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Chapter 1

Introduction

1.1 Why this book?

By “radiation” we are referring here exclusively to electromagnetic (EM) radiation.
This radiation is of interest from both a diagnostic and an energetic standpoint.

1.1.1 EM radiation as a diagnostic

Practically all astrophysical data which reach us are encoded in the EM spectrum; it
is “the astronomer’s treasure” (Pannekoek), a rich source of (diagnostic) information
in that:

– all objects emit EM waves, i.e. photons, and so are observable provided that they
are not obscured by another object. EM radiation travels with the speed of light,
and photons do not decay;

– differences can be discerned in the direction (the image), time, wavelength and
energy (spectrum), and direction of oscillation (polarization);

– encoded in the spectral lines is a rich probe of local conditions (composition,
thermodynamical quantities of state, motions, magnetic fields).

The interpretation of the astrophysical EM diagnostics demands a knowledge of the
generation and the transport of radiation. This is true throughout all subjects of
astrophysics.

Question 1.1 Compare the wealth of diagnostic information provided by EM radiation
with the output of the following additional carriers of astrophysical infor-
mation:
– neutrinos;
– baryons;
– gravitational radiation;
– meteorites and comet impacts;
– radar;
– sounding rockets, orbiters, landers, flybys;
– astronauts and cosmonauts.

Question 1.2 Name some types of observations and domains of astronomical investigation
in which a knowledge of the generation and transport of radiation is not
important.

1



2 CHAPTER 1. INTRODUCTION

1.1.2 EM radiation as a driver of structure formation

Frequently radiation and radiation transport within an astrophysical object are en-
ergetically of importance, for example:

– energy transport in stars;

– stellar winds driven by radiation pressure;

– heating of gaseous nebulae by stars;

– Comptonization in accretion disks;

– the radiation-dominated epoch in the theory of the Big Bang.

1.2 These lecture notes

These lecture notes cover the generation and transport of radiation. Both subjects
are difficult and extensive, and for both, only the basics are set forth here. They
will appear again in more advanced courses.

These lecture notes are divided as follows:

– this chapter is an introduction to the central themes and problems of this subject,
and provides definitions of various concepts;

– Chapters 2 and 3 contain macroscopic definitions of various measures of radiation,
and of the equation of radiative transport;

– Chapter 4 treats radiation and matter in thermodynamic equilibrium;

– Chapter 5 details the discrete microscopic radiative processes;

– Chapter 6 details the continuous microscopic radiative processes;

– Chapter 7 treats radiation transport;

– Lastly, Chapter 8 provides a few astrophysical applications.

The astrophysical applications bring up the rear in these lecture notes in order not
to disturb the more formal presentation of the basic material in Chapters 2–7. It
pays, however, to refer to them during the treatment of the relevant formulae, as an
example and a proving ground.

These lecture notes include many questions. They are intended to set the reader
thinking, the reason being that much of the material offered here seems more trans-
parent than it is. The equations are simple and demand not much more than college
physics, except for Chapter 6. Nevertheless the optical thickness of this matter is
considerable. The questions help to make that clear. Answers in Appendix ??.

These lecture notes use cgs units. The choice is however not important; most
formulae are the same in the mksA system.

These lecture notes are concerned exclusively with radiation in and by gases, includ-
ing ionized ones (“plasmas”). We therefore have only to deal with free atoms, ions,
molecules and electrons, perhaps in a magnetic field. These simple forms of matter
provide rather difficult material — until you can develop a physical intuition for gases
that you can’t see through. The Sun is made of gas but is not transparent!

Question 1.3 For the investigation of which astrophysical objects is a knowledge of solid-
matter physics required?
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1.3 Other books

No book covers exactly the same material, but these lecture notes follow parts of:

– Mihalas: Stellar Atmospheres. A standard graduate text. Chapters 1 – 6 cover
the topics of these lecture notes at a more advanced level and from a more math-
ematical and computational standpoint. Additional topics are covered in later
chapters.

– Rybicki and Lightman: Radiative Processes in Astrophysics. Very good; more dif-
ficult than these lecture notes and therefore also good for more advanced courses
in plasma- and high-energy astrophysics. Purchase strongly recommended. Chap-
ters 2–5 and 7 of these lecture notes give an expanded treatment of the material
which is summarized in the first chapter by Rybicki and Lightman, with the same
notation; conversely, Chapter 6 of these lecture notes is a simplified summary of
Chapters 3–8 by Rybicki and Lightman. Moreover this book contains additional
subjects which are not treated in these notes.

Also useful are the following:

– Harwitt: Astrophysical Concepts. Broad and good.

– Gray: Observation and Analysis of Stellar Photospheres. Simpler than these
lecture notes; interesting on account of the emphasis on instrumentation and
observational methods in optical stellar spectrometry.

– Novotny: Introduction to Stellar Atmospheres and Interiors. Somewhat simplistic
and out of date.

– Bowers and Deeming: Astrophysics I & II. Here Volume I. Concise but very
broad, sometimes sloppy.

Occasionally reference is made to the more specialized literature, especially in the
applications in Chapter 8. The references are found in Appendix 5.5.

1.4 Main themes

We now give a short characterization of the main themes to which attention will be
paid in these lecture notes, along with an introduction of the various terms and an
overview of the most critical points. The intention is to outline the problems and
provide a first grasp of the topics to be discussed in depth in the following chapters.

1.4.1 Wavelength, frequency and energy

EM radiation has a wave character. From the four Maxwell equations there follow
the wave equations for the electric field ~E and the magnetic field ~B which are satisfied
by transverse waves, with ~E ⊥ ~B, ~B ⊥ ~k and ~E ⊥ ~k, in which the wave vector ~k
specifies the direction of propagation.

The third statement of perpendicularity holds in a vacuum and in isotropic media, in
which the electric susceptibility χ is a scalar. In media such as birefringent crystals, χ
is a tensor and the angle between ~E and ~k differs from 90◦.
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The frequency and wavelength are related according to:

ν = c/λ (1.1)

ν = frequency, units s−1 = Hz = cy/s (cycles per second) = cps;
c = speed of light; in vacuum c = 3× 1010 cm/s;
λ = wavelength, units cm or Ångstrom (1 Å = 10−8 cm) or nm (1 nm = 10 Å);
σ = wave number, defined as σ = 1/λvac or ν = cvacσ. Units cm−1;
ω = angular or circular frequency, defined as ω = 2πν.

In a medium both c and λ become smaller with increasing index of refraction n, while
ν and σ do not change. In these lecture notes the index of refraction is neglected by
setting n = 1. The following convention holds for the wavelengths of spectral lines: for
λ < 2000 Å: λ = λvac; for λ > 2000 Å: λ = λair (15◦ C, 760 mm Hg). A conversion
table appears in Allen, Astrophysical Quantities, §32.

EM radiation also has a particle character. The Maxwell equations are not satisfied
on the microscopic scale in which quantization becomes significant. The interaction
between EM radiation and matter proceeds by means of photons with energy:

E = hν (1.2)

with h = the Planck constant = 6.626× 10−27 erg sec (1 erg = 10−7 J).

The EM spectrum used in astrophysics spans something like fifteen decades (Figure 1.1).
Each wavelength region is characterized by its own radiative processes. The nature of
the observed objects is related to this. Frequently the radiation at the extremes of
the spectrum (radio and X-ray radiation) is entirely of nonthermal origin, while the
radiation in the intermediate wavelengths is generally of thermal origin.

Each wavelength region also has its own characteristic observational techniques (Ta-
ble 1.1). The access to the EM spectrum has widened considerably since the Second
World War, thanks to radio astronomy, space travel, and advances in detector technol-
ogy.

1.4.2 Spectral lines and continua

Astronomical spectra exhibit continua on which are superimposed spectral lines, in
absorption or in emission with respect to the local continuum. See Figure 1.2 and
Figure 1.3 for examples.

Spectral lines are called “lines” because spectrographs usually have linear entrance
slits. The monochromatic image of the spectrum exhibits brighter or darker stripes
perpendicular to the direction of the dispersion.

Question 1.4 What kind of spectral lines would the Sun show if no entrance slit was used?
During eclipses people frequently photograph the spectrum of the outermost
solar limb without a slit. What do these spectra look like? Why is this done?

1.4.2.1 Spectral lines

Spectral lines are the result of transitions between discrete energy levels, such as
the jumps between bound levels of a valence electron in an atom: bound–bound
transitions. Excitation to higher levels can occur via absorption of kinetic energy
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Figure 1.1: The EM spectrum and the Earth atmosphere absorption. After A. Code,
1960 Astron. J. 65, 279

(collisional excitation) or by photon absorption (radiative excitation). Likewise,
deexcitation to lower levels can occur via collision (collisional deexcitation) or by
photon emission (radiative deexcitation). This energy exchange proceeds by means
of quanta with a frequency given by hν = ∆Emn, where ∆Emn = Em − En is the
energy difference between the levels m and n (m > n) of the bb transition; the
photons involved have the corresponding wavelength λ = hc/∆Emn.
Note the abbreviation: bb = bound–bound.
Notation: Fe I is the spectrum of neutral iron, Fe II is the spectrum of singly ionized
iron (Fe+), etc.

Spectral lines are broadened with a statistical distribution determined by:

– radiative damping, a phenomenon arising from the finite lifetime of levels higher
than the ground state, which are then no longer sharp (they possess a natural
line width – as a result of the uncertainty principle);

– collisional damping, by disturbances due to neighboring particles;

– Doppler broadening, the average over the range of Doppler shifts for the radiating
atoms (of the appropriate kind).

This statistical distribution of wavelengths is called the line profile.
Spectral lines are split by:

– (hyper-)fine structure as a result of isotopic splitting and interaction of the atomic
nucleus with the electrons (spin and magnetic moment);

– magnetic fields (Zeeman splitting);

– large-scale motions in the line of sight direction (Doppler splitting).
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Table 1.1: Various facts concerning spectral regions

When the instrumental resolution is not sufficient, (whether in λ, in x, y, z, t, or in
the polarization direction), such splitting results in line broadening.

Spectral lines are always associated with discrete bb processes, but this does not
mean that emission lines in an observed spectrum are always the direct consequence
of photon emission by radiative deexcitation, or that absorption lines are always
the direct consequence of photon absorption by radiative excitation. That depends
on the radiation transport through the medium. In general spectral lines are the
result of the extra bb processes which can occur at the specific line wavelength in
the medium, in addition to the processes which give rise to the continuous spectrum
at that and adjacent wavelengths.

Question 1.5 What is H I? And H II and H III?
Do these spectra have spectral lines? What is the 21 cm line associated
with?
Does Fe XII have spectral lines? If so, in which wavelength region?

Question 1.6 Compare the observed wavelengths of the Na I D lines in Figure 1.2 and the
Lyα line in Figure 1.3 with those of the associated bb transitions in the
relevant term diagrams (Appendix ??). What is your conclusion?
Figure 1.3 shows a large number of spectral lines with λ < 3530 Å: the
Lyα forest. Do these arise from hyperfine structure, Zeeman splitting, or
Doppler splitting?

Question 1.7 In Figure 1.2 the line identifications are given. Near the Na I D lines there are
solar lines of Fe I and Ni I; the H2O lines, however, originate in the Earth’s
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Figure 1.2: The Na I D lines in the solar spectrum. These are the resonance lines
(the strongest lines arising from the ground level) of Na I; the name “D” is due to
Fraunhofer who named in alphabetical order the most striking of the darker features
in the solar spectrum. They correspond to the two transitions possible between the
ground level and the first two excited levels of the neutral sodium atom (see the
Na I term diagram in Appendix ??). They are the same spectral lines which appear
in the yellow sodium lamps shining along the highways. These are the same lines
which gave Fraunhofer the idea that darker lines in the solar spectrum and brighter
lines in flame spectra have something to do with one another. Here they are in
absorption: the brightness of the Sun is lower in the wavelengths of the lines than in
the adjacent continuum. This piece of spectrum is taken from the flux atlas of Kurucz
et al. (1984). On the y axis is plotted the intensity averaged over the visible disk of
the Sun (irradiance), normalized to the continuum between the lines. Wavelength in
nm is plotted along the x axis. The line identifications are taken from the standard
tabulation of Moore, Minnaert and Houtgast (1966).

atmosphere. How can the origin of the lines be conclusively established?

1.4.2.2 Continua

Continua are the result of nondiscrete processes in which photons are absorbed or
emitted:

– bound–free transitions of atoms and molecules.
The liberation of a valence electron from a bound state n, by absorption of a
photon with energy larger or equal to the ionization energy ∆E∞n = E∞ −
En from that level (radiative ionization). Alternatively, the capture of a free
electron (recombination) into a bound state, accompanied by the emission of a
photon with energy larger or equal to ∆E∞n (radiative recombination). The
free states above the ionization limit are not discrete because the free electron
may have an arbitrary kinetic energy (1

2mev
2: hν = ∆E∞n + 1

2mev
2. Ionization

and recombination can equally well occur by the absorption or release of kinetic
energy (collisional ionization and collisional recombination), without a photon.
Note the abbreviation: bf = bound–free.
Notation: Fe I bf is the continuous spectrum associated with the ionization of
neutral iron (series limit continuum of Fe). Fe II bf is the bound-free spectrum
of Fe+, etc.
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Figure 1.3: The H I Lyα line in the spectrum of the quasar Q0002+051. This
resonance line arises from the transition between the ground level of hydrogen and
the adjacent level (see Figure 1.4): it is the first line (of longest wavelength) of the
Lyman series. It is evident here as a broad emission peak near 3530 Å. At shorter
wavelengths, the Lyα “forest” appears: a forest of Lyα lines at smaller redshifts.
They are all seen in absorption. The most obvious ones are numbered from 1 to 25,
but there are probably many more that are buried in the noise. Observation with the
2.54 m reflector at Las Campanas (Chile), by Young et al. (1982).

– dissociation and association of molecules;

– nuclear fission and nuclear fusion;

– free–free transitions = Bremsstrahlung.
This is the emission or absorption of photons as a result of the acceleration or
deceleration of an energetic particle in an electric field, for example in the collision
of an ion and an electron.
Note the abbreviation: ff = free–free.
Notation: Fe I ff is the spectrum resulting from the interaction between a free
electron and an Fe+ ion. Fe II ff is the free-free spectrum of Fe++, etc.

– cyclotron radiation, synchrotron radiation.
As a result of acceleration of a charge in a magnetic field;

– pair annihilation, pair production;

– Cherenkov radiation.
The bow shock of a particle whose speed exceeds the local speed of light in a
medium.

A special, astrophysically important, case concerns the bf and ff processes of neutral
hydrogen with an extra electron, the H− ion. H− bf ionization is the removal of the
second bound electron in H−; H− bf recombination is capture of a free electron by a
neutral hydrogen atom into the bound H− state (in this case there is only one such
state); H− ff is emission or absorption resulting from the acceleration of deceleration of
a free electron in the electrical field of a neutral hydrogen atom.

Question 1.8 What are the H I bf processes? What is the notation for the Bremsstrahlung
spectrum resulting from collisions between free protons and electrons?



1.4. MAIN THEMES 9

bb

bf

n=1 n=2
n=3

n=4

free-freeLyman bound-free

Balmer bound-free

Figure 1.4: The Bohr atom and the energy level diagram for hydrogen. For the first
four line series in the spectrum of hydrogen, the transitions corresponding to the
first two lines (bb) and the series limit (∞) are given with their wavelengths. The
free-free (ff) and bound-free (bf) transitions are also indicated. The wavelengths are
in Å (10−10 m). It is customary to the refer to the Balmer lines as Hα, Hβ etc.,
and the bf Balmer continuum as Bacont; the bb Lyman transitions as Lyα, Lyβ etc.,
and the bf Lyman continuum as Lycont.

1.4.3 Collisional transitions and radiative transitions

Bound–bound excitation and deexcitation, bound–free ionization and recombina-
tion, molecular dissociation and association etc. may occur, both by absorption or
release of radiation energy in the form of photons and by absorption or release of
kinetic energy by means of a collision with a particle. Figure 1.5 shows all of the five
types of transitions possible between two discrete energy levels (bb) and between
a bound and a free state (bf). In the second and fifth processes in each column,
no photons are involved. The fourth process, respectively induced deexcitation and
induced recombination, can be viewed as a resonant process: a photon of just the
right energy triggers radiative deexcitation — that is, the target atom resonates
with the incoming wave. The escaping photon has the same attributes (frequency,
direction, phase) as the incident photon.

With more levels, even more circuitous routes are possible; see Figure 1.7.

Question 1.9 Check that a photon conversion sequence as shown in Figure 1.7 can consist
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Figure 1.5: The bb and bf processes.

photon creation photon destruction photon scattering

Figure 1.6: Three pairs of bb interactions: creation, destruction and scattering of
photons.

of Lyβ absorption, followed by Hα and Lyα emission. Can such a triad also
consist of bf transitions, for example the Lycont?

Question 1.10 Is kinetic energy involved in induced deexcitation? And in induced recom-
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Figure 1.7: Photon conversion.

bination?

Question 1.11 Check that collisional recombination requires a three-body collision. Under
what circumstances will collisional recombination be a rare process?

Question 1.12 Draw a diagram such as that in Figure 1.5 for ff transitions. Does this also
comprise five processes? How many particles are involved in each process?

1.4.4 Photon creation, photon destruction, photon scattering and
photon conversion

In Figure 1.6 the bb processes of Figure 1.5 are grouped into three pairs:

– collisional excitation followed by radiative deexcitation (spontaneous or induced)
= photon creation = conversion of kinetic energy into radiation;

– radiative excitation followed by collisional deexcitation = photon destruction =
conversion of radiation into kinetic energy;

– radiative excitation followed by radiative deexcitation = scattering photon = re-
distribution of radiation.

Scattering changes at least the direction between the incident and the scattered pho-
ton, possibly with an anisotropic redistribution (directional redistribution) depend-
ing on the process. The frequency can remain constant in bb processes between the
same two levels, for example in resonance scattering out of the ground state; in that
case the scattering is coherent or monochromatic if the frequency remains exactly
the same. It can also happen that the frequency is slightly changed by redistribution
over the line width: frequency redistribution.

The pairs of processes in Figure 1.6 hold for two levels; with more levels, photon
conversion such as in Figure 1.7 can appear on the scene. In this case an energetic
photon is converted into two other photons of longer wavelength.

In the first two pairs, local kinetic energy and radiation energy are transformed
into one another. These pairs of processes couple the radiation field to conditions in
the local medium. If collisions occur frequently enough, strong coupling is expected
between the local radiation field and the local particle velocities: equipartition of
energy.

However, if collisional excitations and collisional deexcitations are rare, the radia-
tion field (at the wavelength of the spectral line corresponding to this bb transition)
can be independent of the local particle energies. This will be the case if the particle
density is so low that there are very few interactions, but also if primarily coherent
scattering takes place at the particular wavelength in question. The radiation we see
may not tell us anything about conditions at the place where we see the radiation



12 CHAPTER 1. INTRODUCTION

coming from, i.e., where the detected photons were emitted: the photon supplied
by a scattering atom came from somewhere else, and the original creation of that
quantum of radiation energy by a collisional excitation–radiative deexcitation pair
happened perhaps many scattering processes earlier and in another place entirely.
Throughout such a sequence of bb scattering processes a particular quantum keeps
its own identity, with information that refers to its creation, namely the character-
istic kinetic energy of the particles at the place where it was generated. With each
scattering the photon briefly serves as potential energy of a target atom and then
is sent out once again in another direction. This nonlocally determined nature of
radiation owing to scattering forms the central issue of radiative transport.

This description concerns bb scattering, i.e., line photons; similarly, in elastic scattering
of continuum photons nonlocal representation of the radiation field can also occur. For
example, consider fog around a lantern. What you actually see is the fog, not the
lantern; however the color temperature of the radiation is that of the lantern and not
that of the fog.

Question 1.13 Figure 1.6 does not show all possible combinations of the five bb processes
in Figure 1.5. How do the other pairs go?

Question 1.14 For bf processes, are there similar pairs for creation, destruction and scat-
tering? What about for ff processes?

Question 1.15 Check that also in photon conversion the problem can crop up that ob-
served photons are not created where you see them coming from. Are there
triple processes between three levels in which there is coupling with the local
kinetic energy of the particles?

Question 1.16 Is the color temperature of the daytime sky that of the Sun? What about
the color temperature of the full moon?

1.4.5 Optically thin and optically thick

An object is optically thin at a given wavelength if it is transparent to radiation at
that wavelength, and optically thick if such radiation does not shine through. The
observer “sees” all the way through an optically thin object, but not through an
optically thick object.

An optically thick object has an (outer) “surface” (photosphere) which your gaze cannot
penetrate — where the photons which you detected had their last interaction. For a
solid object this is a sharply defined layer, but also for an optically thick ball of gas we
can speak of a surface to indicate the layer from which the photons escape. In the Sun,
for example, the layer from which the visible light escapes is but a few hundred km
thick, while the solar diameter amounts to 1400 Mm. The escaping radiation contains
information about this layer. If the photons were created in that last process, this is
then local information, but in the case of scattering that is not necessarily the case —
such as for optically thick fog around a lantern.

An optically thin object, on the contrary, doesn’t change the majority of the photons
passing through. Only a few will undergo an interaction (destruction, scattering, or
conversion) and only a few new photons will be added (by creation, scattering, or
conversion). There is no surface; only the fraction contributed to the radiation field
contains nonlocalized information about the whole object.
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Question 1.17 Is the Sun optically thick to all radiation? Does the “surface” where the
sunlight comes from lie equally deep at all wavelengths? What will that
depend upon?

Question 1.18 The Sun is “optically” thin to neutrinos. Does it make sense to try to
detect neutrinos coming from the Sun? How can you distinguish these from
neutrinos from other stars?

1.4.6 Thermal and nonthermal

In the pair of processes that provide photon creation, thermal kinetic energy is
transformed into photons via collisions. The photons created in this way are ther-
mal. If the frequency of collisions is sufficiently large, coupling is achieved between
the radiation field and particle velocities: so many quanta of radiation are created
and destroyed in collisions that there is equipartition between radiation energy and
kinetic energy. Such radiation is then thermal at the bb wavelength: in accord (in
“equilibrium”) with the kinetic temperature at that point.

