) = 0. The intensity Iν(0, 1) of
the emergent radiation is given in Eddington-Barbier approximation by the
value of themonochromatic source function S ν at the representative log τ′ν = 0

height.

The monochromatic (total) source function S ν (bottom center) is the convo-
lution of the continuum source function S c and the line source function S l

(below right). (Because of this convolution the total source function is always
frequency-dependent, even if the line source function S l does not vary across
the line profile which is the case for complete redistribution, assumed here.)
Both source functions are determined by the temperature variation T (h) and
the amount of coupling to it, given by the destruction probabilities εc and εl

which are small if scattering is dominant in the extinction. The line source
function dominates in the Ca II K core because of the large amount of bb
extinction in the layers where the radiation escapes; scattering is important
there. In the deep photosphere where the outer line wings originate, the to-
tal source function is to a good approximation equal to the Planck function,
because εcν ≈ 1.

The Ca II K line is just strong enough that S l is sensitive to the temperature
rise at the base of the chromosphere, before photon scattering losses win and
decouple S l from Bν. The result is a small increase in S l that is evident as two
small emission peaks in the observed line profile (bottom left).
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Photon conversion is likely from the Ca II H&K lines to the three “infrared”
Ca II lines and vice versa, because they share common upper levels. The two
lower levels of the infrared lines are metastable because there are no permit-
ted radiative transitions from them to the ground level. Such photon con-
version is not really important for the H&K lines because they have larger
transition probabilities: the branching ratio from the common upper levels
favors the resonance lines. Such conversion is more important for the three
infrared lines because their extinction is smaller (Boltzmann): where they be-
come optically thin, their line source function faithfully follows the Planck
function because coupling occurs via conversion to the still optically thick
H&K lines.

Actually, this diagram is old hat. It illustrates the formation of Ca II K ac-
cording to Jefferies and Thomas (1960). With this analysis they started NLTE
interpretation of spectral lines from the Sun and other stars. However, their
description is by no means complete or final. For one thing, there is partial
frequency redistribution so that the line source function itself is frequency
dependent: different parts of the line each have their own source function,
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which each in its own fashion differs from the Planck function (Uitenbroek,
1989). Furthermore, the small emission peaks at the K2 wavelengths actually
originate exclusively in regions on the Sun with an enhanced concentration
of magnetic field. They turn out to be an excellent gauge of the amount of
magnetic activity that cool stars display, correlating well with the amount
of chromospheric and coronal emission. This sensitivity still needs to be ex-
plained. Furthermore, away from strongmagnetic fields (in the internetwork
areas between the strands of the magnetic network) the two peaks are asym-
metric: the violet one is higher than the red one. I suspect that this is a sig-
nature of upward propagating and interfering acoustic shocks (Rutten and
Uitenbroek, 1991), but this is not yet proven.

Thus, actual Ca II K line formation is much more complex than the one-
dimensional explanation sketched here.
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