In bb scattering the new photon is provided by a similar photon that originated
elsewhere; with much scattering or photon conversion the coupling between radiation
and local kinetic temperature can be lost. Depending on the origin of the photons,
the entire radiation field can be nonthermal.

A radiation field that is in equilibrium with the Maxwellian distribution of particle
velocities at the place where it is generated follows the Planck function corresponding
to the temperature at that spot (Chapter 4).

Question 1.19 With a lower collisional frequency, the chances for bb scattering are in-
creased. Why?

Question 1.20 If cyclotron and synchrotron radiation, pair annihilation, or collisions with
nonthermal particles contribute, then the radiation field is not thermal as a
rule. Why?

Question 1.21 Is the atmosphere of the Earth in thermal equilibrium with the solar radia-
tion? And with the light of the daytime sky?

1.5 Crucial questions

The paragraphs above define the astrophysical questions which should be asked for
each object observed, for the continuum as well as for each spectral line under study:

– is the object seen in emission or absorption?

– is the object optically thick or thin?

– from what layer does the observed radiation arise?

– what is the excitation, deexcitation, ionization, association, velocities, magnetic
fields etc. at that point?

– which processes supply the observed photons?

– were the observed photons created in their last interaction, or is scattering or
photon conversion important?
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– is the radiation thermal or nonthermal?

The answers to these questions determine the diagnostics that the EM spectrum
provides for doing astrophysics. In the following chapters these tools are sharpened.

Question 1.22 In a well-known scientific laboratory experiment a spectroscope is used to
look at a flame into which salt (NaCl) is scattered. The Na I D lines appear
as emission lines. Such a flame is optically thin in the Na I D lines; make use
of this in answering the above questions.

Question 1.23 Following this, the same experiment is extended by viewing the flame with
salt in projection against a brighter continuum source. The two Na I reso-
nance lines then appear as absorption lines against the brighter background
continuum. What has changed?

Question 1.24 The solar spectrum in Figure 1.2 also shows the Na I D lines in absorption.
In many textbooks this is explained by analogy with the second experiment,
but by the end of these lecture notes we will be able to establish the extent
to which this analogy is correct (only partially so). Why are the sodium lines
of the Sun so much more difficult to understand than those of the flame?

Question 1.25 In the quasar spectrum in Figure 1.3 the Lyα line appears not in absorption
but in emission. Does that mean that the origin of this line is easier to
understand?



Chapter 2

Radiation quantities

2.1 Introduction: from luminosity to intensity

How to describe the radiation from an astrophysical object? The goal is to define a
quantity with maximum information content; a heuristic introduction brings us to
the concept of intensity. The formal definitions follow in Section 2.2.

Let us begin by defining the

total luminosity L [erg s−1],

as the total energy radiated by an object per unit time. This is a number without
much diagnostic value, except for its size (energy budget) and time dependence
(variability, evolution).

A first refinement is to disperse the spectrum:

ν+∆νν

monochromatic luminosity Lν [erg s−1 Hz−1]

is the energy emitted by the object per unit time and per unit spectral bandwidth
at the frequency ν, with L ≡

∫∞
0 Lν dν.

However, one cannot measure energy all around a faraway object. At Earth, one
only detects:

irradiance Rν [erg cm−2 s−1 Hz−1],

defined as the total energy of the photons from the object which pass per unit time
and per unit spectral bandwidth at the frequency ν through a unit area at Earth,
oriented perpendicular to the line of sight to the object.

Inward extrapolation to the surface of the object or to its interior provides a
generalization:

flux Fν [erg cm−2 s−1 Hz−1],

the total energy of the photons from or in the object that pass per unit time and
per unit spectral bandwidth at the frequency ν through a unit area placed at a
specified place and oriented at right angles to a specified direction. The point of
measurement and the direction may be chosen freely. Also, photons may come
from all sides; the energy of the photons coming from behind (against the specified
direction) are counted as negative. The flux Fν therefore measures the net flow of
energy through the unit area in the given direction. Fν is the monochromatic flux ;
the total flux F is given by: F ≡

∫∞
0 Fν dν.

In going from luminosity to flux, we have defined measurement of photons that
arrive at or pass through a given location. It is more informative to specify the

15



16 CHAPTER 2. RADIATION QUANTITIES

P
1

P
1

P
2

P
2

P
2

∆A

∆A

∆A

P
1

∆Ω

∆Ω

∆Ω

∆Ω

∆Ω

∆Ω

Figure 2.1: Cones (“pencils”) of radiation. Photons are emitted by a circular surface
with area ∆A around P1 in all directions. The photons that leave a particular point
of ∆A with directions within solid angle ∆Ω around direction P1P2 constitute a cone
of radiation emerging from that point (top). The cones from all such points on ∆A
merge into a larger, truncated cone with opening angle ∆Ω (middle). Likewise for
beams of parallel rays from elsewhere that pass through ∆A with the same opening
angle ∆Ω (bottom). The angle is the same in the propagation direction towards the
right and in the line-of-sight direction towards the left. The amount of energy in the
cone is proportional to ∆A and ∆Ω as well as to the duration ∆t and the frequency
bandwidth ∆ν of the measurement, if ∆A, ∆Ω, ∆t and ∆ν are all small enough that
the radiation field is homogeneous across these intervals. After Novotny (1973).

propagation direction of the photons also. The best is to specify where photons
come from and where they go to. That is achieved with:

Iν intensity Iν [erg cm−2 s−1 Hz−1 ster−1],

which is the flow of energy at a specific location in a specific direction, per unit time,
per unit bandwidth, per unit solid angle around that direction, and per unit area
oriented perpendicular to that direction at that location.

The unit “ster” stands for steradian. It is the unit of solid angle, the three-
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dimensional equivalent of angular measure in a plane. Just as the angle α = l/r rad
subtends a segment l of circular arc, a spherical surface segment A is subtended by

r

r

l

A

α

Ω

the solid angle Ω = A/r2 ster.
Intensity specifies the flow of energy along a beam of radiation both at departure

and at arrival. It describes the radiation along a “ray”, connecting the departure
and arrival points. A single, infinitely thin ray doesn’t contain energy, so one speaks
of a bundle or beam of rays, a “pencil of radiation”, with angular spreading over a
cone ∆Ω. The rays travel towards us in the direction of propagation; their spreading
is also measured when looking backwards along the line of sight. See Figure 2.1.

A cone of rays spreads, but intensity is measured per steradian, per unit of
spreading. The spreading of a beam therefore does not affect its intensity, at least
in vacuum where there is no matter present to absorb or emit photons. This property
makes intensity the macroscopic quantity of choice to formulate radiative transfer
with, i.e., to describe processes by which matter and photons interact. Using in-
tensity ensures that only such interactions affect the measure of radiation, not the
distance over which it has traveled.

The conservation of intensity along a beam is illustrated in Figure 2.2. There are
two arbitrary surfaces at separation r, with area ∆A1 at point P1 and area ∆A2 at
P2. Photons of all frequencies travel through each surface in all directions. We seek to
describe only those that pass through both surfaces, first through ∆A1 and then through
∆A2. These photons represent on the one hand the flow of energy which “escapes” from
∆A1 towards ∆A2, and on the other hand the flow of energy which “arrives” at ∆A2

from ∆A1.

θ
2P
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θ
1

P
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r
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1 2

Figure 2.2: Conservation of intensity along a beam. The intensity of a beam that
passes along both P1 and P2 is the same at both points because intensity is measured
per steradian. The projected detection area at one point represents the solid angle
for the other, so that there is full symmetry between P1 and P2.

How large is this energy flow? Consider it first at the departure point P1, taking ∆A1

as the measurement surface. Empirical experience and physical insight teach that the
measured amount of energy is proportional to the measurement duration ∆t and to the
measurement bandwidth ∆ν; the larger each, the more photons are taken into account.
The measured energy is also proportional to the cross-section posed by the measurement
surface ∆A1. Since of all possible directions through ∆A1 only those count that pass
∆A2 as well, the energy flow is proportional to the projected surface ∆A1 cos θ1, with
θ1 the angle between the normal to ∆A1 and the direction P1P2. The energy flow is
also proportional to the solid angle ∆Ω1 that is subtended by area ∆A2 as seen from
P1, since it defines the cone of directions from P1 that pass through ∆A2. It is given
by ∆Ω1 = ∆A2 cos θ2/r

2 ster. There are no other proportionalities or dependencies
(assuming vacuum). The energy flow ∆Eν which departs from ∆A1 towards ∆A2 thus
has:

∆Eν ∝ ∆t∆ν∆A1 cos θ1 ∆Ω1.

The spreading ∆Ω1 must be sufficiently small that proportionality indeed applies, i.e.,
that the bundle is homogeneous across the solid angle ∆Ω1. The same holds for the
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other proportionalities; ∆A1, ∆t and ∆ν should be small enough that the radiation
field can be considered homogeneous across each sampling interval. To ensure such
homogeneity, we take the limit ∆→ 0. We now define intensity by:

ν+∆νν

νd

dEν(P1) ≡ I1 dt dν dA1 cos θ1 dΩ1 = I1 dt dν dA1 cos θ1
dA2 cos θ2

r2
,

with the intensity I1 the proportionality constant that holds at P1.

Now describe the same flow as it arrives at P2. It is again proportional to the cross-
section of the sampling surface, now given by ∆A2 cos θ2, and also to the solid angle
subtended by A1 at the distance r from P2. In the limit ∆ → 0 the energy measured
at P2 is:

dEν(P2) ≡ I2 dt dν dA2 cos θ2 dΩ2 = I2 dt dν dA2 cos θ2
dA1 cos θ1

r2
,

with I2 defined as the proportionality constant that is valid at P2. These two expressions
for locations P1 and P2 measure the same energy flow dEν , namely all photons that
pass through ∆A2 after passing through ∆A1. Equating the two expressions yields the
result that I1 = I2. Thus, the proportionality constant does not change from P1 to
P2; intensity is constant along a ray. It therefore suffices to define intensity at just one
location, as

Iν ≡
dEν

dt dν dA dΩ

at that location, with Iν the intensity of the beam which transports a quantity of energy
dEν in a specific direction through a surface dA placed perpendicular to that direction,
with the spreading of the beam confined to a solid angle dΩ around that direction,
during a time dt at a specific moment, and limited to a frequency band dν at a specific
frequency ν.

Question 2.1 What are the units of dEν?

Question 2.2 Does the intensity in a divergent beam diminish with the square of the
distance? Or does it depend on the opening angle ∆Ω of the beam?

Question 2.3 Monochromatic quantities such as Lν , Fν and Iν are expressed per unit
bandwidth. The energy flow that is measured across a frequency band be-
tween ν and ν + ∆ν is given by Lν ∆ν, Fν ∆ν and Iν ∆ν, respectively. One
may also use Lλ, for example with Å as the unit of bandwidth in wave-
length, or Lσ and Lω for bandwidths expressed in wavenumber and angular
frequency. The following questions address the conversions:
– show that Iν dν = Iλ dλ if |dν| = (c/λ2) |dλ|;
– show that dν/ν = −dλ/λ;
– are Iν and Iλ equal for a given beam?
– does the minus sign in dν/ν = −dλ/λ imply that Iν or Iλ is negative?
– why is it useful to plot λIλ or νIν in graphs instead of Iλ or Iν?
– show that

∫∞
0
Iν dν =

∫∞
0
Iλ dλ;

– what is the conversion factor between Iν and Iσ? And between Iν and Iω?

Question 2.4 One might use the following units in place of [erg cm−2 s−1 Hz−1 ster−1] for
intensity:
– [erg cm−3 s−1 ster−1];
– [erg cm−2 ster−1];
– [erg cm−1 s−1 ster−1],
by replacing Hz−1 with other bandwidth units. What are the latter for these
three cases?
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Question 2.5 Show that:
– an isotropic radiator produces at a distance D: Rν = Lν/(4πD

2);
– a spherical radiator has:

∫
A
Fν dA = Lν ;

– an isotropic radiation field has: Fν = 0.

Question 2.6 Show that:
– dΩ = sin θ dθ dϕ in polar coordinates;
– a quarter hemisphere measures π/2 ster;
– a whole sphere measures 4π ster.

Question 2.7 The exposure meter in a camera is an intensity device which operates better
if it accepts a smaller solid angle, as in a single-lens reflex camera where it
meters through the lens, and optimally as a “spot meter” measuring only a
small part of the image.
Does the exposure time given by such a spot meter vary between wide-angle
close-up pictures and pictures of the same object taken from afar with a
telephoto lens?

2.2 Intensity and related quantities

The heuristic description above demonstrates that intensity is the quantity best
suited to describe radiation. The following are definitions of quantities related to
intensity.

2.2.1 Intensity

The intensity Iν is defined as the proportionality coefficient Iν in:

Ωd

dA

l

r

θ

n

 (0,0,0)

dEν ≡ Iν(~r,~l, t) (~l.~n) dA dt dν dΩ (2.1)

= Iν(x, y, z, θ, ϕ, t) cos θ dA dt dν dΩ,

where dEν is the amount of energy transported through the surface dA, at the
location ~r and with ~n the normal to dA, between times t and t+dt, in the frequency
band between ν and ν + dν, and in the solid angle dΩ about the direction ~l. The
polar coordinate angles θ and ϕ are defined in Figure 2.3.
Dimension Iν : [erg s−1 cm−2 Hz−1 ster−1] or [W m−2 Hz−1 ster−1].
This is the monochromatic intensity; the total intensity is I ≡

∫∞
0 Iν dν.

The intensity depends on place, direction, time and frequency, and describes the
radiation field completely unless it is polarized (§ 2.2.5). This definition holds both
for the intensity emitted by a surface and for the intensity along a bundle of rays.

Iν is often called specific intensity to emphasize that it is measured per steradian. Other
names are brightness and surface brightness. In everyday language, “intensity” often
implies flux or irradiance—even in astronomy the distinction is not always clear. With
the above definition, intensity does not vary along rays in vacuum. It changes only if
there is extinction (loss of photons out of the beam through absorption, scattering, or
photon conversion) or emission (addition of photons to the beam from photon creation,
scattering, or photon conversion) along the way, or when the index of refraction varies.
The intensity differs within a sheet of glass from the incident value, but resumes the
latter upon exit. The intensity in the image plane of an absorption-free telescope is as
large as it is near the object.

Question 2.8 Show that the intensity along a beam from an object does not change when
the object is imaged by a lens.
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Figure 2.3: Solid angle in polar coordinates. The annulus is part of the sphere with
radius unity around the given location. The dark area defines solid angle ∆Ω =
sin θ∆θ∆ϕ from the given location.

Question 2.9 A lamp radiates intensity I0 isotropically. If it is placed in the focus of a
lens, what is the intensity of the resulting collimated (parallel) beam?

Question 2.10 Does an absorption-free prism change the intensity of the light which it
disperses?

Question 2.11 Use Snell’s law n1 sin θ1 = n2 sin θ2 to demonstrate that the quantity Iν/n
2

is conserved when a beam with intensity Iν passes across the border between
media 1 and 2 with indices of refraction n1 and n2.
Why is it that astrononers tend to set n = 1 for their objects?

Question 2.12 The intensity of the solar radiation has the same value near Earth as near
Saturn, although Saturn is ten times further away. Does Saturn receive the
same amount of energy as the Earth?

Question 2.13 What exposure time do you need to take a picture of the full moon? How
does it compare to the exposure time which an astronaut requires on the
moon itself? And for a kosmonaut on Mercury?

Question 2.14 Design an intensity meter for an amateur astronomer. Which constraints
must be satisfied to measure the intensity of:
– the surface of the moon;
– a sunspot;
– Jupiter’s red spot;
– the Milky Way?
Describe the appropriate measurement procedures.

Question 2.15 Can the amateur astronomer in Problem 2.14 measure the intensity of Sir-
ius A? Can a radio astronomer measure the intensity of a quasar?

Question 2.16 The spatial resolution of the Hubble Space Telescope was expected to be
much better than that of ground-based telescopes of similar size, because
there is no atmospheric turbulence in space to spoil images (the socalled



2.2. INTENSITY AND RELATED QUANTITIES 21

seeing). Such an improvement in image sharpness results in considerable
gain in sensitivity for stars, but not for extended objects such as gaseous
nebulae. Why? Is a (good) space telescope a good choice to image galaxies?
And quasars?

2.2.2 Mean intensity

The mean intensity Jν is defined by:

y

x

z

θ

ϕ  

Iν

Iν

θ

z = h 

θ

z = h 

Jν(~r, t) ≡ 1

4π

∫
Iν dΩ =

1

4π

∫ 2π

0

∫ π

0
Iν sin θ dθ dϕ. (2.2)

Dimension Jν : [erg cm−2 s−1 Hz−1 ster−1], just as for Iν .
The total mean intensity is given by:

J ≡ 1

4π

∫
I dΩ =

1

4π

∫∫
Iν dν dΩ =

∫ ∞
0

Jν dν,

in which the “mean” means averaging Iν(θ, ϕ) over all directions, with ∆Ω =
sin θ dθ dϕ in polar coordinates (Figure 2.3) and

∫
dΩ = 4π. An isotropic radia-

tion field has Jν = Iν and J = I; otherwise, Jν and J indicate how much intensity is
locally available for processes which are not sensitive to direction, such as radiative
excitation and radiative ionization.

I will often discuss radiation from optically thick objects taking the convention
that the z-axis is vertical, perpendicular to a horizontal surface (x, y), on the premise
that thick objects are gravitationally bound. Then, z is equivalent to geometrical
height h; I will often use h to specify the direction away from the object rather than
z. The zero point of the z and h scales is arbitrary; it is usually placed at “the
surface”—which for gaseous objects needs to be defined.

Axial symmetry is often assumed for thick objects by permitting spatial variations
to occur only along vertically, not in horizontal directions. The (x, y) planes are
then homogeneous “slabs” or “plane-parallel layers”; they often represent a local
approximation to the curved shells of spherical objects such as stars. The radiation
field, whatever its origin, is then symmetrical around the z-axis (θ ≡ 0): Iν =
Iν(z, θ). Then

dΩ = 2π sin θ dθ = −2π dµ,

where
µ ≡ cos θ, (2.3)

and so:

Jν(z) =
1

4π

∫ π

0
Iν(z, θ) 2π sin θ dθ =

1

2

∫ +1

−1
Iν(z, µ) dµ. (2.4)

Question 2.17 A “Lambert surface” radiates intensity I0 into all directions on one side of it.
Is this a case of axial symmetry? What is J in a point of this surface? And
what is J at a point a distance D from the surface if the latter is infinitely
extended?

Question 2.18 How does the mean intensity of the solar radiation near Earth compare to
the intensity? (The radius of the Sun is R� = 0.00465 AU; approximate its
surface by a Lambert one.)

Question 2.19 How do the intensity I� and the mean intensity J� of the sunlight near
Saturn compare with those at Earth?
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2.2.3 Flux

The monochromatic flux Fν is defined by:

A∆
sinθ∆ϕ

∆θ

 (0,0,0)r

∆Ω

θ

ln
Fν(~r, ~n, t) ≡

∫
Iν(~l.~n) dΩ =

∫
Iν cos θ dΩ =

∫ 2π

0

∫ π

0
Iν cos θ sin θ dθ dϕ. (2.5)

Dimension Fν : [erg s−1 cm−2 Hz−1] or [W m−2 Hz−1].
The flux Fν is the flow of energy per second through a surface of one cm2 located
at ~r with normal ~n . It is the net flow of energy through this surface because the
perspective factor cos θ counts the reversed contributions negatively, i.e., those along
directions π/2 < θ ≤ π with components counter to ~n. If ~n is upwards, we may
write Fν as the net sum of upward and downward parts:

ν
F

+

F
ν

-

Fν =

∫ 2π

0

∫ π/2

0
Iν cos θ sin θ dθ dϕ+

∫ 2π

0

∫ π

π/2
Iν cos θ sin θ dθ dϕ

=

∫ 2π

0

∫ π/2

0
Iν cos θ sin θ dθ dϕ−

∫ 2π

0

∫ π/2

π
Iν cos θ sin θ dθ dϕ

=

∫ 2π

0

∫ π/2

0
Iν cos θ sin θ dθ dϕ−

∫ 2π

0

∫ π/2

0
Iν cos(π − θ) sin(π − θ) d(π − θ) dϕ

≡ F+
ν −F−ν , (2.6)

with the upward flux F+
ν and the downward flux F−ν both positive. For an isotropic

radiation field F+
ν = F−ν = πIν and Fν = 0. A Lambert radiator has Fν = F+

ν = πIν
and F−ν = 0 at its surface. For axial symmetry only the z-component of the flux is
non-zero because the radiation field is then isotropic within (x, y) planes. In that
case:

Iνθ

z = h 

Fν(z) = 2π

∫ π

0
Iν cos θ sin θ dθ

= 2π

∫ +1

−1
µIν dµ

= 2π

∫ 1

0
µ Iν dµ− 2π

∫ −1

0
µ Iν dµ,

thus

F+
ν (z) = 2π

∫ 1

0
µ Iν dµ

F−ν (z) = 2π

∫ −1

0
µ Iν dµ. (2.7)

Flux is a loose term. One should define it as a vector (e.g., Mihalas 1978 p. 9), but for
simple geometries the direction of the vector is usually obvious—for example, outward
in or from a star. Since we define flux per cm2, “flux density” would be a better term;
physicists employ it indeed, and use “flux” for Fν =

∫
Fν dA. Flux is often used in

place of irradiance for the energy that is detected from an object at the telescope—
radio astronomers use “milli-flux units”, atmospheric physicists “actinic flux”. Flux
is also often used instead of luminosity as measure of the energy which escapes from
an object; “surface flux” then specifies what is defined as flux here, per cm2. Often,
the location and the orientation of the unit area are not explicitly specified. When
axial symmetry applies, flux usually implies Fν(z) inside the object or F+

ν (z = 0) at
its surface. Frequently, πF is written in place of F (so that a Lambert radiator has
F = F+ = I0), with F called “astrophysical flux”. However, sometimes F is written as
F without π. (Rybicki and Lightman 1979 do so; this is the only notation difference
between their book and this one.)
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Question 2.20 How is the flux of the solar radiation near Earth related to the local intensity,
mean intensity and irradiance?

Question 2.21 How does the solar flux near Earth compare to that near Saturn?

Question 2.22 A Lambert disk with radius R emits intensity Iν(θ, ϕ) = I0. Express Jν and
Fν in I0 for a point P at a distance D from the disk on its axis. What are
the results for D � R and D � R?

Question 2.23 Express the surface flux of a spherical star in the mean intensity Iν that is
received from the stellar surface by a distant observer.

Question 2.24 The segment of solar spectrum with the Na I D lines in Figure ?? is copied
from the atlas of Kurucz et al. (1984). This is an atlas of the solar irradiance
spectrum. Why is it called a “flux” atlas? How may one measure the
irradiance spectrum from the Sun? Why should one want to?

Question 2.25 There is a tight correlation between the excursions of the apparent solar
limb due to the turbulence in the earth’s atmosphere and the fluctuations
in the solar irradiance. Why?

Question 2.26 Are stellar magnitudes a measure of intensity, mean intensity, flux, or lumi-
nosity? And absolute magnitudes and bolometric corrections?

2.2.4 Radiation density and radiation pressure

The radiative energy density uν is:
n

θ

Iν

∆A

uν =
1

c

∫
Iν dΩ. (2.8)

Dimension uν : [erg cm−3 Hz−1] or [J m−3 Hz−1].
Isotropic radiation has uν = (4π/c)Iν , filling a unit sphere in 1/c seconds.

The radiation pressure pν is:

pν =
1

c

∫
Iν cos2 θ dΩ. (2.9)

Dimension pν : [dyne cm−2 Hz−1] or [N m−2 Hz−1].

Radiation pressure is analogous to gas pressure, being the pressure of the photon gas. It
is a scalar for isotropic radiation fields; a force is exerted only along a photon pressure
gradient. Note that the term radiation pressure is often also used for the mechanical
force on an object when it absorbs photons from a directional beam.

Question 2.27 Derive equation (2.8) by first considering the energy content of the volume
that is passed through by a single beam with intensity Iν during a time dt,
then integrating the result over a small volume ∆V which is pervaded by
beams in different directions.

Question 2.28 Derive equation (2.9).

Question 2.29 Show that:

uν =
4π

c
Jν and u =

4π

c

∫ ∞
0

Jν dν.
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Question 2.30 Demonstrate that isotropic radiation has pν = uν/3.

Question 2.31 Consider isotropic radiation within a reflecting enclosure. Show that the
radiation pressure on the walls is given by:

pν =
2

c

∫
Iν cos2 θ dΩ.

Why is this result the same as eq. (2.9)?

2.2.5 Stokes parameters

When the radiation in a beam is fully or partially polarized, three more quantities
are required to describe it completely in addition to its intensity. The wave repre-
sentation of electromagnetic radiation provides the appropriate description in this
case. Two parameters are needed to describe the time-dependent orientation of the
electric wave vector ~E in the vibration plane perpendicular to the direction of prop-
agation; the orientation of the magnetic vector ~B then follows from these because
| ~E| = | ~B| and ~E ⊥ ~B. The third parameter specifies the degree of polarization.
In practice, this information is split in different fashion between the three Stokes
parameters which furnish a description in observable quantities.

Decompose the harmonic vibration of the electric field vector ~Erad of a monochro-
matic light wave which propagates along the z-axis into its x and y components
(Figure 2.4):

Ex = Ax cos(ωt− φx)

Ey = Ay cos(ωt− φy), (2.10)

where Ax and Ay are the amplitude maxima and φx and φy the phase offsets; ω =
2πν is the circular frequency. For a fully polarized wave, the four Stokes parameters
are defined by:

Iν ≡ A2
x +A2

y

Qν ≡ A2
x −A2

y

Uν ≡ 2AxAy cos(φx − φy)
Vν ≡ 2AxAy sin(φx − φy), (2.11)

with I2
ν = Q2

ν + U2
ν + V 2

ν . “Fully polarized” means that the vector ~E is well-
behaved, its tip harmonically travelling along a line, ellipse or circle in the (x, y)
plane. In these cases the wave is said to be linearly polarized, elliptically polarized,
or circularly polarized. Depending on whether the vector tip travels clockwise or
counterclockwise, the elliptical and circular polarizations are called left-handed or
right-handed. Usually right-handed implies clockwise as seen by the observer to-
wards whom the beam travels, looking back along the line of sight, but sometimes
the reverse definition is used. (Polarization theory is fraught with sign convention
problems—see Rees 1987).

Radiation fields that one actually detects and measures tend to consist of many
superimposed polarization states. An unpolarized contribution may also be present,
and the polarization will generally vary with time. If the temporal changes are slow,
the Stokes parameters for actual radiation are:

Iν = Iunpol
ν + < A2

x +A2
y >
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Qν = < A2
x −A2

y >

Uν = < 2AxAy cos(φx − φy) >
Vν = < 2AxAy sin(φx − φy) >, (2.12)

where Stokes I is the sum of the unpolarized and polarized contributions and with
the time-independent expressions on the right hand sides in eqs. (2.11) replaced by
temporal averages.

x

y

z

E

x

y

z
x

b χ

y

a

Figure 2.4: Elliptical polarization. Top: decomposition of the electric wave vector
~E into two simusoidal components Ex and Ey. The two amplitudes Ax and Ay are

unequal; there is a 90◦ phase lag φx − φy between them. In that case, the tip of ~E
describes an ellipse in the (x, y) plane of which the axes are aligned with x and y
(bottom left). For arbitrary amplitudes and phase lag, the tip of ~E travels clockwise
or counterclockwise along an (x, y) ellipse of which the axes are offset over an angle
χ (bottom right).

Figure 2.4 shows ~E-tip orbits in the (x, y) plane. The angle χ measures the
rotation of the ellipse axes from the x and y axes. The ratio of the major semi-
axis a and the minor semi-axis b defines an angle β with tanβ = b/a. With these
quantities the Stokes parameters for fully polarized radiation become:

Iν = A2
x +A2

y ≡ A2

Qν = A2 cos 2β cos 2χ

Uν = A2 cos 2β sin 2χ

Vν = A2 sin 2β. (2.13)

These relations help to interprete the Stokes parameters in observational terms. In
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fact, they were originally defined as such, namely as:

Iν ≡ total intensity

Qν ≡ I linear
0 − I linear

90

Uν ≡ I linear
+45 − I linear

−45

Vν ≡ Icircular
right − Icircular

left . (2.14)

Thus, Stokes Q and U describe intensity differences between measurements with
crossed linear polarizers, while Stokes V specifies the difference between the amounts
of right-handed and left-handed circularly polarized radiation in a beam.

These four parameters are often combined into the Stokes vector for use in ma-
trix transformations (“Mueller calculus”) which quantitaively describe the effects of
optical devices such as lenses, beam splitters, polarizers, retarders etc. on a beam
of light. For more on polarization and polarized radiative transfer, see e.g., pp. 24–
35 of Chandrasekhar (1950), Robson (1974), § 2.4 of Rybicki and Lightman (1979),
Chapt. 4 of Kraus (1986), Rees (1987). Kliger et al. (1990), Chapt. 12 of Shu
(1992a).

Question 2.32 Derive eqs. (2.13) from eqs. (2.11).

Question 2.33 How do eqs. (2.14) relate to eqs. (2.11) and (2.13)?



Chapter 3

Transport equation

3.1 Introduction: emission and extinction

The intensity along a beam is constant unless local emission or extinction processes
add photons to it or remove photons from it. If such processes occur (which requires
the presence of matter), the local intensity increase and the local intensity decrease
are defined with empirical proportionality constants, similarly to the definition of
intensity. In this chapter these coeficients are defined and combined into the trans-
port equation of radiative transfer. This equation is studied without detailing the
actual processes.

3.2 Emission coefficient

Experience and physical insight teach that the local addition of photons to a beam
of radiation is proportional, in the d = ∆ → 0 limit, to the number of emitting
particles, and to the time interval dt, the bandwidth interval dν and the solid angle
dΩ over which the beam is measured. The proportionality coefficient can be defined
per particle or for all particles in a gram or cm3. In this book the monochromatic
emission coefficient jν is defined per cm3, as the constant in:

dEν ≡ jν dV dt dν dΩ (3.1)

with dEν the energy that is added in the form of photons to a beam with solid angle
dΩ, over the bandwidth dν, during a time dt, within the volume dV .
Dimension jν : [erg cm−3 s−1 Hz−1 ster−1].
The coefficient jν depends on location, direction, time and frequency, just as the
intensity Iν .

d

d

d

I
ν

V

s

A

A beam with cross-section dA traverses a volume dV = dA ds while propagating
over a path ds. Combination of definitions (3.1) and (2.1) shows that the amount
of intensity added by local photon emission to a beam with intensity Iν is:

dIν(s) = jν(s) ds. (3.2)

Question 3.1 A thin, homogeneous slab of thickness ∆s is irradiated from one side with
a beam of intensity Iν(s). What is the emergent intensity Iν(s + ∆s) on
the other side if the emission coefficient in the slab is jν and if there is no
extinction? Is the result also valid for a thick slab, with large ∆s?

27
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Question 3.2 Why is the emission coefficient defined in terms of intensity and not in terms
of flux?

Question 3.3 How should one split the emission coefficient between two types of particles
that contribute photon emission at the same frequency?

3.3 Extinction coefficient

Experience and physical insight also teach that the number of photons that is re-
moved from a beam by extinction processes is proportional to both the supply of
photons and to the number of extinguishing particles, again in the d = ∆→0 limit.
The proportionality constant is called the extinction coefficient. It may be defined
per particle, per gram, or per cm3; all three are specified here for completeness.

First the definition per particle. The monochromatic extinction coefficient (effec-
tive cross-section) σν per particle, with dimension [cm2], is:

dIν ≡ −σνn Iν ds, (3.3)

with n the density of the absorbing particles ([cm−3]).
The extinction per unit path length is:

dIν ≡ −ανIν ds (3.4)

with αν the monochromatic linear extinction coefficient with dimension [cm−1]. This
measure is identical to measurement per unit volume:

dIν = −ανIν ds

with αν the monochromatic volume extinction coefficient (cross-section per unit
volume) with dimension [cm2cm−3] = [cm−1].

destruction

scattering

conversion

Finally, the extinction per unit mass is:

dIν ≡ −κνρ Iν ds (3.5)

with κν the “opacity”, the monochromatic mass extinction coefficient (cross-section
per unit mass) with dimension [cm2 g−1] and ρ the mass density ([g cm−3]). The last
definition is the one used most frequently in astronomy, but in this book I follow the
notation of Rybicki and Lightman (1979) and use extinction per cm (definition 3.4).

The term “extinction” requires comment. Often “absorption” is used for what is called
extinction here. When using “extinction”, no distinction is made between the removal
of photons from a beam through photon destruction and the removal of photons from
a beam through scattering and photon conversion. In the last processes, photons exist
also after the extinction occurred. They are not destroyed, but they have a different
direction and/or a different frequency then before, and they therefore count no longer for
the beam under consideration. Extinction is here used to imply the sum of all processes
by which photons are removed from the beam, including redirection and wavelength
shift; absorption implies destruction of photons. Other authors use absorption for the
total, and then use “true absorption” for photon destruction.

Question 3.4 Show that αν = σνn = κνρ. Why is κν prefered in astronomy and σν in
physics?
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Question 3.5 A thin homogeneous slab of thickness ∆s is illuminated on one side by a
beam with intensity Iν(s). What is the emergent intensity Iν(s+∆s) on the
other side if the extinction coefficient is αν and if there is no local emission
within the slab? Is the result valid for a thick homogeneous slab, with large
∆s? Why does one define jν and αν in the limit d = ∆→0?

Question 3.6 Show that αν ds < 1. When is αν ds = 0? Does αν ds < 0 imply local
emission that should be added to jν ds?

Question 3.7 Does the index ν in αν have the same meaning as in Iν and jν? What is the
conversion factor between αν and αλ? And between κν and κλ? Is it useful
to introduce a total extinction coefficient α ≡

∫
αν dν?

Question 3.8 In contrast to the emission coefficient jν in (3.1), the extinction coefficient
αν is defined in (3.4) without reference to direction. Why? Is that correct
in all circumstances?

Question 3.9 Define coefficients for the emission and extinction by solid surfaces in similar
fashion to the volume coefficients of equations (3.1) and (3.4). Wat are their
dimensions?

Question 3.10 If different types of particles or processes contribute to the extinction from a
beam at the same frequency, how should partial extinction coefficients then
be defined for each, and how should these be combined into a total extinction
coefficient—for αν , σν and κν , respectively?

Question 3.11 Kliger et al. (1990) write the following on page 162 of their book:

For absorbance measurements on solutions, the decadic molar extinction
coefficient ε is the bulk property that is sought. The decadic molar
extinction coefficient is related to the absorbance A by:

A = ε l c = log(I ′/I ′′).

Here I ′ is the intensity of the beam at some point within the solution,
and I ′′ is the intensity a distance l (in centimeters) later. The concen-
tration of solute in moles/liter is given by c. An alternative quantity,
the absorption coefficient α, defined by

α l = ln(I ′/I ′′),

is sometimes reported instead and is useful where the concentration of
the absorber is unknown.

How do these definitions correspond to our definitions (3.3)—(3.5)?

Question 3.12 Spectral lines are always due to specific bound-bound transitions in com-
pound particles (atoms, ions, molecules, nuclei). These provide extra emis-
sion and extinction processes at the line frequency ν = ν0, with correspond-
ing bound-bound extinction coefficient jline

ν and extinction coefficient αline
ν .

Can you have one without the other? Are such bound-bound contributions
always an increase, adding to the background continuum emission and ex-
tinction from other processes at the line frequency?

Question 3.13 When the medium contains a magnetic field, the bound-bound extinction
coefficient is split for many transitions into separate components that ex-
tinguish circularly or linearly polarized light, respectively, depending on the
angle between the beam and the magnetic field lines. How should such
selective Stokes extinction coefficients be defined?
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Iν

τν

0

0

s D

0

s+∆s

τν

Figure 3.1: Beam passing through a slab. The s coordinate measures geometrical
path length along the propagation direction, from the entry at s = 0 to the exit at
s = D. The optical path length τν is also measured along the beam; the optical
thickness of the whole slab is τν(D). The optical depth τ ′ν is measured along the line
of sight, against the propagation direction.

3.4 Transport equation

d

d

d

I
ν

V

s

A

Consider a small cylinder with length ds and sides dA, oriented along a beam of
radiation with intensity Iν . Since Iν is constant along the interval (s, s+ds) except
for local emission and extinction, the total intensity change combining (3.1) and
(3.4) is

dIν(s) = Iν(s+ds)− Iν(s) = jν(s) ds− αν(s)Iν(s) ds,

or:
dIν
ds

= jν − ανIν . (3.6)

This is the transport equation. It applies generally, except when the extinguish-
ing particles are not small with respect to their separation, or when they are not
randomly distributed over the medium.

Question 3.14 The transport equation rests on empirical definitions. What sort of experi-
ment would demonstrate its validity? Is it a conservation law?

Question 3.15 A slab of thickness D is irradiated from one side with intensity Iν(0). What
is the emergent intensity Iν(D) on the other side:
– in the case of pure emission (αν = 0)?
– in the case of pure extinction (jν = 0)?
What are the results for a homogeneous slab?
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3.5 Optical path length, optical thickness, optical depth

A beam passes at right angles through a slab of thickness D from s = 0 to s = D
(Figure 3.1). Per layer of thickness ds the corresponding increment of the monochro-
matic optical path dτν is defined by:

dτν(s) ≡ αν(s) ds. (3.7)

The total optical path through the slab is called its monochromatic optical thickness
and is given by:

τν(D) =

∫ D

0
αν(s) ds. (3.8)

It represents an “optical” measure of thickness, in terms of photon penetration rather
than geometrically. For pure extinction (jν = 0), the transport equation reduces to

dIν
dτν

= −Iν ,

and to the solution

ντ

e−τν

Iν

ν
I (0)

0 1 2 3 4

1.0

0.0

0.5

Iν(D) = Iν(0) e−τν(D). (3.9)

This result shows that τν(D) in Iν(D)/Iν(0) = e−τν(D) is an exponential decay
parameter which measures how much photon energy remains after penetration over
∆s = D. The boundary between small extinction and large extinction lies at the
1/e decay value, i.e., at optical thickness τν(D) = 1. A slab is called optically thick
for τν(D) > 1, optically thin for τν(D) < 1.

How far do photons penetrate into the slab? At s < D, within the slab, the
remaining energy fraction is

Iν(s) = Iν(0) e−τν(s),

with τν(s) the optical path from 0 to s, or the optical thickness of the corresponding
part of the slab. The probability that an incident photon penetrates over an optical
path τν(s) before an extinction process removes it from the beam is given by e−τν(s),
so that the mean optical path <τν(s)> of the photons equals:

l
ν

τ
ν

0

0

s

1

<τν(s)>≡
∫∞

0 τν(s) e−τν(s) dτν(s)∫∞
0 e−τν(s) dτν(s)

= 1. (3.10)

The mean geometrical path lν of photons in a homogeneous medium is:

lν =
<τν(s)>

αν
=

1

αν
. (3.11)

In an inhomogeneous medium this value represents the local photon free path.

0

01

s

τ
ν

In addition to optical thickness τν(D) and optical path τν(s), I will frequently
use the monochromatic optical depth τ ′ν(s). This is the optical path length along the
line of sight, against the beam direction:

dτ ′ν(s) ≡ −αν(s) ds (3.12)

where s is measured in the propagation direction, as in the definitions above.
In the case of axial symmetry, the radial optical depth is defined as the optical

depth along the z or h axis, measured from z =∞ well outside the object (or from
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the eye of the beholder) down into the object along a line of sight that is normal to
its surface. Thus, at a location z = z0 inside the object:

Iν

τ
ν

zh

τ ′ν(z0) ≡ −
∫ z0

∞
αν dz. (3.13)

σκοπειν

In summary, optical path length and optical depth differ in direction and in zero point.
Optical path length measures the penetration of photons into a medium; optical depth
is used to measure the escape of photons from a medium (or, adhering to the ancient
Greek belief that one’s eyes illuminate the scene, the penetration of one’s sight). The
first measure is useful to describe radiative transfer within astrophysical objects; the
second measure is useful to describe the radiation which we observe from them.

Question 3.16 What are the dimensions of dτν , τν(D), and τ ′ν(z0)? May one add optical
thicknesses? And optical depths?

Question 3.17 How should dτν be defined when σν or κν is used instead of αν?

Question 3.18 What is the meaning of the index ν in τν? How does one convert τν into
τλ? What is the meaning of the integral

∫∞
0
τν dν?

Question 3.19 Equation (3.10) relates <τν> to the distribution function e−τν . Show that
the expectation value of a quantity x which is characterized by a statistical
distribution f(x) is given by <x>=

∫∞
0
xf(x) dx/

∫∞
0
f(x) dx.

Question 3.20 Derive (3.11) directly from the probability that a photon penetrates over a
geometrical path length s.

Question 3.21 Are equations (3.10) and (3.11) also valid in the presence of emission? And
in the presence of photon scattering?

Question 3.22 What is the the optical thickness of a homogeneous slab of thickness D with
mean geometrical photon path lν?

Question 3.23 How should one define optical thickness for a slanted beam, with angle of
incidence θ below 90◦? What is the radial optical depth along a line of
sight with µ < 1? What is the definition of radial optical depth in terms of
geometrical depth?

Question 3.24 Show that the escape probability of a photon at z = z0 in the direction µ is
exp(−τ ′ν(z0)/µ. Where does the bulk of the escaping photons come from?
Is the mean photon escape depth given by <τ ′ν>= 1/µ?

Question 3.25 The earth’s atmosphere and the solar corona are both transparent for visible
radiation. What are the optical thickness and the optical depth of the corona
in the visible?
The earth’s ionosphere and the corona are both opaque for radio waves with
ν = 10 Mhz. Where should the optical depth integration begin in that case?

3.6 Source function

The emission coefficient jν and the extinction coefficient αν are quite different quan-
tities. This is clear from their dimensions: jν has the dimension of intensity per cm
path length, whereas αν is per cm only. Nevertheless, the ratio of these coefficients
yields a very important quantity called the source function:

Sν ≡ jν/αν , (3.14)
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which has dimension [erg cm−2 s−1 Hz−1 ster−1].
Since Sν has the same dimension as Iν , these two quantities may be added and

subtracted. Their difference apppears in the transport equation (3.6) when it is
rewritten with definitions (3.7) and (3.14)into:

dIν
dτν

= Sν − Iν . (3.15)

This is the transport equation in the standard differential form. It provides an
elegant description of the change in intensity per unit optical path along the beam.
Sν represents a source term in this equation, hence its name “source function”: it
specifies the addition of new photons along the beam. When Sν = 0, the intensity
simply decreases with the exponential decay of eq. (3.9).

ν
0

j
ν

S
ν

α
ν

ν

We now have three quantities, jν , αν and Sν , to describe the increase and decrease
of Iν along a beam. The combination αν and Sν is usually employed, rather than the
combination αν and jν . One reason to do so is the symmetry of equation (3.15), with αν
contained in dτν . A second reason is that αν and Sν tend to be much more independent
of each other than αν and jν . A bound-bound transition, for example, may produce
large increase of both jν and αν at the corresponding line frequency, whereas these
peaks nearly or completely cancel in the ratio Sν = jν/αν so that Sν tends to be a
much smoother function of frequency than jν . Finally, jν depends more directly on the
local radiation field than αν does. In scattering processes, for example, jν increases with
the number of photons that are scattered into the beam, and therefore with the quantity
of photons that is locally available for scattering (i.e., the angle-averaged intensity Jν).
In contrast, αν measures the fraction of the incident photons that are extinguished,
and does not directly depend on the number of available photons itself. It does so only
indirectly, through the influence of the radiation on the state of the matter. We return
to these properties in Chapter ??.

Question 3.26 How should the source function be defined with σν or κν as extinction coef-
ficient?

Question 3.27 Rewrite (3.15) for a beam with exit angle µ using optical depth τ ′ν instead
of optical path τν .

Question 3.28 If different processes contribute emission and/or extinction at the frequency
ν, how should the total source function Stotal

ν be defined in terms of separate
source functions per process?

Question 3.29 Spectral lines are always due to bound-bound transitions, with rapid vari-
ation of jline

ν and αline
ν across the line width. What is the corresponding

source function Sline
ν ? What is the total source function Stotal

ν if there is also
continuous emission jcont

ν and extinction αcont
ν present at the line frequency?

When is Stotal
ν ≈ Sline

ν , and when is Stotal
ν ≈ Scont

ν ? Show that the frequency
variation of Stotal

ν across the line width is small if Sline
ν ≈ Scont

ν .

Question 3.30 Does the value Sν = 1 have special meaning? And Sν/Iν = 1? Can Sν > Iν?
And Sν < 0?

Question 3.31 In § ?? Kirchhoff’s law Iν = Bν(T ) is presented, with Bν(T ) the Planck
function. It holds when there is sufficient coupling between radiation and
matter, if the latter obeys the Maxwell velocity distribution. Which quantity
is then most likely to follow the Planck function also:
– the emission coefficient,
– the extinction coefficient,
– the source function?
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Figure 3.2: Geometry for the passage of a beam through a gaseous object. The s
coordinate measures the geometrical path along the propagation direction, from the
entry at s = 0 to the exit at s = D. The optical thickness of the object along the
beam is τν(D).

Question 3.32 Demonstrate that Sν = Jν if no photon creation, photon destruction or
photon conversion occurs, i.e., if both αν and jν are due to monochromatic
scattering alone.

Question 3.33 The extinction of radiation at visible wavelengths in the earth’s atmosphere,
at clear sky, consists primarily of elastic Rayleigh scattering (§ ??). What is
the corresponding source function?

3.7 Formal solution of the transport equation

3.7.1 Integral form of the transport equation

Consider a gaseous medium through which a beam passes as in Figure 3.2. The
beam has intensity Iν(0) at the entry point at s = 0. What is the emergent intensity
Iν(D) at s = D?

First, the incident intensity Iν(0) is attenuated within the medium. The optical
path along the beam from s = 0 to an intermediate location s = s′ is given by

τν(s′) =

∫ s′

0
αν(s) ds;

the amount of incident radiation that remains at s′ is:

Iν(s′) = Iν(0) e−τν(s′).

Second, there is emission within the medium along the beam. At s = s′ it is given
by

dIν(s′) = jν(s′) ds = Sν(s′) dτν(s′)

across the path increase ds. This contribution is attenuated along the remainder of
the path, between s = s′ and s = D:

[dIν(D)]s=s′ = Sν(s′) dτν(s′) e−[τν(D)−τν(s′)].

The net result is obtained by summing the remainder of Iν(0) and all attenuated
contributions within the medium from s = 0 to s = D:

Iν(D) = Iν(0) e−τν(D) +

∫ τν(D)

0
Sν(s) e−[τν(D)−τν(s)] dτν(s). (3.16)

This is the integral form of the transport equation. It is often called its formal
solution.
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Figure 3.3: Emergent intensity Iν(D) from a homogeneous medium against its optical
thickness τν(D). Optically thin, non-backlit objects produce Iν(D) = Sντν(D) = jνD
(lower curve, at left). If a background intensity Iν(0) illuminates the slab in the
beam direction, there is enhancement of the intensity for Iν(0) < Sν (middle curve),
reduction for Iν(0) > Sν (upper curve). For thick slabs with τν(D) > 1, the emergent
intensity Iν(D) ≈ Sν independent of Iν(0).

Question 3.34 Derive (3.16) directly from the differential form (3.15) by multiplying the
latter with exp(τν) followed by integration.

Question 3.35 Is (3.16) a general result? Does it hold for both thick and thin media?
For inhomogeneous media? For fluids or solids rather than gases? Which
parameters in (3.16) contain material properties of the medium?

Question 3.36 The formal solution (3.16) is rarely a true solution. In the presence of
scattering, jν and Sν depend on the local radiation field, i.e., on Iν in all
directions including the one for which Iν is sought. Thus, to find Iν(D) one
needs to know Iν(s, θ, ϕ). What tactic would you try to solve this problem?

3.7.2 Radiation from a homogeneous medium

I
ν

S
ν

D

0

Let us now consider the unrealistic but instructive case of a homogeneous medium,
in which neither jν nor αν varies through the medium. Then Sν does not vary either,
so that (3.16) yields:

Iν(D) = Iν(0) e−τν(D) + Sν
[
1− e−τν(D)

]
, (3.17)

with D the geometrical thickness of the medium measured along the beam (Fig-
ure 3.2). The first term again measures the attenuation of the incident radiation
Iν(0) across the medium; the second term gives the total contribution from within
the medium.

If the medium is optically thick , with τν(D)� 1 and exp(−τν(D)) ≈ 0, the result
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is:
Iν(D) ≈ Sν .

The incident radiation I(0) does not penetrate to the other side; one receives an

ν
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ν

ν
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ν
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ν
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ν
I     S≅

ν

intensity equal to the source function within the medium.
In the optically very thin case, with τν(D) � 1, the emergent intensity simply

equals the incident one:
Iν(D) ≈ Iν(0).

For the less extreme optically thin case, with τν(D) < 1, use of exp(−τν) ≈ 1 − τν
yields:

Iν(D) ≈ Iν(0)− Iν(0)τν(D) + Sντν(D)

= Iν(0) + [Sν − Iν(0)] τν(D). (3.18)

These results are shown in Figure 3.3. Iν(D) equals Iν(0) for τν(D) = 0, and
approaches Sν for large τν(D). The approach is from larger to smaller intensity
when Sν < Iν(0), and reversedly when Sν > Iν(0). Thus, Iν(D) ≤ Iν(0) when
Sν < Iν(0), and Iν(D) ≥ Iν(0) when Sν > Iν(0).

Question 3.37 What is the emergent intensity for a homogeneous infinite half-space? How
does it depend on the viewing angle θ? What is the intensity within a homo-
geneous medium of infinite extent? Why are these intensities independent
of the amount of extinction in the medium, or of its nature? Is that also the
case for solid surfaces?

Question 3.38 Rewrite (3.17) for a slanted beam which crosses a plane-parallel slab with
thickness D at an angle µ = cos θ. Rewrite (3.17) also, for the same beam,
using radial optical depth τ ′ν instead of optical thickness τν .

Question 3.39 A radio astronomer states that the observed radio intensity from an interstel-
lar cloud of diameter D is given by Iν = ανSνD. What are her assumptions?

Question 3.40 What is the intensity at the surface of a non-backlit, homogeneous, optically
thin, spherical cloud with radius R, extinction coefficient αν and source
function Sν? Is the cloud a Lambert radiator? What is the surface flux of
the cloud, and what is the irradiance from the cloud at earth?

Question 3.41 A homogeneous medium contains particles that cause continuous emission
jcont
ν and extinction αcont

ν at the frequency ν0, and also particles that cause
bound-bound emission jline

ν and extinction αline
ν that is centered at ν0. The

two corresponding source functions are the same: Scont
ν = Sline

ν . Express
the emergent intensity at the line frequency, for a beam which crosses the
medium as in Figure 3.2, in the above quantities for the following four cases:
– τν(D)� 1,
– τν(D) < 1 and Iν(0) = 0,
– τν(D) < 1 and Iν(0) < Stotal

ν ,
– τν(D) < 1 and Iν(0) > Stotal

ν .
What is in each case the character of the resulting spectral line (emission or
absorption)?

Question 3.42 If extra bound-bound emission occurs at the frequency of a spectral line, does
that produce emission lines in the emergent spectrum? And do bound-bound
extinction processes cause absorption lines? Do bound-free emission and
extinction processes cause emission and absoprtion edges in the spectrum?
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Question 3.43 Is a spectral line from a non-backlit optically thin homogeneous medium
always an emission line? What if the slab is optically thick at the line
wavelength but optically thin in the continuum? And vice versa?

Question 3.44 A beam with incident intensity Iν(0) crosses an optically thin, homogeneous
slab of thicknessD. There is monochromatic scattering within the slab which
increases with time. Do the optical thickness of the slab, the source function
in the slab, and the emergent intensity Iν(D) increase or decrease?

3.7.3 Radiation from a thick medium

Iν

τ
ν

zhThe assumption of homogeneity is unrealistic; a better approximation is to adopt
axial symmetry by assuming that the object consists of plane-parallel layers, i.e.,
that variations exist only in the z direction (= height h). In addition, for thick
objects the observable emergent intensity has more interest than the intensity in the
invisible layers at large optical depth; we therefore employ the radial optical depth
τ ′ν(h) defined by (3.13). It integrates extinction vertically into the object, along a
radial line of sight, rather then along the beam from the far side onwards as is the
case for the optical path length τν .

τ
ν

Iν

-

Iν

+

h
0

= 0τ
ν

hCombination of (3.13), (3.16) and (2.3) gives for inward-directed radiation I−ν
with µ < 0 at an arbitrary height h = h0:

I−ν (h0, µ) = −
∫ τ ′ν(h0)

0
Sν(τ ′ν) e−[τ ′ν−τ ′ν(h0)]/µ dτ ′ν/µ

and for the outward-directed radiation I+
ν with µ > 0:

I+
ν (h0, µ) = +

∫ ∞
τ ′ν(h0)

Sν(τ ′ν) e−[τ ′ν−τ ′ν(h0)]/µ dτ ′ν/µ,

where the following boundary conditions have been used:

I−ν (τ ′ν =0, µ) = 0

for I−ν (no incident radiation from above), and

Sν(τ ′ν) e−τ
′
ν/µ → 0 for τ ′ν →∞

for I+
ν (the source function should not increase exponentially with optical depth).

The emergent intensity is given by the value of I+
ν at a location far enough out

from the object that it has τ ′ν(h) = 0:

I+
ν (τ ′ν =0, µ) =

∫ ∞
0

Sν(τ ′ν) e−τ
′
ν/µ dτ ′ν/µ. (3.19)

For µ = 1, looking down vertically, we observe:

ντ

S
ν

0 1 2 3 4
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−τνe

I+
ν (τ ′ν =0, µ=1) =

∫ ∞
0

Sν(τ ′ν) e−τ
′
ν dτ ′ν . (3.20)

This result shows that the emergent intensity is set by the source function, with its
inward variation weighted with the attenuation factor exp(−τ ′ν). This factor rapidy
diminishes with increasing optical depth and limits the integrand to the surface
layers of the object.
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Figure 3.4: Illustration of the Eddington-Barbier relation. Assumptions: height-
independent extinction, frequency-independent source function, linear variation of
the source function with height. The extinction coefficient αν (upper left) sets the
optical depth scaling τ ′ν(h) per frequency ν (upper right). The location where the
optical depth reaches unity (h(τ ′ν = 1); upper right) sets the height at which the source
function Sν(h) (lower right) is representative for the emergent intensity Iν(0, µ =
1) (lower left). Thus, the αν curve is mapped through the righthand curves into
variation of the emergent intensity Iν with ν.

At which height does the radiation escape? Substitution of the expansion

Sν(τ ′ν) =
∞∑
n=0

anτ
′
ν
n

= a0 + a1τ
′
ν + a2τ

′
ν

2
+ . . .+ anτ

′
ν
n

in (3.19) and use of
∫∞

0 xn exp(−x) dx = n! yields

I+
ν (τ ′ν =0, µ) = ao + a1µ+ 2a2µ

2 + . . .+ n! anµ
n.

Truncation of both expansions after the first two terms yields the important
Eddington-Barbier approximation:

I+
ν (τ ′ν =0, µ) ≈ Sν(τ ′ν = µ). (3.21)

In particular, for µ = 1:

Ιν νS

ντ

0

210

+

I+
ν (τ ′ν =0, µ=1) ≈ Sν(τ ′ν = 1). (3.22)

This relation is exact when Sν varies linearly with τ ′ν .
The Eddington-Barbier approximation equates the emergent intensity for µ = 1

to the source function at optical depth unity (τ ′ν = 1). This location lies at one mean
optical photon path from the surface (§ 3.5); the Eddington-Barbier approximation
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therefore says that the radiation which escapes from the medium represents the
source function at one mean photon path below the surface.

ντ
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−τνeThe Eddington-Barbier approximation does not imply that the observed photons
all escaped from optical depth τ ′ν = 1, although that is often said (“the photons
come from optical depth unity”). The integrand Sν exp (−τ ′ν) extends over a wide
range in τ ′ν , from the surface at τ ′ν = 0 to, say, τ ′ν ≈ 10 where the factor exp (−τ ′ν)
cuts it off. Photons escape from this entire slab; they are collectively characterized
by the value of the source function at τ ′ν = 1.
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For oblique viewing, with µ < 1, the mean free photon path should be measured

along the propagation direction. For such a slanted beam, the shallow layer with
τ ′ν = µ is already at optical path length τν = 1 from the surface. It constitutes the
Eddington-Barbier depth in (3.21).

Figure 3.4 illustrates the Eddington-Barbier approximation for a somewhat un-
realistic medium in which the source function S(h) varies linearly with height (or
depth) but not with frequency, whereas the extinction αν varies with frequency but
not with height. The frequency dependence of the extinction coefficient (upper left
panel) results in frequency dependence of the scaling between geometrical height h
and optical depth τ ′ν (upper right panel). Since the extinction does not vary with
h, the scaling relations are straight lines with different slopes. The values of h
where they reach τ ′ν = 1 are marked; these are the characteristic Eddington-Barbier
heights and differ with frequency. Since the S(h) and τν(h) relations are linear, the
Eddington-Barbier relation applies exactly. The emergent intensity Iν in the lower
left panel therefore equals Sν(h[τ ′ν = 1]) in the lower right panel. The frequency
pattern seen in the emergent intensity is similar to the frequency pattern of the
extinction coefficient, but it is mapped through the curves in the righthand panels.
In this case, the mapping consists of sign reversal and linear amplitude rescaling.

We have now reached an important point. The radiation which we receive from
a non-illuminated, optically thin object is approximately given by

Iν ≈ Sντν = ανSνD,

whereas the radiation from an optically thick object is approximately given by

Iν ≈ Sν(τ ′ν = µ).

In both cases we need to specify both the extinction coefficient αν and the source
function Sν to compute the emergent intensity Iν (in the optically thick case, αν
is needed to determine the location where τ ′ν = µ). We must therefore study these
quantities, both for continua and for spectral lines. This is done in the following
three chapters; we return to the transport equation and its solution in Chapter ??.

Question 3.45 Optically thin objects are often assumed to be homogeneous, while the con-
ditions in optically thick objects are often assumed to vary radially, with
axial symmetry. Why this difference?

Question 3.46 Does the Eddington-Barbier approximation hold for a homogeneous slab?
May it also be written as I+

ν (0, µ) ≈ Sν(z = −lν µ) with lν the mean geomet-
rical photon free path? Use equation (3.19) to derive the mean contribution
depth to the emergent intensity. Does this depth equal the mean photon
escape depth? When is it unity? Do “the photons come from optical depth
unity” in that case?

Question 3.47 Show that the flux from an optically thick object is given by:

F+
ν (τ ′ν =0) = πSν(τ ′ν =2/3)
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when Sν varies linearly with τ ′ν .

Question 3.48 At which optical depth should one define the “surface” of the Sun?

Question 3.49 The intensity in the visible part of the solar spectrum decreases from the
center of the apparent solar disk to the limb. What does that imply for the
variation of the source function with height in the solar atmosphere?

Question 3.50 Assume that the continuous extinction coefficient αcont
ν1 at ν = ν1 exceeds

αcont
ν2 at ν = ν2 by a factor of 10, but that the corresponding source function
Scont
ν is the same at both frequencies. What is the ratio of the emergent

intensities at the two frequencies for:
– an optically thin, homogeneous, non-backlit, spherical cloud,
– a homogeneous infinite half-space,
– a spherical star with Sν(τ ′ν1) = Sν(τ ′ν1 =0) + τ ′ν1?
And what is the ratio of the emergent fluxes at the two frequencies for these
three cases?

Question 3.51 Different continuous processes and different bound-bound processes may op-
erate at the same frequency. What is the effect of such overlap on the to-
tal extinction, the total emission, the total optical thickness, and the total
source function? If a line has η = 2, with ην ≡ αline

ν /αcont
ν , does that imply

doubling of the local emission at the line frequency? And of the emergent
intensity?

Question 3.52 Draw a four-panel diagram as in Figure 3.4 for the formation of a spectral
line with ην = 3 at line center, assuming height-independent extinction αtotal

ν

and source function equality Sline
ν = Scont

ν . When do you get absorption lines
and when do you get emission lines? What changes are needed to describe
the formation of a bound-free ionization edge in the spectrum?

Question 3.53 Draw a four-panel diagram as in Figure 3.4 for the formation of a bound-
free ionization edge in the spectrum, again assuming height-independent
extinction and source function equality.

Question 3.54 The Na I D lines in the solar spectrum are in absorption (Figure 1.2). What
does that imply for their source functions Stotal

ν ? Assume that these are
equal. The extinction coefficient αline

ν differs by a factor two between the
two lines. Do their line strengths in the solar spectrum also differ by a factor
two? Discuss which modifications of the four-panel diagram in Question 3.52
are needed to describe their actual formation.

Question 3.55 The Ca II K line of Ca II is much stronger (i.e., broader and deeper) in the
solar spectrum than the Na I D lines, as shown by comparing Figures 8.7
and 3.4. If the line source function Sline

ν is the same for all three lines, what
makes the difference?

Question 3.56 The Ca II K line in the solar spectrum exhibits two minuscule bumps on each
side of line center (Figure 8.7). What source function behavior is required
to explain these?

Question 3.57 Show that emission lines may occur in the irradiance spectrum from a
spherical star with an extended atmosphere, even if the source function
Stotal
ν = Sline

ν = Scont
ν ≡ Sν does not vary with height.

Question 3.58 A spectrometer onboard a spacecraft registers emission lines in the ultra-
violet spectrum from an unknown source. What are the options for inter-
pretation? Should they also be considered for a radio source with emission
lines?



Chapter 4

Radiation and matter in
equilibrium

4.1 Introduction: thermodynamical equilibrium

In this chapter we continue for the time being the macroscopic description with a
discussion of ensemble averages. They serve to specify the quantity of particles and
photons of a given type that are present within a medium. Averages over ensembles
are most straightforward in equilibrium situations. These come in various types; in
this chapter we confine ourselves to the assumption of a homogeneous medium in
thermodynamical equilibrium (TE).

In TE all processes and states are in equilibrium with each other. Each process
is in microscopic equilibrium with the reverse process: there is detailed balance. All
macroscopic equipartition laws hold, and indeed with the same temperature for each
one. For the radiation the equipartition laws are those of Kirchhoff, Planck, Wien
and Stefan-Boltzmann; for the matter they are the laws of Maxwell, Boltzmann and
Saha.

TE is the most stringent form of equilibrium, and does not often occur in nature.
Further on the TE laws described here will also be used for situations with less stringent
stipulations of equilibrium (such as for LTE = Local TE, in which the temperature may
vary slowly through the medium), and in order to describe departures from the laws.

Radiation can occur in equilibrium with matter, thanks to the fact that photons have no
mass. In contrast with fermions, no Pauli exclusion principle holds for photons, so that
unlimited creation and destruction of photons is possible, and with it the establishment
of an equilibrium.

4.2 Radiation in thermodynamical equilibrium

4.2.1 Kirchhoff laws

TE holds in a homogeneous, isothermal, isotropic medium, for example in a medium
enclosed within isothermal walls for a sufficient length of time. Then according to
equation (3.6), the following holds for each bundle, at each frequency and at each
point in time:

dIν
ds

= jν − ανIν = 0 → jν = ανIν

This is Kirchhoff’s law for TE. Another law found by Kirchhoff is that the intensity
in a medium in TE is isotropic, and at each frequency depends exclusively upon the

41
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temperature:
Iν ≡ Bν(T ),

regardless of the nature of the medium. In this equation Bν is the Planck function.
Taking these two laws together, we see that in TE we have:

jTE
ν = αTE

ν Bν(T ), (4.1)

and thus that the source function Sν ≡ jν/αν in TE is equal everywhere to the
Planck function Bν .

A good source of TE radiation is a closed cylinder that is placed in an oven, so that the
medium inside it is isothermal. Once equilibrium is established, we poke a small hole
in it. If the hole is small enough, the radiation that escapes from it is a representative
sample of the radiation within in the cylinder. From such a hole, then, emerges the
same equilibrium radiation, which is completely specified by the temperature.

The second law is best made plausible by a thought experiment. Suppose that the
intensity does depend upon the nature of the medium, and so that in two isothermal
TE cylinders of the same temperature different intensities are found: I1

ν 6= I2
ν , with I1

ν

the intensity in the one cylinder and I2
ν the intensity in the other. Make an opening

between the cylinders and slip in there a monochromatic filter that transmits only the
frequency band (ν, ν + dν). Photons with frequency ν will then migrate out of the
cylinder with the greater intensity into the other, in contradiction with the second law
of thermodynamics. Thus the assumption must be false, and we must have that I1

ν = I2
ν .

A third law of Kirchhoff is that equation (3.6) also holds for the walls of the cylinder,
with κsurface

ν the coefficient of true absorption through a surface, not defined per unit
path length but rather as dimensionless:

dIabs
ν ≡ −κsurface

ν I incident
ν ,

and likewise for a coefficient for the emission εsurface
ν of the wall (i.e., without the con-

tributions of reflection or scattering off the wall):

dIem
ν ≡ εsurface

ν .

Equilibrium then demands:

εsurface
ν = κsurface

ν I incident
ν = κsurface

ν Bν .

Check that we have: 0 ≤ κsurface
ν ≤ 1. The larger the absorption coefficient, the

larger the associated radiation: the absorption determines the emission. A surface with
κsurface
ν = 1 that absorbs all radiation falling on it is “black”. A “black body” therefore

radiates in all directions an intensity Iν = εsurface
ν = Bν ; it radiates in a “Planckian”

fashion.

A hole in a TE-cylinder can thus also be considered as a good approximation to a
black surface: all photons that enter the cylinder through the hole do not leave by it if
the hole is small enough — the hole is black because such an absorption coefficient is
κsurface
ν ≈ 1. The photons that do come out (by other means) are Planckian.

An expanded discussion of this topic can be found in Chandrasekhar (1939), Chapter
V (page 199 in the Dover edition).

Question 4.1 Does the radiation that you observe from two TE-cylinders of the same
temperature differ if the one cylinder is made of mirrored material and the
other of black material?
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Question 4.2 Is a TE-cylinder with a sufficiently small hole an optically thick or an op-
tically thin source? Does the Eddington-Barbier relation hold for such a
hole?

Question 4.3 Give a description of the radiation of a TE-wall that incorporates an extinc-
tion coefficient, i.e., including reflection and scattering off the wall.

Question 4.4 How would you define the source function of a surface? How large is it for
a TE surface? Does it make a difference whether that surface is “black”?

4.2.2 Planck law

For the intensity and the source function in a medium in TE we have Iν = Sν = Bν ,
with Bν given by the Planck formula.
In frequency units this is:

Bν(T ) =
2hν3

c2

1

ehν/kT − 1
(4.2)

Dimensions of Bν : [erg cm−2 s−1 Hz−1 ster−1],
and in wavelength units:

Bλ(T ) =
2hc2

λ5

1

ehc/λkT − 1
(4.3)

Dimensions of Bλ: [erg cm−2 s−1 cm−1 ster−1].
Representative Planck curves are illustrated in Figure 4.1.

Sometimes Bν is defined a factor 4π larger: integrated over all directions rather than
per steradian.

The Planck curves in Figure 4.1 never intersect one another: Bν(T ) rises monotonically
with the temperature at all frequencies.

Question 4.5 Why do the factors ν3 and λ−5 respectively appear in the two equations?

Question 4.6 Check that Bν ↓ 0 for T ↓ 0, and that Bν ↑ ∞ for T ↑ ∞.

4.2.3 Related radiation laws

4.2.3.1 Wien approximation

For sufficiently large ν/T , exp(hν/kT )� 1 and the Planck formula simplifies to the
Wien approximation:

hν/kT � 1 → Bν ≈
2hν3

c2
e−hν/kT . (4.4)

These are the steep portions on the right-hand side of Figure 4.1.

4.2.3.2 Rayleigh-Jeans approximation

For sufficiently small ν/T , exp(hν/kT ) − 1 ≈ hν/kT and the Planck formula sim-
plifies to the Rayleigh-Jeans approximation:

hν/kT � 1 → Bν ≈
2ν2kT

c2
. (4.5)

These are the linear portions on the left-hand side of Figure 4.1.
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Figure 4.1: The Planck function for various temperatures.

Question 4.7 Give the Wien and Rayleigh-Jeans approximations for Bλ.

Question 4.8 In the book “Astrophysics or the Sun” of Zirin (1988) we find on pages
59–60:
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. . . and the Planck function is

Bν dν =
2hν2

c2
1

ehν/kT − 1
dν

in the frequency scale, while in the wavelength scale

Bλ dλ =
2πhc2

λ5

1

ehc/kλT − 1
dλ.

We must be careful of the differential factor dν = −(c/λ2)dλ which must be
used as we transfer from the frequency scale Hz−1 to the wavelength scale
cm−1. The Planck function has two important asymptotic forms. At long
wavelengths (hν � kT ) the denominator in the equation for Bλdλ becomes
hν and we have:

Bν =
2kT

λ2

which is the Rayleigh-Jeans law. It tells us that when energy is not a
factor, the radiation is proportional to the possible density of photons. For
(hν � kT ), the exponential in the denominator dominates, and

Bν =
2hν3

kT
e−hν/kT ,

which is the Boltzmann law from the fact that the distribution of higher-
energy photons depends on the Boltzmann formula.

Comments?

4.2.3.3 Wien displacement law

The location of the maximum of the Planck curve follows the Wien displacement
law, which is derived by taking dBν/dν = 0 and dBλ/dλ = 0 respectively.
The peak of Bν falls at:

hνmax = 2.82 kT → νmax

T
= 5.88× 1010 Hz K−1. (4.6)

The peak of Bλ falls at:
λmaxT = 0.290 cm K. (4.7)

Question 4.9 Check that the maxima of the curves Bλ and of Bν do not fall at the same
place in the spectrum.

4.2.3.4 Stefan-Boltzmann law

Integration over the whole spectrum provides the Stefan-Boltzmann law:

B ≡
∫ ∞

0
Bν dν =

σ

π
T 4 (4.8)

with:

σ =
2π5k4

15h3c2
= 5.67× 10−5 erg cm−2 K−4 s−1.

The useful expression B = σT 4 does not hold for intensity but for the outward flux
F+ = πI of an isotropically radiating black surface.
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4.2.4 Radiation temperatures

Since the variation of the Planck function with frequency is determined exclusively
by the temperature, the intensity observed from an object can often be best described
by means of a temperature.

4.2.4.1 Brightness temperature

The brightness temperature Tb is the temperature for which the Planck function
reproduces the observed intensity at a particular frequency:

Bν(Tb) = Iobs
ν . (4.9)

This measure is especially useful in the radio region. In that region the Rayleigh-
Jeans approximation holds:

Tb =
c2

2ν2k
Iobs
ν . (4.10)

Question 4.10 How would the definition of brightness temperature appear if the intensity
were observed per unit wavelength?

Question 4.11 Does the brightness temperature of a radio source depend on distance?

Question 4.12 Can you measure the brightness temperature of a point (i.e., unresolved)
source such as a star? And of an extended source such as a nebula if it is
not in TE?

Question 4.13 When is Tb a linear measure of the temperature of an optically thick radio
source? And when for an optically thin radio source?

Question 4.14 Suppose that a homogeneous radio source radiates thermally, i.e., Iν = Bν .
What is the frequency dependence of the radiation received? And what is
the corresponding brightness temperature? Does the optical thickness of the
source matter?

4.2.4.2 Antenna temperature

Radio astronomers often characterize the radiation received from a source by the
antenna temperature TA:

TA ≡ ηATb, (4.11)

with ηA the efficiency factor of the antenna.

TA is the value of Tb as the antenna sees the source, i.e., the temperature of a “surrogate
source of noise”: a source of black radiation that is coupled to the detector in place of
the antenna. A stipulation is that the object fill the whole antenna array, for otherwise
it would not be measuring intensity.

Question 4.15 How large is the antenna temperature of a radio source of size Ωsource (an-
gular measure) if this size is smaller than the inherent angular resolution
Ωantenna of the telescope?
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4.2.4.3 Color temperature

The color temperature Tc is the temperature for which the Planck function repro-
duces the slope of the observed spectrum at the observational frequency:

dIobs
ν

dν

∣∣∣∣∣
ν=ν0

=
dBν(Tc)

dν

∣∣∣∣
ν=ν0

. (4.12)

For example in two-color photometry:

I1
I2
≡ Bλ1

(Tc)

Bλ2
(Tc)

the ratio of two observed intensities determines a temperature. A benefit of this defini-
tion is that it is a relative measurement: the absolute value of Iν need not be known.
Notation: (B-V) ≡ 2.5 log(IV/IB).

Question 4.16 Two-color photometry is frequently applied to stars. How is that related to
the fact that stars are unresolved sources?

Question 4.17 What conditions must prevail in order for two-color photometry of a star to
provide its temperature? Of what part of the star is that then the temper-
ature?

Question 4.18 Check that Tc, just like Tb and TA, is a function of frequency. From three-
color photometry, two color temperatures can be found. Give three reasons
why the color temperatures from the three-color photometry of a star can
differ from one another.

4.2.4.4 Effective temperature

The effective temperature Teff of a source of radiation is the temperature of a black
body which radiates the same total flux:

σT 4
eff = F+

source, (4.13)

thus it is the temperature for which an isotropically radiating black surface radiates
the same total outward flux per cm2 F+ = πB = π

∫∞
0 Bν dν as does one cm2 of

the object.

Question 4.19 Express Teff in terms of the emergent intensity of a spherically symmetric
source.

4.3 Matter in thermodynamical equilibrium

4.3.1 Maxwell distribution

Where there is equipartition of kinetic energy, as is the case in TE, then the
Maxwellian velocity distribution applies. For a type of particle with mass m we
have: For each component of velocity:

n(vx)

N
dvx =

(
m

2πkT

)1/2

e−(1/2)mv2x/kT dvx, (4.14)
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and for the speed:

n(v)

N
dv =

(
m

2πkT

)3/2

4πv2 e−(1/2)mv2/kT dv, (4.15)

with N the total number of particles of this type per unit volume and m the mass
per particle.
The first distribution function is a Gaussian distribution. The second exhibits a
“tail” as a result of the v2 term, see Figure 4.2.

Figure 4.2: The Maxwellian velocity distribution for hydrogen atoms, for a velocity
component and for the speed.

Question 4.20 Derive the second distribution from the first.

Question 4.21 Demonstrate that both distributions are normalized.

Question 4.22 Check by differentiating equation (4.15) with respect to v that the most
probable velocity is given by:

v =
√

2kT/m.

How large is the most probable velocity component? The average particle
energy? The average Doppler velocity along the line of sight?

4.3.2 Boltzmann distribution

In TE, the distribution of the particle populations of a specific type of atom (or
ion or molecule) over the possible discrete excitation states (bound energy levels) is
given by the Boltzmann law:[

nr,s
nr,t

]TE

=
gr,s
gr,t

e−(χr,s−χr,t)/kT . (4.16)

In which:
nr,s = number of atoms per cm3 in level s of ionization state r;
gr,s = statistical weight of level s of ionization state r;
χr,s = excitation energy of level s of ionization state r, measured from the ground
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state (r, 0). Thus χr,s ≡ Er,s − Er,0, and χr,s − χr,t = hν for a radiative transition
between states (r, s) and (r, t), with the level s “higher” (has more internal energy)
than level t.

Another form is: [
nr,s
Nr

]TE

=
gr,s
Ur

e−χr,s/kT (4.17)

with Nr =
∑
s nr,s the sum of the populations of all levels of ionization state r per

cm3, and the partition function or sum over all levels Ur of ionization state r given
by:

Ur ≡
∑
s

gr,s e−χr,s/kT . (4.18)

The Maxwell and Boltzmann distributions are both of the form

NTE =
1∑ e−E/kT

with
∑

the integrated distribution, continuous and discrete respectively.

According to Boltzmann levels become degenerate because magnetic splitting only oc-
curs in the presence of an external magnetic field; the consequent overlapping of levels
is described by the statistical weights gr,s.

The excitation energy χr,s is the “difference in potential energy” between the ground
level (r, 0) and the overlying level (r, s). It is useful to measure energy differences
between levels not in erg but in eV or in cm−1. An energy of 1 eV amounts to 1.6021×
10−12 erg (Allen 1976); wave numbers are defined as σ = cvacν (equation 1.1). In
both cases a zero point must also be adopted; it is useful to measure excitation energy
upwards from the ground level, within each ionization state, such as in the above and
in Appendix ??; the ionization energy is likewise measured from the ground level of the
ionization state in question. Once in a while, excitation energies are given in the reverse
sense, increasing downwards from the ionization limit; that is in accord with the fact
that energy is released in deexcitation, not in excitation.

A large collection of term diagrams and Grotrian diagrams can be found in the books of
Bashkin and Stoner (1975). (Strictly speaking, term diagrams show only the energy and
the identification of the levels, and Grotrian diagrams also contain the bb transitions.
Figure 1.4 is a Grotrian diagram.)

Question 4.23 How much energy in eV does the potential difference between two levels
amount to if the associated spectral line has a wavelength of 500 nm?

Question 4.24 Frequently the Boltzmann ratio between two levels is written as:

log(n2/n1)TE = log(g2/g1)− χ12 θ,

with χ12 in eV. What is θ?

4.3.3 Saha distribution

In TE, the distribution of particles over the ionization states of an element is given
by the Saha law. There are also two versions of this law. For a ground level:[

nr+1,0

nr,0

]TE

Ne =
2gr+1,0

gr,0

(
2πmekT

h2

)3/2

e−χr/kT (4.19)

with Ne the electron density and me the electron mass, nr+1,0 and nr,0 the popu-
lations of the ground states of two adjacent ionization levels, gr+1,0 and gr,0 their
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statistical weights, and χr the ionization energy of level r, i.e., the minimal energy
necessary to remove an electron from an atom in state (r, 0). The factor 2 for the
statistical weight gr+1,0 is the statistical weight of the freed electron; each has ge = 2
on account of the two possible orientations of its spin.
For the entire ionization state:[

Nr+1

Nr

]TE

Ne =
2Ur+1

Ur

(
2πmekT

h2

)3/2

e−χr/kT . (4.20)

Or, with the electron pressure Pe = NekT :[
Nr+1

Nr

]TE

Pe =
2Ur+1

Ur

(
2πme

h2

)3/2

(kT )5/2 e−χr/kT .

See page 260 of Rybicki and Lightman for a derivation.

The Saha formula is a particular form (with Ue = ge = 2 and mA = me � mB =
melement) of the general formula for the constant of equilibrium in the equilibrium
reaction A+B ⇐⇒ AB:

KAB ≡
nAnB

nAB
=

(
2πkT

h2

mAmB

mA +mB

)3/2
UAUB

UAB
e−EAB/kT

which also holds for example for the dissociation equilibrium of molecules.

4.3.4 Saha-Boltzmann partitioning

Together, the Boltzmann and Saha laws provide the ratio of populations within a
single element; these are named in a single breath the Saha-Boltzmann distribution.
To find the particle density in a specific state (number per cm3) for an arbitrary gas
mixture in TE we need besides these two laws:

– element conservation:
∑
rNr = Nelement;

– matter conservation:
∑

element

∑
r ZrNr = Ne.

These equations can be solved by numerical iteration. More often than not, only two
ionization levels of an element are of interest at the same time. The trace elements
with small χr must also be included, because these can contribute significantly to
the electron density Ne (see the table with ionization energy and abundances in
Appendix ??).

To become familiar with the Saha and Boltzmann laws, we give here a numerical ex-
ample, borrowed from lecture notes of A. Schadee.
Take a hypothetical (but iron-like) element E with:
– ionization energy χ0 = 7 eV, χ1 = 16 eV, χ2 = 31 eV, χ3 = 51 eV;
– excitation energy: always with 1 eV increments, χr,s = s eV;
– statistical weights: gr,s = 1 for all levels (r, s);
– three characteristic stellar atmospheres: Pe = 103 dyne/cm2 (for all three) and
T1 = 5 000 K, T2 = 10 000 K and T3 = 20 000 K.

A straightforward calculation then gives the tables below, with N =
∑
Nr the total

particle density of this element and with the notation (-i) for the order of magnitude
≈ 10−i.

Partition functions

Ur 5 000 K 10 000 K 20 000 K

U0 1.11 1.46 2.25
U1 = U2 = U3 1.11 1.46 2.27
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The partition functions appear to be scarcely sensitive to temperature. U0 is a sum
over only 7 levels; the higher levels with r = 1 etc. just barely become noticable above
T =10 000 K (1% difference in the last column). The lowest levels are the most
important, as a result of the rapid decline of the Boltzmann factor e−χ/kT .

Saha

NTE
r /N 5 000 K 10 000 K 20 000 K

r = 0 0.91 (-4) (-10)
1 0.09 0.95 (-4)
2 (-11) 0.05 0.63
3 (-36) (-11) 0.37
4 (-81) (-30) (-5)

In each column there are always only two ionization levels of interest. For T = 5 000 K
this element is primarily neutral (E I), for T = 10 000 K it is singly ionized (E II), and
only at higher temperatures do the second and third ionization states (E III and E IV)
also appear.

Boltzmann

[nr,s/Nr]
TE 5 000 K 10 000 K 20 000 K

s = 0 0.90 0.69 0.44
1 0.09 0.22 0.25
2 0.01 0.07 0.14
3 (-3) 0.02 0.08
4 (-4) 0.01 0.04
5 (-5) (-3) 0.02
6 (-6) (-3) 0.01
10 (-10) (-5) (-3)
15 (-15) (-8) (-4)

A steep decline is seen with χr,s, but it is less steep at higher temperature.

Populations
The populations of the levels are given by the product of the two tables above:

nTE
r,s

N
=

[
nr,s
Nr

]TE
NTE
r

N
.

Level s = 1 contains a higher maximum population for r = 1 (at 10 000 K) then for
r = 0 (at 5 000 K) because the Boltzmann factor increases with temperature. In general
the population of an excited (s > 0) level first increases with increasing temperature,
until the Saha factor NTE

r /N depletes the population again. The excited levels are less
populated than the neutral level. An excited level reaches its maximum population at
a higher temperature than the ground level.
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Question 4.25 For T = 5 000 K and T = 10 000 K the sum of the populations is 1, but not
for T = 20 000 K. Why?

Question 4.26 Account for the fact that in the spectrum of the Sun the Ca II K line is
much stronger than the Hα line, while the abundance ratio of calcium and
hydrogen in the Sun is NCa/NH = 1.7× 10−6.

Question 4.27 A mythical hot star consists of 90% hydrogen and 10% titanium. In the
photosphere hydrogen is 50% ionized. Estimate approximately the distribu-
tion of titanium over the different ionization states and estimate at the same
time the electron density Ne as a fraction of the total particle density N .



Chapter 5

Discrete processes

5.1 Introduction: bound-bound transitions

We turn now from the macroscopic description to the microscopic specification of
the emission and extinction processes by particles. Between two energy levels there
are five different processes possible:

1. spontaneous radiative deexcitation;

2. radiative excitation;

3. induced radiative deexcitation;

4. collisional deexcitation;

5. collisional excitation.

These occur both in bb transitions as well as in bf and ff transitions, and especially so
in a system in which exchange is possible between internal energy and radiation, and
in which consequently energy levels can be defined, whether discrete or continuous
in energy.

In this chapter we examine these five processes for the bb transitions between
discrete levels. The various types of discrete energy levels are:

– levels in the electron configurations of atoms and ions;

– levels in the electron configurations of molecules;

– the rotational levels of atoms in molecules about each other;

– the vibrational levels of atoms in molecules with respect to each other;

– the vibrational levels of atoms in a crystal;

– levels in the hadron configurations of atomic nuclei.

The nature of the configurations and the selection rules (which follow from the Pauli
exclusion principle for fermions) are not treated here. See for example chapters 9
and 11 of Rybicki and Lightman.

53
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5.2 Five transition processes

5.2.1 Spontaneous deexcitation

A particle in an upper level u can decay spontaneously to a lower energy level l, with
spontaneous emission of a photon. The probability that this will occur is defined as
the Einstein coefficient Aul:

Aul ≡ transition probability for spontaneous deexcitation per sec-
ond per particle in state u.

(5.1)

This transition probability is an atomic (or molecular etc.) parameter which does
not depend on external conditions such as pressure, temperature, or the radiation
field. It differs from transition to transition. Its size differs between permitted
transitions, with typical values Aul ≈ 104 − 108 s−1, and forbidden transitions with
Aul ≈ 1 − 102 s−1. The differences are connected with the selection rules that
determine the particle configuration. The values can in principle be calculated from
quantum mechanics, but in in practice must be experimentally determined for non-
hydrogen-like transitions.

The number of deexcitations per second per cm3 is given by:

Rul = nuAul,

with nu the density of the particles in state u (the population). Rul is the rate of
spontaneous deexcitation.

The depletion of the population as a result of spontaneous deexcitation is:

dnu = −nuAul dt

and so the population is diminished according to:

nu(t) = nu(0) e−Ault.

If deexcitations to additional lower levels are possible, then the transition proba-
bilities are summed:

Γu ≡
∑
l

Aul;

the average lifetime of a particle in state u is then Γ−1
u seconds. The Heisenberg

uncertainty principle provides that:

∆E = h̄/∆t ≈ h̄Γu

so that the spread in the energy of a level that is associated with the finite lifetime
is given by ∆ω ≈ Γu. This is the natural line width or radiative damping, with Γu
the damping constant. The associated distribution function ψ(ν−ν0) about the line
frequency ν0 is given by the Lorentz profile:

ψ(ν−ν0) =
Γu/4π

2

(ν−ν0)2 + (Γu/4π)2
. (5.2)

This is the profile function for spontaneous emission. It is normalized according to∫∞
0 ψ(ν−ν0) dν = 1. Compared to the exponential decline of a Gaussian profile, the

wings of the Lorentzian fall off much more slowly, only quadratically according to
ψ ∼ 1/(ν−ν0)2.



5.2. FIVE TRANSITION PROCESSES 55

This Lorentz profile describes the constraint on the lifetime of the upper state imposed
by spontaneous deexcitation. In practice there is also collisional damping as a result of
disturbances by neighboring particles which also contribute to the damping constant Γu.
And there is also macroscopic broadening of the emission profile because the particles
are perturbed by each other and therefore emit photons with observable Doppler shifts.
A Maxwell distribution leads to a Gaussian function; the resulting profile function is
then the convolution of a Gaussian and a Lorentzian and is called a Voigt function.

Question 5.1 Demonstrate that the average lifetime in level u is given by Γ−1
u seconds.

Question 5.2 Demonstrate that ψ(ν− ν0) is normalized. What are the dimensions of
ψ(ν−ν0)?

Question 5.3 How large is the full width at half maximum of ψ(ν−ν0)? And of ψ(λ−λ0)?

5.2.2 Radiative excitation

A photon hν of the radiation field can be used for the excitation l → u. The
probability of such a process is determined by the product of a transition probability,
which depends solely on the nature of the transition, and the probability of the
existence of a suitable photon. Because such a photon may come from any direction,
we describe the second probability with the angle-averaged intensity Jν . As a result
of the fuzziness of the levels, there is also some spread in the energy required. For
this purpose we employ an extinction profile function ϕ(ν−ν0), normalized according
to
∫∞

0 ϕ(ν−ν0) dν = 1 and with dimension [Hz−1]. The angle-averaged radiation
field that can cause the excitation is weighted by that as follows:

J
ϕ
ν0 ≡

∫∞
0 Jνϕ(ν−ν0) dν∫∞

0 ϕ(ν−ν0) dν
=

∫ ∞
0

Jνϕ(ν−ν0) dν, (5.3)

and thus J
ϕ
ν0 is the frequency-averaged, angle-averaged intensity. The dimensions

of J
ϕ
ν0 are [erg s−1 cm−2 Hz−1 ster−1], just as for Jν and Iν . (The index ν0 implies

that the calculation refers to the profile function of the bb extinction coefficient with
central frequency ν0; this index thus specifies the spectral line involved.)

The first probability we define by means of the Einstein coefficient for extinction
Blu so that:

BluJ
ϕ
ν0 ≡ number of radiative excitations per second per particle in

state l.
(5.4)

The excitation rate is given by Rlu = nlBluJ
ϕ
ν0 excitations per second per cm3.

This definition shows that, if radiation falls on a particle from all directions with average
intensity J

ϕ

ν0 , the probability of radiative excitation is given by the product BluJ
ϕ

ν0 . Just
like Aul, Blu is thus defined for the full 4π steradians. The definitions can also be given
for a given bundle with vertex angle dΩ and frequency-averaged intensity Iν0 ; then
BluIν0(dΩ/4π) is the number of excitations per particle with photons in this bundle.
In that case Blu has the same numerical value.

Sometimes A and B are defined to be smaller by a factor 4π, with the number of
excitations per second per particle given by Blu

∫
Iν0 dΩ, for example in Chandrasekhar

(1939), page 191. Also the Einstein coefficients are often defined on the basis of energy
density rather than intensity. These then differ by a factor of c/4π.

Question 5.4 Why do we have J
ϕ

ν0 per Hz when this quantity is integrated over the fre-
quency?

Question 5.5 What are the dimensions of Blu?
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5.2.3 Induced deexcitation

In order to derive the Planck formula, Einstein introduced a third radiative process
and a third coefficient:

BulJ
χ
ν0 ≡ number of induced deexcitations per second per particle in

state u
(5.5)

This definition is analogous to the one for Blu, but with

J
χ
ν0 ≡

∫ ∞
0

Jνχ(ν−ν0) dν

in which χ(ν−ν0) is the normalized profile function for induced = stimulated emis-
sion.

Stimulated emission produces radiation moving in the same direction as the radiation
which triggered the process. A definition per incident bundle is thus also possible here:
then BulIν0(dΩ/4π) is the number of deexcitations induced by a bundle with vertex
angle dΩ that are contributed to the same bundle.

5.2.4 Collisional excitation and collisional deexcitation

For bb collisional processes transition probabilities are similarly defined as:

Cul ≡ number of collisional deexcitations per second per particle
in state u

(5.6)

and

Clu ≡ number of collisional excitations per second per particle in
state l.

(5.7)

The collision rates are: nuCul and nlClu per second per cm3.
These coefficients depend on the density and the particle velocities, and on the

nature of the interaction.

For example, for transitions of state i to state j via collisions with electrons we have:

niCij = niNe

∫ ∞
v0

σij(v) f(v)v dv

with v0 the threshold energy, the minimum kinetic energy required (1/2)mv2
0 = hν0,

Ne the electron density per cm3, σ the collisional cross section and f(v) the velocity
distribution (generally the Maxwellian distribution).

We are usually talking about Coulomb interactions here. For an ionized gas in which
the Maxwellian distribution holds, the fraction of particles above the thresholdenergy is
the same for each type of particle, but the particle velocities and therefore the collisional
frequencies are not the same. From 1

2m <v2>= 3
2kT it follows that:

number of electron collisions

number of ion collisions
∼ Ne <ve>

Nion <vion>
=

Ne
Nion

(
mHA

me

)1/2

with A the atomic weight on the C=12 scale and Nion the ion density per cm3. For
hydrogen this ratio is already

√
mp/me = 43; with the more complete ionization of

heavier atoms, the electrons win out even more convincingly because then Ne > Nion.

In a partially neutral gas it can happen that hydrogen is mostly neutral and that free
electrons are supplied only by elements with lower ionization energies, including Fe,
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Mg and the alkali elements (see Appendix ??). Then collisions with neutral hydrogen
atoms often dominate, on account of the large abundance of hydrogen and the large
polarizability of the hydrogen atom (a consequence of its asymmetrical mass distribu-
tion).

The collisional cross sections σ are usually not well known for electron collisions, and
for collisions with neutral atoms they are almost entirely unknown.

5.3 Einstein relations

Next we express the Einstein coefficients Aul, Blu and Bul defined above in terms of
each other, under the assumption of thermodynamical equilibrium. In TE detailed
balance holds for each process, thus there are as many transitions downwards as
upwards. This holds for each individual process as well: (as many radiating down-
wards as radiating upwards), and it holds also at each frequency, it being implicit
that the profile functions ψ, ϕ, and χ are equal. Therefore in TE we have:

nlBluJ
ϕ
ν0 = nuAul + nuBulJ

χ
ν0

Jν0 ≡ J
χ
ν0 = J

ϕ
ν0

=
nuAul

nlBlu − nuBul

=
Aul/Bul
nl
nu

Blu
Bul
− 1

=
Aul/Bul

gl
gu

Blu
Bul

ehν/kT − 1
,

in which we make use of the Boltzmann law, which holds in TE.
Furthermore, it is true in TE that Jν = Bν . Because Bν changes only slowly

with frequency over the small width of the extinction profile ϕ(ν−ν0) it is usually
also true that Jν0 = Bν , and so:

Bν =
Aul/Bul

gl
gu

Blu
Bul

ehν/kT − 1
.

This formula holds for arbitrary temperature, just as the Planck formula does.
Equating these, we find:

Blu
Bul

=
gu
gl

and
Aul
Bul

=
2hν3

c2
. (5.8)

These are the Einstein relations. There are two equations with three unknowns, and
so you only have to know but a single one to determine the others.

Next we have a typically Einsteinian piece of reasoning. These relationships con-
nect Aul, Bul and Blu without regard to the temperature. Just above we noted that
these coefficients are defined as atomic parameters that do not depend on external
conditions. So if these relationships hold anywhere, they must hold everywhere.
Thus the Einstein relations hold generally, even in media where the assumption of
TE does not hold, or where Jν0 6= Bν or where ϕ 6= χ. These are “detailed balance”
relationships which ensure that in the proper circumstances equilibrium certainly
can occur. This forms a generalization of Kirchhoff’s law (jν = ανBν in TE).
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For the collisional rates there follows similarly for TE:

nlClu = nuCul

thus
Cul
Clu

=
gl
gu

eElu/kT , (5.9)

with the application of the Boltzmann law. This relationship also holds generally,
even outside TE. The knowledge of a single collisional transition probability is thus
enough.

Question 5.6 Do the dimensions tally on the left- and right-hand sides of equation (5.8)?

5.4 Emission coefficient and extinction coefficient

Spontaneous deexcitation provides photons headed in all directions. We define the
output of radiated energy per Hz and per steradian:
Aul = number of spontaneous deexcitations per second per particle in state u,
nuAul = Rul = number of deexcitations per second per cm3,
hν0nuAul = energy radiated per second per cm3,
hν0nuAulψ(ν−ν0) = energy radiated per second per cm3 per Hz,
hν0nuAulψ(ν−ν0)/4π = energy radiated per second per cm3 per Hz per steradian.
Thus we have for the associated emission coefficient:

jspont
ν = hν0nuAulψ(ν−ν0)/4π. (5.10)

Now the radiative excitation. The total energy in a volume dV that is extin-
guished by radiative excitation during dt is:

dEtot = −hν0nlBluJ
ϕ
ν0 dV dt

= −hν0nlBlu dV dt

∫
Jνϕ(ν−ν0) dν

= −hν0

4π
nlBlu dV dt

∫ ∫
Iνϕ(ν−ν0) dΩ dν,

thus the energy dEbundle that is extinguished during a time dt in a given bundle
with intensity Iν , opening angle dΩ and bandwidth dν in dV is:

dEbundle = −hν0

4π
nlBluIνϕ(ν−ν0) dV dt dΩ dν,

and from dV = dA ds and the definitions of intensity and extinction coefficient it
follows that:

αexcitation
ν =

hν0

4π
nlBluϕ(ν−ν0).

Now the stimulated emission. It seems obvious that we should introduce an extra
emission coefficient and then sum this up with the coefficient for spontaneous emis-
sion. However, stimulated emission is much more similar to radiative excitation than
to spontaneous deexcitation; just as before this is proportional to Jν0 . In practice,
these processes always occur together. Consequently the stimulated emission is not
usually included with the emission coefficient but is treated as “negative extinction”,
i.e., as a correction to the extinction.
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Thus we have the line extinction coefficient αlν :

αlν =
hν0

4π
[nlBluϕ(ν−ν0)− nuBulχ(ν−ν0)] (5.11)

and the line emission coefficient jlν remains:

jlν =
hν0

4π
nuAulψ(ν−ν0).

The excitation coefficient αexcitation
ν is a more fundamental quantity than the deexcita-

tion coefficient jspont
ν because the latter depends more strongly on the local radiation

field. This occurs because jν contains the recent history of the excited particle in the
term nu. An atom or molecule can for example be excited to level u prior to the spon-
taneous deexcitation by radiative excitation in the same spectral line (photon scatter-
ing), by radiative excitation in another spectral line or by radiative deexcitation from a
higher level (photon conversion), or by a collisional excitation or collisional deexcitation
(photon creation). Each of these mechanisms counts, and thus the emission coefficient
depends directly on the medium and on the radiation field. The excitation is a form
of internal energy which, in the presence of substantial scattering and conversion of
photons, can be determined primarily by nonlocal conditions; via photons transported
from afar by the radiation field.

The situation is different for the excitation coefficient αexcitation
ν , since the exciting

radiation field itself does not enter into the determination of the coefficient, nor is it
sensitive to recently deposited internal energy. This coefficient is thus governed by the
medium. While it is true that the state of the medium, and thus the population of
the lower level, can be strongly dependent on whatever radiation field may be present,
nevertheless the coupling is much less direct than for a recently excited level.

The introduction of a correction term for the stimulated emission in the line extinction
coefficient blurs this distinction. The line extinction coefficient αlν is then:

αlν =
hν0

4π
nlBluϕ(ν−ν0)

[
1− nuBulχ(ν−ν0)

nlBluϕ(ν−ν0)

]
thus the correction factor is:

1− nuBulχ(ν−ν0)

nlBluϕ(ν−ν0)
= 1− nuglχ(ν−ν0)

nlguϕ(ν−ν0)
.

The correction is large (a large reduction) if the excited level has a relatively large
population. In that case the extinction coefficient is also directly governed by the
radiation field.

Einstein introduced the stimulated emission process only because without it he could
only derive the Wien approximation and not the Planck function. The Wien approx-
imation can readily be deduced because in this case hν � kT , so that according to
the Boltzmann distribution the population nu of the excited level is small and the
contribution of stimulated emission is negligible.

With αlν , Blu, Bul and Aul, we have now four parameters that describe how readily a
bb transition will occur: the bb transition probability. You have only to know but one
(from calculation or measurement). For the most part however we employ none of these
four but rather a fifth parameter: the oscillator strength f . The term stems from the
classical description of a spectral line as a harmonic oscillator, in which the extinction
coefficient per particle σ(ν) is given by (Chapter 6):

σ(ν) =
πe2

mec

Γ/4π2

(ν−ν0)2 + (Γ/4π)2
=
πe2

mec
ϕ(ν−ν0)
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with

σ ≡
∫ ∞

0

σ(ν) dν =
πe2

mec
= 0.02654 cm2 Hz.

The oscillator strength flu is introduced as a correction factor to this classical value,
neglecting the correction for stimulated emission:

σl =

∫ ∞
0

αlν
nl

dν =
hν0

4π
Blu ≡

πe2

mec
flu.

For resonance lines such as Lyα the classical oscillator is a good approximation so that
flu ≈ 1, and so the oscillator strength has a reasonable numerical size. Other permitted
transitions have 10−4 ≤ flu ≤ 10−1; forbidden transitions have flu ≤ 10−6.

We derive the correction for stimulated emission in TE with the use of the Einstein
relations, Boltzmann’s law, and the equality ϕ = χ which is valid for TE, as:

1− nuBulχ(ν−ν0)

nlBluϕ(ν−ν0)
= 1− e−hν0/kT .

This factor is often given as “the” correction for stimulated emission, but strictly speak-
ing it holds only in TE. With this the line extinction coefficient is ultimately represented
as:

αlν =
πe2

mec
nlfluϕ(ν−ν0)

[
1− e−hν0/kT

]
.

And finally we have yet a sixth quantity: the product glflu that is usually referred to
as the “gf–value”. This is the quantity that you will encounter most frequently in the
literature as the “transition probability”.

Question 5.7 What are the dimensions of αlν , jlν , flu and glflu?

Question 5.8 Express the photoexcitation rate Rlu in terms of αexcitation
ν and Iν .

Question 5.9 Express the line extinction coefficient αlλ in terms of flu and the profile
function λ(ν−λ0).

Question 5.10 The H I 21-cm line has Aul = 2.9×10−15 s−1. What is the oscillator strength
of this line? How many hydrogen atoms are needed to provide an optical
thickness of unity in this line?

5.5 Source function

Lastly, the line source function Slν is given by:

Slν ≡ jlν/αlν =
nuAulψ(ν−ν0)

nlBluϕ(ν−ν0)− nuBulχ(ν−ν0)
.

Because the Einstein relations also hold outside of TE, we have a very general result
for the line source function, and in fact for the source function of an arbitrary
radiative transition:

Sν =

Aul
Bul

ψ

ϕ
nl
nu

Blu
Bul
− χ

ϕ

=
2hν3

c2

ψ/ϕ
gunl
glnu

− χ

ϕ

. (5.12)
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The assumption of complete redistribution is frequently made. This states that in the
case of elastic bb scattering, atoms have no “memory”: that the photon resulting
from deexcitation is not correlated with the photon that was responsible for the
excitation. In this case the three frequency distributions are equal because for each
process the statistical distribution is represented anew: φ(ν−ν0) = ψ(ν−ν0) =
χ(ν−ν0). In that case the general line source function simplifies to:

Slν =
nuAul

nlBlu − nuBul
=

2hν3

c2

1
gunl
glnu

− 1
. (5.13)

Question 5.11 Using equation (5.13), demonstrate that Sν = Bν for TE.

Question 5.12 What is the relationship between spontaneous deexcitation and stimulated
emission in TE? Which deexcitation process dominates in the Wien limit,
and which in the Rayleigh-Jeans limit?
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Chapter 6

Continuous processes

6.1 Introduction: four types of interaction

In this chapter we treat the processes which give rise to continuous extinction and
emission. For highly-energetic conditions the relativistic forms are of interest; be-
cause a complete treatment of these requires a knowledge of Maxwell’s equations
and relativity theory, what follows here is only a simplified summary of Chapters 3
through 8 of Rybicki and Lightman. See also Chapter 6 of Harwitt (1988).

There are four global types of continuous radiative processes of interest:

– extinction and emission as a result of the acceleration of a charged particle in an
electric field (the electric field of an EM–wave itself);

– extinction and emission as a result of the acceleration of a charged particle in a
magnetic field;

– effects resulting from collective electric fields;

– extinction and emission as a result of nuclear reactions.

6.2 Radiation from an accelerating charge

From Maxwell’s equations it follows that a particle with an electric charge that ex-
periences an acceleration emits EM radiation. If the acceleration is generated by
incident electromagnetic radiation, a charged particle can also absorb or scatter.
Consider nonrelativistic velocities v � c in vacuum. It follows from Maxwell’s equa-
tions that the EM field generated at a distance r from a charge q that experiences
an acceleration ~̇v = d~v/dt is given by

~Erad(r, t) =

[
q

rc2
~n× (~n× ~̇v)

]
(6.1)

~Brad(r, t) =
[
~n× ~Erad

]
, (6.2)

with c the speed of light and ~n a unit vector in the direction of propagation of the

light ~Erad lies in the plane of ~̇v and ~n; ~Brad is perpendicular to this.

The square brackets on the right-hand sides refer to the fact that at distance r the
acceleration of the charge q is felt only after r/c seconds. This delay is called retardation;

the brackets indicate that the values on the right-hand sides of ~Erad and ~Brad apply to
the “retarded times”: the time lag t amounts to r/c seconds from the moment at which
~̇v, r and ~n are determined. See §§ 2.5 and 3.1–3.2 of Rybicki and Lightman.

63
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For the amplitudes we have:

| ~Erad| = | ~Brad| =
qv̇

rc2
sin θ

with θ the angle between ~̇v and ~n. The flow of energy in the direction ~n in
erg cm−2 s−1 (possibly measured monochromatically per Hz) is given by the Poynt-
ing vector

~S =
c

4π
~Erad × ~Brad

with amplitude:

S =
c

4π
E2

rad =
c

4π

q2v̇2

r2c4
sin2 θ. (6.3)

Through a surface dA during dt the flow of energy is:

dE = |~S| dt dA =
q2v̇2

4πc3
sin2 θ

dt dA

r2
.

With dΩ = dA/r2, we have the angle-dependent power that the particle radiates in
the direction ~n (r/c seconds earlier):

dP

dΩ
≡ dE

dt dΩ
=
q2v̇2

4πc3
sin2 θ. (6.4)

The factor sin2 θ provides a dipole pattern: there is no radiation emitted parallel to
~̇v, and a maximum perpendicular to ~̇v.

Figure 6.1: Dipole radiation from an accelerated charge.

Integration of dP/dΩ over all directions provides the Larmor formula for the
total amount of radiative power:

P =
q2v̇2

4πc3

∫
sin2 θ dΩ =

2q2v̇2

3c3
(6.5)

with the use of
∫

sin2 θ dΩ = 2π
∫ π

0 sin3 θ dθ = 2π
∫+1
−1 (1 − µ2) dµ = 8π/3 with

µ = cos θ.
These equations often hold (in the dipole approximation) for systems of primarily

non-relativistic particles:

dP

dΩ
=

d̈2

4πc3
sin2 θ

P =
2d̈2

3c3
,

with the dipole moment ~d ≡
∑
i qi~ri and θ the angle between

~̈
d and the direction of

propagation of the radiation ~n.
These equations give a classical description in which an EM-field is present all

around an accelerated charge; in reality, however, the radiation field is quantized.
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In the quantum mechanical formulation, not presented here, the Larmor equation is
a statistical distribution for the emission of quanta of radiation, i.e., photons. There
follow below additional classical descriptions which also always translate into photon
processes. For the most part we are concerned with the emission or absorption of
one single photon; the quantum mechanical probability of a second simultaneous
photon is then negligibly small.

6.3 Electrons and electric fields

6.3.1 Free-free transitions

We first discuss the radiative processes that take place during the Coulomb accel-
eration of a free charged particle that moves in the electric field of another parti-
cle: Bremsstrahlung = braking radiation in German. Only those collisions between
dissimilar particles are interesting here, because in collisions of similar particles
(proton–proton, electron–electron etc.) ~d =

∑
qi~ri ∼

∑
mi~ri. The center of mass

of this system is a conserved quantity, and so P = 0 according to the last equa-
tion in the previous paragraph on dipole radiation. (Higher-order radiation such as
quadrupole radiation we leave to outside sources – it is beyond the scope of this
treatment.) Thus we are usually dealing with electron–ion collisions, i.e., with ff
processes.

We take a classical (non-quantum-mechanical) approach. Place the ion at the
origin so that ~d = −e~r with −e the electron charge and consider it stationary on
account of its much larger mass. The Larmor law then gives

P =
2e2

3c3
v̇2

where v̇ is the Coulomb acceleration between electron and ion. This is the in-
stantaneously radiated power; the total ff emission per electron–ion collision we
approximate by

E(b, v) =

∫
P dt ≈ 2e2

3c3
(∆v)2 ≈ 2e2

3c3
(∆v⊥)2,

assuming that the deflection of the electron is negligibly small so that only the
component of the Coulomb acceleration perpendicular to the direction of incidence
matters; this amounts to v̇⊥ = v̇ cos(π/2− θ) = v̇b/r with θ the angle between
direction of incidence and the Coulomb acceleration, and with the distance of closest
approach given by the impact parameter b. With the Coulomb force mv̇ = Ze2/r2

for an ion charge of size Ze if follows from the Pythagorean theorem that:

∆v⊥ =

∫
v̇⊥ dt =

Ze2

me

∫ ∞
−∞

b

r3
dt =

Ze2

me

∫ ∞
−∞

b

(b2 + v2t2)3/2
dt =

2Ze2

mebv

so that

E(b, v) ≈ 8Z2e6

3c3m2
eb

2v2

per electron–ion collision with parameters Z, b and v.
Conservation of energy requires that this radiated energy be provided at the

expense of the kinetic energy. Assuming the ion to be immobile, we find mev
2
1/2 =

mev
2
2/2 + hν in ff emission and mev

2
1/2 + hν = mev

2
2/2 in ff absorption, with v1
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the velocity of the electron before the collision and v2 the velocity afterwards. The
acceleration perpendicular to the path therefore produces a deceleration along the
direction of travel, from whence the name “braking radiation”. This last deceleration
is neglected in the above derivation. In ff absorption this goes the other way round:
the energy of an incoming photon is augmented by the Coulomb acceleration and
results in an increase of kinetic energy.

To arrive at the total macroscopic energy transfer, E(b, v) must be integrated over
2πbdb about the ion and multiplied by the ion density Nion, the flux Nev of electrons
with velocity v and the velocity distribution f(v) dv. The integration boundaries
bmin and bmax require closer analysis, which we skip here. The final result for the
emission coefficient is:

jff
ν = 5.4× 10−39 Z2NeNionT

−1/2 e−hν/kT gff

with Ne the electron density, Nion =
∑

element

∑
s nr,s the ion density (of all ions with

charge Z, for example H+ and He+ togeher) and gff the velocity-averaged Gaunt
factor. This gives the quantum mechanical correction to the classically deduced
remainder of the formula; it is dimensionless, of order unity, and is determined by
the values of bmin and bmax. (The wave and quantum mechanical corrections arise
because the fact must be accounted for that the electrons describe stable Bohr orbits
in an atom, rather than spiralling inward as they radiate in the manner predicted
by this classical description. Consequently the above approach fails for small impact
parameter b because quantum effects are neglected; the Gaunt factor measures the
size of this error.)

The factor T−1/2 appears in jff
ν because the generated emission is inversely pro-

portional to the velocity v (v−2 per collision times v from the electron flux) and for
the average velocity we have <v >∼ T 1/2. The factor exp(−hν/kT ) is a result of
the lower boundary in the integration over the Maxwell distribution: there must be
sufficient kinetic energy on hand to generate a photon of this frequency.

In the case of TE the ff source function is given by the Planck function Bν(T ).
That is also true outside of TE provided that the particle motions are Maxwellian,
because ff processes always exchange kinetic energy and radiative energy. In each ff
emission process a photon is released from the “thermal pool”; there is no intrinsic
record such as occurs for the bb processes by which the escaping photon can be equal
(except in direction) to the photon just arrived. In such elastic scattering there is no
exchange of radiation energy and kinetic energy; in inelastic scattering, which is the
case for the ff processes, the memory of the collision is erased, with a new sample
drawn from the Maxwell distribution. Thus the extinction coefficient, even outside
of TE, is given by

αff
ν = jff

ν /Bν(T ) = 3.7× 108 Z2NeNionT
−1/2ν−3(1− e−hν/kT ) gff .

In this expression T is the kinetic temperature, i.e., the temperature of the Maxwellian
distribution; this is usually called the electron temperature Te. “Outside of TE” means
here that the Saha and Boltzmann equations do not hold for all states a priori, and
that Iν = Bν does not hold a priori for all directions and frequencies. The conclusion
that Sff

ν = Bff
ν implies that under conditions where at least the Maxwellian distribution

holds, the partial source function for the free-free processes is always equal to the Planck
function at that spot, even if that is not the case for other processes. If such other
processes contribute to the particle populations these can deviate from the Saha and
Boltzmann distributions.

The factor 1−exp(−hν/kT ) follows from the −1 in the Planck law and describes
the contribution of induced emission. This was not included in the emission coeffi-



6.3. ELECTRONS AND ELECTRIC FIELDS 67

cient above and therefore results in a reduction of the extinction coefficient. If the
Wien approximation holds (hν � kT ) this correction is negligible:

αff
ν ≈ 3.7× 108 Z2NeNionT

−1/2ν−3gff ,

with frequency dependence αff
ν ∼ ν−3. From a physical standpoint, the correction for

large hν/kT is negligible because the difference between the lower and the higher
energy states is then much larger than can be bridged by thermal energy, thus
the population of the higher state is negligible and the free-free analog of induced
deexcitation hardly matters.
In the Rayleigh-Jeans region (hν � kT ) it follows that:

αff
ν ≈ 0.018 Z2NeNionν

−2T−3/2gff ,

thus there is a frequency dependence αff
ν ∼ ν−2.

6.3.2 Bound-free transitions

There are once again five possible bf processes:

1. photoionization.
A photon of the right frequency is required;

2. spontaneous photorecombination.
A passing capturable electron is required;

3. induced photorecombination.
Both an available electron and a photon of the right frequency are required;

4. collisional ionization.
A passing colliding particle with sufficient energy is required;

5. collisional recombination.
A passing colliding particle and a capturable electron are required.

The last process is a 3-particle collision and is therefore usually rare. The pro-
cesses 1 and 4 require an energy (from the photon or the collision) E > E∞ − En.
The extinction coefficient for each lower level i thus has a limiting value in ν; the
extinction and emission set in suddenly at the series limit ν = ν0 of the line series
with that lower level (Fig. 6.2).

For hydrogen-like spectra (H I, He II, Li III, etc.) the extinction coefficient per
particle for radiative ionization (without correction for induced recombination) from
a level with principal quantum number n for ν ≥ ν0 is given approximately as:

σH
bf =

64

3
√

3

π4me10

c h6

Z4

n5
gbfν

−3 = 2.815× 1029 gbfZ
4n−5ν−3

in cm2; this formula is due to Kramers, except for the additional quantum mechanical
correction factor gbf which was added by Gaunt. The extinction falls off according
to σ ∼ ν−3 for ν > ν0. For more elaborate spectra with more valence electrons (for
example Fe I in which a half-filled shell provides a number of valence electrons and
valence holes) the falloff is disturbed by a variety of peaks in σbf(ν) and must be
determined experimentally.

These five processes are completely analogous to the discrete bb processes. De-
tailed balance relationships due to Milne hold, which agree with the Einstein relations
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Figure 6.2: The extinction coefficient of neutral hydrogen (shaded). The H I bf
extinction coefficient is indicated for the Lyman, Balmer and Paschen series limit
continua. The dashed line gives the H I ff extinction coefficient. Several lines in the
bb line series are indicated, with their name and the principal quantum numbers n
of their lower and upper levels. Each line series becomes compressed towards the
series limit. The ionization continuum near this limit goes as ∼ ν−3, just like the
H I ff coefficient. Sketch by C. Zwaan, for T ≈ 25 000 K.

for bb transitions (see Rybicki and Lightman page 284). In place of the profile func-
tions ψ etc. we now need to integrate over the series limit continuum (ionization
edge): the bf continuum above the series limit ν = ν0. The photoionization rate per
second per cm3 from a bound level i to the continuum k is for example given by:

Rik = 4πni

∫ ∞
ν0

σik(ν)

hν
Jν dν

with ν0 the frequency of the series limit (compare with question 5.8).
Just like the bb processes and in contrast to the ff processes the bf processes

have an intrinsic “memory”: namely the internal part of the energy difference, given
by Ek − Ei. The kinetic portion of the above is continually thermalized, just as
for the ff processes; however, the fixed internal part provides a possibility for elastic
scattering analogous to the elastic scattering in bb pairs of processes. Ionization from
low-lying levels, with a large fraction of internal energy, more closely resembles bb
transitions while ionization from levels close to the continuum more closely resembles
ff transitions. The source function of bf transitions therefore is not simply given by
Sbf
ν = Bν ; it can depend upon the radiation field Jν at the ionization edge.

Question 6.1 The caption to Figure 6.2 implies that αbf
ν depends on the temperature.

How? Do the relative values of αbf
ν at the different series wavelengths also

depend upon the temperature? The density?
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Question 6.2 Does the general expression for Sν in equation (5.12) also hold for bf tran-
sitions? How then does the possible dependence of Jν appear? What is the
bf analog for the profile functions ψ, χ and ϕ?

6.3.3 H− transitions

A special source of bf and ff extinction is provided by the H− ion. A neutral H atom,
by virtue of its large polarizability, can capture a second electron. Only one bound
state is known, with binding energy E∞ − E1 = 0.75 eV and λlimit = 1650 nm.
There are consequently no lines, and there is but one bf continuum which does not
exhibit a sharp ionization edge but rather a broad peak at much higher frequency,
with λmax = 850 nm (Figure 6.3).

Figure 6.3: Extinction coefficient of the H− ion. The bf extinction displays a maxi-
mum at 800 nm. The ff extinction varies as λ2. The sum goes through a minimum
at 1.6 µm.

Note carefully the following terminology:
Hff = proton + free electron;
H−ff = neutral H atom + free electron;
Hbf = ionization of an H atom to a proton, or recombination of a proton with an
electron to form an H atom;
H−bf = ionization of H− ion to an H-atom, or the recombination of an H–atom with
electron to form an H− ion.

These H− bf and ff processes form the dominant source of visual and infrared extinction
in the photospheres of cool stars. Hydrogen is neutral in these stars; the extra electrons
come from elements such as Na, Mg, Si and Fe which have a relatively large abundance
(N/NH ≈ 10−6; see Appendix ??) and an ionization energy lower than that of hydrogen.
The identification of this extinction source by Pannekoek and Wildt was an important
breakthrough; prior to this the nature of the continuous extinction in cool stars was
a large problem. (In Eddington’s book “The Internal Constitution of the Stars” in
1926 the unknown continuous extinction, together with the similarly unknown source
of internal energy of stars, consituted the sole remaining problems of the physics of
stars; these two have since been solved but nevertheless there is still work to be done.)
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Question 6.3 The ff extinction coefficient in Figure 6.3 has αff
λ ∼ λ2 while in Figure 6.2

αff
ν ∼ ν−3. Where does this difference come from?

Question 6.4 For these H− extinction processes Sν = Bν is a good assumption not only
for the ff but also for the bf transitions. Why?

Question 6.5 The bf peak in Figure 6.3 looks anything but hydrogen-like although it
relates directly to hydrogen. Why is that?

6.4 Electrons and photons

6.4.1 Elastic scattering

A charge can also be accelerated by a passing electromagnetic wave: then scattering
occurs because the emitted radiation resulting from this acceleration can have a
different direction from the incident radiation. We treat this scattering first for
nonrelativistic conditions where the dipole approximation holds and for which the
scattering is elastic, with constant frequency and energy and change only in direction.

A particle with charge q resonates with the incident EM–wave. The outward
force that the charged particle experiences is:

~F = q( ~E +
1

c
~v × ~B),

but the Lorentz force (q/c)~v × ~B is negligible because v � c and E = B, thus:

~F = qE0~e sinωt (6.6)

with E0 the amplitude of the wave with which the particle resonates, ~e a unit vector
with direction ~E perpendicular to the incident beam and ω the circular frequency,
defined as ω = 2πν with ν the frequency of the incident radiation.

We describe the resulting deflection x in the direction of ~E as that of a damped,
driven harmonic oscillator:

mẍ+mΓẋ+mω2
0x = qE0 eiωt

with m the mass of the particle and ω0 the resonant frequency of the oscillator. The
damping term mΓẋ describes the energy loss that occurs through the emission of
the radiation. We use complex notation here because this simplifies the solution;
below we retain only the real part <. Substitution of x = x0 exp(iωt) provides

x = <
[
q(E0/m) eiωt

ω2
0 − ω2 + iΓω

]

and with |ẍ|2 = ẍ.ẍ∗ and ẍ = −x0ω
2 eiωt it follows that:

|ẍ|2 =
q2E2

0

m2

ω4

(ω2 − ω2
0)2 + Γ2ω2

.

Substitution in the Larmor formula (equation 6.5) gives the power radiated:

P =
2q2|ẍ|2

3c3
=

q4E2
0

3m2c3

ω4

(ω2 − ω2
0)2 + Γ2ω2

.

What is the extinction coefficient? In equation (3.3) the extinction coefficient per
particle is defined with dIν = −Iνσνn ds; for a single particle n ds = 1 cm−2. The
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decrease −dP of the incident energy P0 is equal to the total energy P radiated
(scattered) in all directions, thus

σ =
−dI

I
=
−dP

P0
=

P

P0

where the incident energy P0 (in erg cm−2 s−1) is given by the time average of the
Poynting flux:

P0 =< S >=
c

4π
E2

0 <sin2 ωt>=
c

8π
E2

0

with the use of < sin2 ωt >= 1/2 (=< cos2 ωt > = < [< exp(iωt)]2 >). Thus the
extinction coefficient is:

σ(ω) = 8π
q4

3m2c4

ω4

(ω2 − ω2
0)2 + Γ2ω2

.

We simplify this by introducing the classical electron radius r0, defined as

r0 ≡
q2

mc2
; (6.7)

this is the size of the charged particle if its rest energy mc2 is equal to the Coulomb
energy q2/r0, i.e., if the magnetic field ~B and relativistic and quantum effects are
negligible. Therefore:

σ(ω) =
8π

3
r2

0

ω4

(ω2 − ω2
0)2 + Γ2ω2

. (6.8)

This extinction coefficient is (a factor of) (mp/me)
2 ≈ 106 times smaller for protons

than for electrons and is smaller still for heavier ions; thus electron scattering will
usually be the most important. With the classical electron radius

re =
e2

mec2
= 2.82× 10−13 cm

and the Thomson cross section defined as

σT ≡
8π

3
r2

e = 6.65× 10−25 cm2 (6.9)

we obtain the extinction coefficient for elastic scattering by harmonically bound
electrons:

σe(ω) = σT
ω4

(ω2 − ω2
0)2 + Γ2ω2

. (6.10)

The scattering is not isotropic; the scattered radiation follows the dipole pattern
of equation (6.4). The differential cross section for scattering into dΩ is then[

dσ(θ, ω)

dΩ

]
pol

=
q4

m2c4
sin2 θ

ω4

(ω2 − ω2
0)2 + Γ2ω2

= r2
0 sin2 θ

ω4

(ω2 − ω2
0)2 + Γ2ω2

.

The angle θ is the angle between the electric field direction ~E and the direction of
radiation ~n. The scattering is the largest in the forward and reverse directions, mea-
sured along the incident radiation, because the acceleration is directed perpendicular
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to the original direction of propagation and the dipole pattern of equation (6.4) and
Figure 6.1 runs perpendicular to the acceleration. The index pol indicates that we
are dealing here with a linearly polarized wave, in agreement with the fixed direction
of ~E that was assumed in equation (6.6). An unpolarized wave may be described as
the superposition of two polarized waves perpendicular to one another:[

dσ

dΩ

]
unpol

=
1

2

[
dσ(θ)

dΩ
+

dσ(π/2)

dΩ

]
(6.11)

=
r2

0

2
(sin2 θ + 1)

ω4

(ω2 − ω2
0)2 + Γ2ω2

=
r2

0

2
(1 + cos2 ϑ)

ω4

(ω2 − ω2
0)2 + Γ2ω2

.

Here ~E1 is chosen in the (~k, ~n) surface with ~k the direction of propagation of the
incident radiation and ~n the direction of propagation of the scattered radiation, ~E2 is
chosen perpendicular to the (~k, ~n) surface, and ϑ is the angle (~k, ~n) with ϑ = π/2−θ.

Figure 6.4: The dipole phase function for elastic scattering of nonpolarized radiation.

The distribution of the scattered radiation over the angle ϑ between incident and
scattered radiation in equation (6.12) is thus [dσ/dΩ]unpol ∼ 1 + cos2 ϑ; this is the
dipole phase function, see Figure 6.4. This does not differ markedly from isotropy:
half as much as is scattered forward or backward is scattered in a perpendicular
direction. Finally, the total extinction coefficient for the scattering of nonpolarized
radiation through electrons amounts to:

[σe(ω)]unpol =

∫ [
dσe

dΩ

]
unpol

dΩ

=
r2

0

2

ω4

(ω2 − ω2
0)2 + Γ2ω2

∫ 2π

0

∫ π

0
(1 + cos2 ϑ) sinϑ dϑ dφ

= σT
ω4

(ω2 − ω2
0)2 + Γ2ω2

,

equal to the cross section for polarized radiation given in equation (6.10). They are
the same because an electron at rest has no preferred direction.

6.4.1.1 Rayleigh scattering

The extinction coefficient σe in equation (6.10) depends on the difference between
the radiation frequency ω and the resonant frequency ω0. The last is given by the
eigenfrequency of the harmonically bound electron, i.e., a bound electron in an atom
or molecule which may resonate harmonically. The chance of such an oscillation is
given for actual transitions by the oscillator strength flu which can be viewed as a
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quantum mechanical correction factor to the classical harmonic oscillator. This is
of order unity for resonance lines, i.e., for permitted bb transitions of the valence
electron from the ground level of an atom or ion; for hydrogen for example, this is
the Lyman series. For other transitions flu is much smaller. Then the extinction
coefficient for elastic scattering by atoms or molecules per particle in the ground
state l and per resonance transition lu is given by:

σe(ω) = flu σT
ω4

(ω2 − ω2
0)2 + Γ2ω2

, (6.12)

with ω0 = 2πνlu the circular frequency of the bb transition.

Figure 6.5: Extinction as a result of electron scattering, in units of the Thomson
cross section σT = (8π/3)r2

e . 1 = Rayleigh scattering, 2 = resonance scattering, 3
= Thomson scattering, 4 = Compton scattering.

Figure 6.5 shows the variation of σe/σT with ω/ω0. There are four different
domains. The first domain is that of the Rayleigh scattering with ω � ω0. For this
we have:

σR
e (ω) ≈ flu σT

(
ω

ω0

)4

. (6.13)

The incident wave vibrates so slowly with respect to the resonant frequency ω0

that the valence electron resonates without inertia: for ω � ω0 the fluctuations of
the external electric field are experienced as quasistatic. Damping is negligible and
higher frequencies are scattered much more strongly than lower ones.

6.4.1.2 Resonant scattering

The second domain in Figure 6.5 has ω ≈ ω0 so that:

σe(ω) ≈ flu σT
ω2

0

4(ω−ω0)2 + Γ2

A more precise specification of the radiative damping term Γ yields (Rybicki and
Lightman §§ 3.5–3.6):

Γ =
2e2ω2

0

3mec3

so that

σT ω
2
0 =

4πe2

mec
Γ,

and

σle(ω) =
2π2e2

mec
flu

Γ/2π

(ω − ω0)2 + (Γ/2)2
.

This is the extinction coefficient per particle for a spectral line with frequency ω =
ω0, as mentioned in § 5.4.
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Without the correction factor flu this is the resonant oscillation of an undriven, bound
oscillator, because such a free vibration can be excited by a pulse of incident radiation
of the right frequency. It can also be derived directly from ẍ + Γẋ + ω2

0x = 0. This is
the classical description of a spectral line as a resonant oscillation and is therefore the
reason that the most probable bb transitions are called “resonance transitions”, and
the associated spectral lines “resonance lines”. The function

ψ(ω−ω0) =
Γ/2π

(ω−ω0)2 + (Γ/2)2

is that given in equation (5.2) as the Lorentz profile that describes the broadening of
the spontaneous emission profile through radiative damping.

6.4.1.3 Thomson scattering

The third domain in Figure 6.5 has ω � ω0 so that σe(ω) ≈ flu σT. For bound
electrons this approximation holds if the energy of the incident radiation is so large
that the binding energy is negligible, i.e., if the electron behaves as a free particle.
Then the classical harmonic oscillator is an exact description, thus flu = 1.

This does make one suppose that the Thomson cross section σT is the extinction
coefficient for elastic scattering by free electrons, called Thomson scattering. That
is correct; this can be derived directly from the equation of motion meẍ = eE0 sinωt
of a free electron that oscillates with the incident wave without damping and conse-
quently follows here from equation (6.10) by setting to zero the resonant frequency
ω0 and the damping parameter Γ. Thus we have for Thomson scattering by free
electrons:

σT
e (ω) = σT =

8π

3
r2

e = 6.65× 10−25 cm2, (6.14)

independent of the frequency of the incident radiation. The differential extinction
coefficient for Thomson scattering of nonpolarized radiation is (equation 6.12):[

dσT
e

dΩ

]
unpol

=
r2
e

2
(1 + cos2 ϑ) (6.15)

with ϑ the angle between incident and scattered radiation.

Question 6.6 Explain the blue color of the sky. Does the light of the daytime sky contain
spectral lines?

Question 6.7 Check that the extinction coefficient for Thomson scattering by free electrons
is much larger than for Rayleigh scattering by bound electrons throughout
the entire frequency regime where Rayleigh scattering occurs. In what cir-
cumstances will Rayleigh scattering nevertheless be important?

Question 6.8 What is the extinction coefficient αT for Thomson scattering and what is
its frequency dependence?

Question 6.9 What is the source function for Thomson scattering?

6.4.2 Inelastic scattering

6.4.2.1 Compton scattering

Just as with Thomson scattering, we are also concerned here with collisions between
photons and free charges (electrons), but now, in the fourth domain of Figure 6.5,
with photons of high energy for which the approximation no longer holds that the
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Coulomb energy is the total energy of the particle, because now the energy hν of
the photon must also be included. The scattering is then inelastic: the EM-wave
loses energy to the electron. The size of the energy loss follows by combining, for
an initially stationary electron, energy conservation

hν1 +mec
2 = hν2 +mc2

and momentum conservation

hν1

c
=
hν2

c
cosϑ+mv cosϕ and 0 =

hν2

c
sinϑ−mv sinϕ,

with mec
2 the rest mass energy and the mass m given by:

m =
me√

1− v2/c2
= meγ

with γ ≡ 1/
√

1− v2/c2. The elimination of ϕ and mv provides:

hν2 =
hν1

1 + (hν1/mec2)(1− cosϑ)

and consequently
λ2 − λ1 = λc(1− cosϑ) (6.16)

with λ2 > λ1 and λc the Compton wavelength, defined as

λc ≡
h

mec
= 2.4× 10−3 nm, (6.17)

The loss of energy of the photon is negligible for hν � mec
2 = 0.5 MeV or λ� λc;

this is the Thomson condition for elastic scattering. The relative decrease ∆ν/ν =
−∆λ/λ = −(λc/λ)(1 − cosϑ) is large for γ–radiation and negligible in the optical
spectral region.

The collisional cross section is given by the Klein-Nishina formula, which is not derived
here. It varies with the photon energy. In the extremely relativistic domain where

x ≡ hν

mec2
� 1

we have that

σ =
3

8
σT

ln 2x+ 1/2

x
.

6.4.2.2 Inverse Compton scattering

Instead of an energy transfer from energetic photons to charges “at rest” we now
have the opposite: an energy transfer from energetic particles (usually relativistic
electrons) to photons. We now need to make the relativistic distinction between the
LRS = laboratory reference system = “observers reference frame” on the one hand
and the PRS = particle reference system = “comoving system” = “rest frame” on
the other hand.

First the Doppler effect. During one radiation cycle a source moves a distance
v∆t from point 1 to point 2 at an angle θ with respect to the line of sight. The path
length difference projected onto the line of sight is d = v∆t cos θ.
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Then the difference between the arrival times of the radiation emitted at point 1
and at point 2 at the position of the observer is:

∆tobs = ∆t− d

c
= ∆t [1− (v/c) cos θ] .

This time difference corresponds to one cycle of the radiation, thus the observed
frequency νobs = 1/∆tobs is given by

νobs =
ν

1− (v/c) cos θ
.

This is the classical Doppler effect. The same formula holds for the relativistic
Doppler effect, but then with an extra factor γ ≡ 1/

√
1− v2/c2 as a result of time

dilation:
ν ′ = νγ(1− v

c
cos θ) and ν = ν ′γ(1 +

v

c
cos θ′),

in which quantities that are measured in the PRS are designated with primes.
The angle θ measured in the LRS between the wave vector and the source velocity
~v is transformed into θ′ in the PRS according to:

sin θ =
sin θ′

γ(1 + (v/c) cos θ′)
and sin θ′ =

sin θ

γ(1 + (v/c) cos θ)
.

Consider a radiating object that is moving towards us with relativistic velocity
(γ � 1). Radiation that is emitted perpendicular to the line of sight in the rest
frame of the object (PRS) (θ′ = 90◦) has sin θ ≈ θ ≈ 1/γ � 1, and thus radiation
that is emitted isotropically in the PRS is strongly peaked in the forward direction
when observed in the LRS. This is the relativistic beaming effect (Figure 6.6).

Particle Reference System

Laboratory Reference System

Figure 6.6: The relativistic beaming effect. Isotropically emitted radiation is observed
to be strongly peaked in the forward direction. Above: emission pattern in the PRS;
at left, an isotropic distribution, in the middle, a dipole distribution with the dipole
pointing towards the right, at right, a dipole distribution with the dipole pointing
upwards. Below: the associated emission pattern in the LRS, for relativistic motion
to the right. The beam width is only ∼ 2/γ. The observer is to the right. (see
Rybicki & Lightman Figure 4.3 and 4.11)

Consider now a relativistic electron that scatters radiation. In an isotropic ra-
diation field (isotropic in the LRS, thus in θ) that electron “sees” a radiation field
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coming towards it that is strongly peaked in its direction, with a correspondingly
higher frequency:

ν ′1 = ν1γ(1− v

c
cos θ)

where the index 1 indicates the situation before the scattering. For θ = 90◦ the
frequency increase is ν ′1/ν1 = γ. The Thomson condition for elastic scattering in
the PRS is hν ′1 = hν1γ � mec

2 = 0.5 MeV; if this condition is satisfied then the
scattering in the PRS is elastic and we have ν ′2 = ν ′1. In the LRS we then have for
the scattered radiation:

ν2 = ν ′2γ(1 +
v

c
cos θ′) = ν1γ

2(1 +
v

c
cos θ′)(1− v

c
cos θ).

The scattering angle will follow the dipole phase function, and thus be roughly
isotropically distributed; therefore we have:

ν2 ≈
4

3
γ2ν1. (6.18)

For large γ there is thus a considerable energy increase (“hardening”) of the photons,
which goes roughly as γ2. Thus X-ray photons can be created from a more moderate
radiation field. The Thomson limit needs to be observed in the PRS. We must certainly
have that hν1γ � 0.5 MeV we must have that hν′1 < 0.5 MeV, for example hν′1 =
100 keV. With γ = 10 you then can obtain 1 MeV LRS photons from 10 keV LRS
photons. However the Thomson limit is easily violated; for γ = 100 (probably the case
in AGN’s) this requires that hν1 < 5 keV.

Relativistic electrons in an intense radiation field will undergo inverse Compton scat-
tering many times over. The radiation is hardened and the particles are slowed down;
there is thus exchange of energy between the particles and the radiation field.

6.5 Electrons and magnetic fields

6.5.1 Cyclotron radiation

We now treat the acceleration of a charged particle (electron) in a magnetic field by
the Lorentz force. First of all consider nonrelativistic velocities, γ = 1. An electron
spirals around the magnetic field lines; we divide this motion into a single motion
along the field and a circular motion perpendicular to it. Resolving the electron
velocity ~v into components v‖ ‖ ~B and v⊥ ⊥ ~B and setting the Lorentz force equal
to the centripetal force yields:

mev
2
⊥

RB
=
ev⊥B

c
,

thus
RB =

mev⊥c

eB
(cgs) =

mev⊥
eB

(mksA). (6.19)

RB is the Larmor radius or gyro radius. The acceleration is directed along RB. The
frequency of the associated radiation is given by the number of cycles per second:

νB =
v⊥

2πRB
=

eB

2πmec
(cgs) =

eB

2πme
(mksA). (6.20)

This is the Larmor frequency or cyclotron frequency.
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The radiated power follows from the Larmor formula (equation 6.5):

P =
2

3

e2

c3
v̇2
⊥.

The magnitude of the acceleration along RB is given by the magnitude of the Lorentz
force: v̇⊥ = (eB/mec)v⊥, and thus

P =
2

3

e2

c3

(
eB

mec

)2

v2
⊥ =

2

3

(
e2

mec2

)2
B2

c
v2
⊥ =

2

3

r2
e

c
B2v2

⊥

with re = e2/(mec
2) the classical electron radius. For an isotropic velocity distribu-

tion of the electrons we have:

<v2
⊥>=

v2

4π

∫
sin2 α dΩ =

2

3
v2

with α the pitch angle ( ~B,~v) using
∫

sin2 α dΩ = 8π/3. Thus:

<P >=
4

9
r2

e

v2

c
B2 =

4

3
σT
v2

c

B2

8π

with the Thomson cross section σT = (8π/3) r2
e .

In a homogeneous magnetic field there is monochromatic emission at the frequency νB:
a single spectral line. Such cyclotron lines are observed in the X-ray spectra of pulsars.

6.5.2 Synchrotron radiation

Without proof we state that for relativistic velocities similar formulae hold as for
cyclotron radiation, with an extra correction factor γ = (1 − v2/c2)−1/2. The gyro
frequency associated with the circular motion of an electron is then in cgs units:

νg =
νB
γ

=
eB

2πγmec
(6.21)

and the radiated power becomes:

P =
4

3
σT
v2

c
γ2B

2

8π
,

for a homogeneous field and an isotropic velocity distribution. With respect to
cyclotron radiation the frequency decreases and the power increases. Furthermore
relativistic beaming also occurs here: the emission is strongly peaked in the forward
direction along ~v, with a half angle 1/γ. As it sweeps around, this cone of radiation
rapidly passes across the observer’s view, and thus is visible for only a fleeting
moment. The duration is only γ−3 times the period of revolution: one γ−1 from the
vertex angle of the cone, and then γ−2 from the time dilation to and from the PRS
via the LRS. These recurring bursts have a characteristic frequency:

νc =
3

2
γ2νB sinα =

3

2
γ3νg sinα (6.22)

in which α is again the pitch angle ( ~B,~v). This is the synchroton frequency. For
γ � 1 we have νc � νB.
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In Fourier terms: cyclotron radiation is a decent, continuous pure sine wave of EM
radiation in which the spectrum, i.e., the Fourier transform, is a sharp spectral line.
On the other hand, synchrotron radiation consists of sharp pulses. They follow one
another with the cyclotron frequency but their pulse width is γ3 times smaller. The
spectrum, i.e., its Fourier transform, is a broad system of higher harmonics of the
cyclotron frequency that extends up to the Nyquist-frequency 2νc. In other words:
because of the short duration of the flash, the higher harmonics of the Larmor motion
up to 2νc are present. Because the radiation is so strongly peaked forwards, there are
many of these higher harmonics of νB: the observed amplitude is no longer a sinusoid.
Synchrotron radiation therefore has a broad spectrum consisting of higher harmonics
of νB that extends to approximately νc. In the presence of smearing, for example by
the distribution of particle velocities at a given spot (thus in γ, thus in the duration of
the flash), or in spread in direction and strength of the magnetic field within a source,
this gives rise to a continuum.

If the relativistic particles have an energy distribution that follows a power law:

N(E) dE ∼ E−p dE of N(γ) dγ ∼ γ−p dγ

then for the total emitted power we have:

Ptot(ν) ∼
∫
P (ν)γ−p dγ ∼ ν−(p−1)/2,

thus the spectral index s in P ∼ ν−s is s = (p− 1)/2 for synchrotron radiation.

There is a direct analogy with the ff processes for charged particles accelerated in a
Coulomb field. Thus synchrotron absorption can also take place: excitation of an elec-
tron into a “higher” Larmor orbit. There is likewise induced synchrotron emission:
synchrotron deexcitation with the ambient radiation field. Finally: synchrotron radia-
tion is polarized because the magnetic field defines a preferred direction.

6.6 Collective processes

In these lecture notes it is everywhere assumed that the index of refraction n = 1.
Here we give a short summary of phenomena for which the index of refraction is of
interest; a more extensive treatment is given in courses on plasma astrophysics.

6.6.1 Dust and droplets

Valence electrons in atoms and molecules, resonating with the incident radiation,
give rise to Rayleigh scattering. For larger particles there is a transition, from
Rayleigh scattering off dielectric globules to diffraction phenomena by particles
locked into a medium with effective cross section σ = πr2. Thus the phase function
changes with respect to the dipole phase function for Rayleigh scattering towards
increasingly stronger beaming in the forward direction. See Table 6.1. In all these
processes we encounter partial polarization.

6.6.2 Cherenkov radiation

This is the radiation of a charged particle that moves with a velocity v > c/n
in a medium with index of refraction n > 1. Then c/n is the phase velocity of
EM radiation in the medium, and the particle goes faster. Just as with the “sonic
boom” of a supersonic jet, a shock wave occurs, with associated loss of energy. This
is an efficient mechanism for slowing down the cosmic particle flux in the Earth’s
atmosphere.
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name diameter λ-dependence phase function

Rayleigh d� λ ∼ λ−4

Mie d ≈ λ
w�

diffraction d� λ ∼ λ0

Table 6.1: Elastic scattering by larger particles.

6.6.3 Plasma cutoff

The ions and the electrons in a plasma can be separated from one another by the
Coulomb force of a passing EM wave because the electrons are much more mobile
then the ions. For sufficiently low frequencies this separation provides a counterforce
which works against the further propagation of the wave. This certainly happens
for frequencies smaller than:

νp = 9× 103
√
Ne Hz (6.23)

with νp the plasma frequency below which EM waves cannot propagate. For ν > νp
the index of refraction is:

np =
√

1− ν2
p/ν

2.

6.6.4 Faraday rotation

The propagation of an EM wave in a plasma can be disturbed by a magnetic field.
Speaking heuristically: a linearly polarized wave ( ~E in some preferred direction)
can be thought of as a superposition of a left- and a right-circularly polarized wave.
When propagation occurs parallel to the magnetic field, one circular polarization
direction fits but the other does not. The result: the polarization is altered.

6.6.5 Razin cutoff

In a plasma with np < 1 no Cherenkov radiation can occur. The vertex angle of the
cone of the relativistic beaming effect changes according to:

θbeam ≈
1

γ
=
√

1− v2/c2 → θbeam ≈
√

1− n2
pv

2/c2.

For np < 1 the beaming effect is thus suppressed. Since it is this beaming which
provides synchrotron radiation provides via pulsation, there is a cutoff frequency
determined by np, thus νp, below which no synchrotron radiation can occur:

νRazin = γνp
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6.7 Nuclear reactions

Finally for the sake of completeness we present radiative processes resulting from
nuclear reactions.

6.7.1 Fusion and fission reactions

For example 4p→ α+ 2ν+ 2γ occurs as a result of the various proton-proton cycles
in hydrogen-burning stars. The whole star is optically thin to the two neutrinos.
The two γ photons are the source of starlight.

6.7.2 Pair annihilation and pair creation

e+ + e− → γ + γ

A highly energetic positron collides for example with a stationary electron and pro-
duces one γ-photon with large hν and one γ-photon with hν = mec

2. This 0.511 MeV
line is observed in solar flare spectra. Another example is the annihilation contribu-
tion to the 3 K background radiation.

Furthermore:

e+ + e− → γ only for bound electrons, otherwise momentum cannot be conserved;
γ + γ → e+ + e− with the condition that hν1 × hν2 > (mec

2)2;
γ → e+ + e− in a collision with an atom;
γ → µ+ + µ− in a collision with an atom;
π◦ → γ + γ etc.
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Chapter 7

Radiative transfer

7.1 Introduction: different types of equilibrium

Chapter 3 discussed radiative transport in homogeneous slabs and the emergent
intensity for slabs with a given source function Sν . In this chapter we treat the
radiation from inhomogeneous slabs and the source function itself. We do this for
various types of equilibrium situations.

7.1.1 Thermodynamical Equilibrium (TE)

In thermodynamical equilibrium (TE) Sν = Bν holds for each subprocess and also for
the total source function; specification of the subprocesses is therefore not necessary.
In TE it also is true that the profile functions are equal (χ = ϕ = ψ) and for all
radiative quantities the identity holds: Iν = Jν = Sν = Bν(T ). The populations
are given by the Saha–Boltzmann distribution and the kinetic energy distribution
follows the Maxwell law, with the same temperature in all distribution laws. There
is “detailed balancing” between each process and its opposite, at each frequency
and for each bundle. There is no net transport of energy: Fν = 0, and there are no
spectral lines. This is easy to calculate but not very helpful regarding evaluation of
energy fluxes or diagnostic interpretation of spectral lines.

7.1.2 Local Thermodynamical Equilibrium (LTE)

In local thermodynamical equilibrium (LTE) it is assumed that the matter is in equi-
librium with the ambient kinetic temperature. The radiation may, however, deviate
from this temperature and the temperature may vary (slowly) through the medium.
The Maxwell, Boltzmann and Saha laws hold, with T the ambient temperature that
is determined by the thermal particle motions (electron temperature). It is also as-
sumed that complete redistribution holds so that χ = ϕ = ψ. With this assumption
the populations follow the Saha-Boltzmann TE-distribution and the extinction coef-
ficients are determined. For the source function it follows from the general expression
(equation 5.12) that:

Sν =
2hν3

c2

ψ/ϕ
gunl
glnu

− χ/ϕ

=
2hν3

c2

1(
gunl
glnu

)TE

− 1
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=
2hν3

c2

1

ehν/kT − 1
= Bν(T ).

The essence of LTE is that the energy distribution of matter is more locally deter-
mined and maintained by collisions than that of radiation, so that the radiation but
not the matter can depart somewhat from the local conditions:

Slν(~r) = Bν [T (~r)] Iν(~r) 6= Bν [T (~r)] Jν(~r) 6= Bν [T (~r)] Fν(~r) 6= 0.
(7.1)

According to the assumption of LTE the matter resides in a sufficiently small TE-
cylinder that the different thermal conditions elsewhere are not reflected in the
populations. However, the ambient local radiation has indeed some knowledge of
more distant regimes. The free path length for particles is thus assumed to be
somewhat smaller than for photons, but the photons don’t carry enough information
about circumstances elsewhere to drive the populations from their local equilibrium
values.

LTE is thus a very pleasant assumption that reconciles the convenience of TE with the
need for at least some variation through the medium. It is a common assumption that
sometimes is valid, notably for stellar photospheres. Both the extinction coefficient and
the source function are determined in a simple way in LTE. Evaluation of the extinction
coefficient αν demands only a knowledge of the extinction coefficient per particle σν (or
the equivalent transition probability Aul, oscillator strength ful, gf -value), the chemical
composition of the gas mixture and the critical quantities of pressure and temperature.
From the Saha and Boltzmann laws nTE

r,s is derived for all populations and αν = nr,sσν
is determined for all transitions of interest; their source function follows directly from
the temperature by means of the Planck function. Thus you can analyze a single
spectral line without being concerned with other transitions and wavelength regions.
This applies to some extent to continuous processes as well as to spectral lines; a
continuous transition can also be thought of as a jump between two levels.

Question 7.1 Which role does the relationship between collisional excitation, collisional
deexcitation, collisional ionization, collisional recombination etc. on the one
hand and radiative excitation, radiative deexcitation, radiative ionization,
radiative recombination etc. on the other hand play in the applicability of
LTE?

Question 7.2 Give examples of situations in which LTE truly holds and of situations in
which LTE certainly does not hold.

7.1.3 Statistical Equilibrium (SE)

The assumption of statistical equilibrium (SE) implies a static situation: a time
independence of the radiative fields and level populations. For the latter then the
statistical equilibrium equations hold:

dni(~r)

dt
=

N∑
j 6=i

nj(~r)Pji(~r)− ni(~r)
N∑
j 6=i

Pij(~r) = 0 (7.2)

with ni the population of the level i in which we are interested, N the total number
of levels that have influenced this population by means of one or another process,
and Pij the total transition probability per second for a transition from level i to
level j:

Pij = Aij +BijJν0 + Cij ,
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with Aij , Bij and Cij the Einstein coefficients for bb transitions from Chapter 5 or
the analogous transition probabilities for other processes such as bf and ff transitions;
Jν0 is the frequency-averaged, angle-averaged radiative field, for example, that for bf
processes averaged over the series limit continuum. The first sum in equation (7.2)
gives the increase of the population of level i from transitions from all other levels j
to i; the second sum gives the decrease of the population of i from transitions from i
to all other levels j. These equations boil down to: per unit time there are as many
transitions into a level as out of it, but no microscopic equilibrium per subprocess.
The deficit in one process is made up by a surfeit of another.

These population equations for statistical equilibrium are coupled to the equa-
tions for radiative transport

dIν(~r)

dτν(~r)
= Sν(~r)− Iν(~r)

at all frequencies ν and along all bundles of interest for some population. The
transition probabilities Pij in the statistical equilibrium equations always depend on
Jν and thus on Iν in all directions, while the optical thickness τν and the source
function Sν in the transport equations both again depend on the populations via αν .
The connection between Iν and Sν is moreover usually not linear. The result is a
system of nonlinear coupled equations, often quite large, that must be simultaneously
(i.e., mutually consistently) solved for each place in the medium, for all frequencies
and along all bundles that participate in the population processes.

If you may assume LTE you can bypass this detailed specification of Pij and this
involved solution of a large system of nonlinear equations. That’s why the assumption
of LTE is very often made without substantiation. Frequently that is incorrect; then
there’s nothing else to do but to assume SE only. If SE also does not hold then the
time-dependent equations must be solved. If the Maxwellian distribution does not hold
and axial symmetry cannot be assumed, then a supercomputer is soon required.

7.1.4 Non-Local Thermodynamical Equilibrium (NLTE)

The acronym NLTE or non-LTE means that the assumption of LTE is not valid.
This does not indicate what is valid instead. Usually, however, it means that SE
is assumed, that the Maxwell distribution holds and that complete redistribution
(CRD) occurs. Then the populations can differ from the local Saha-Boltzmann
values. That implies that the extinction coefficient can differ from its local LTE
value and that the source function can differ from the local Planck function.

A more general step is to drop not only the Saha-Boltzmann population distri-
bution but also the equality of the profile functions: ψ 6= ϕ. This is not complete
but rather “partial” redistribution (NLTE-PRD). The line source function is then
frequency-dependent: within a spectral line the source function varies with the fre-
quency, depending on differences between the profile functions. Such differences may
occur in strong lines with many scattering processes if the radiation fields vary across
the line. That is quite possible because the free path length of a photon in the far
wing of a strong line is much larger than in the core of the line so that the line wings
have more knowledge of more distant radiative sources and radiative losses than the
core. In that case the statistical equilibrium equations must be solved monochro-
matically, with a redistribution function that represents how much “crosstalk” there
is with other parts of the line profile.
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Question 7.3 Frequently NLTE–departure coefficients bi are defined by:

bl = nl/n
LTE
l bu = nu/n

LTE
u

that specify the departure of the true population with respect to the TE
population following from the Saha and Boltzmann laws for the local tem-
perature T . How do they appear in the line source function Slν and in the
line extinction coefficient αlν?
Demonstrate that in the Wien approximation the line source function scales
linearly with bu/bl, and the line extinction coefficient with bl.

Question 7.4 It is frequently thought that NLTE always means Slν 6= Bν for the formation
of a spectral line, but it is also possible that Slν = Bν for a line that does
not satisfy LTE. How is this?

7.2 Radiative transfer in LTE

If LTE holds the source function is simply determined by the ambient temperature,
and the extinction coefficient by means of the Saha–Boltzmann laws. Radiative
transport for a given source function has already been discussed in Chapter 3. All
of the results there apply here with the simple substitution:

Sν(~r) = Bν [T (~r)] .

The transport equation (equation 3.15) therefore becomes

dIν
dτν

= Bν(T )− Iν

for optical thickness,

µ
dIν
dτ ′ν

= Iν −Bν(T )

for radial optical depth and axial symmetry; in the Rayleigh-Jeans approximation
we have for the brightness temperature

dTb

dτν
= T − Tb.

The integral form (equation 3.16) becomes

Iν(τν) = Iν(0) e−τν +

∫ τν

0
Bν [T (tν)] e−(τν−tν) dtν ;

for a homogeneous slab this results in (equation 3.17)

Iν(D) = Iν(0) e−τν(D) +Bν(T )
(
1− e−τν(D)

)
and the Eddington-Barbier approximation for the intensity from an optically thick
slab (equation 3.21) becomes

I+
ν (τ ′ν =0, µ) ≈ Bν

[
T (τ ′ν =µ)

]
.
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7.2.1 Radiation from a thin LTE slab

For an optically thin homogeneous slab in LTE of thickness s the emergent intensity
is

Iν(s) = Iν(0) + [Bν(T )− Iν(0)] τν(s)

with the incident intensity in the direction of radiation equal to Iν(0). In the
Rayleigh-Jeans approximation this is:

Tb = Tb(0) + [T − Tb(0)] τν(s); (7.3)

this expression is often employed in radio astronomy. For an optically thick homo-
geneous LTE slab then we have just Tb = T , or TA = ηAT with TA the antenna
temperature.

7.2.2 Radiation within a thick LTE medium: the Rosseland ap-
proximation

In TE Sν = Bν and Iν = Bν holds. For the interior of optically very thick objects
such as stars, this is a zero-order approximation: the free path length of the photons
is small with respect to the scales on which the temperature and density change — a
cubic centimeter of a stellar interior is a TE box to a good approximation. Yet this
zero-order approximation is unsatisfactory because then there is no energy transport
at all by radiation: the net flux Fν = 0 if Iν = Bν in all directions. In stellar interiors
the net flux is indeed very small with respect to the angle-averaged intensity, but it
is the net flux that interests us: it is what flows out that is important, both for us
as observers in the form of a diagnostic as well as for the star itself in the form of a
loss of energy, which determines its structure and lifetime. Thus the anisotropy of
the radiation field, however small, must be explicitly included.

For axial symmetry and with the use of radial optical depth the transport equa-
tion is:

Iν(z, µ) = Sν + µ
dIν
dτ ′ν

.

Substitution of the zero-order approximation Iν(z) ≈ Sν(z) ≈ Bν(z) provides

Iν(z, µ) = Bν(z) + µ
dBν(z)

dτ ′ν
,

in which the intensity differs from the Planck function only to first order. This
approximation is valid provided that LTE holds and the correction dBν/dτ

′
ν is small

with respect to the isotropic part Bν . The flux is then determined through the small
anisotropic component µ dBν/dτ

′
ν :

Jν(z) =
1

2

∫ +1

−1
Iν dµ = Bν(z)

and

Fν(z) = 2π

∫ +1

−1
µ Iν dµ =

4π

3

dBν(z)

dτ ′ν
.

This monochromatic flux is however uninteresting in the unobservable stellar inte-
rior; of more interest is the total energy flow:

F(z) =

∫ ∞
0
Fν(z) dν
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= −4π

3

∫ ∞
0

1

αν

dBν
dz

dν

= −4π

3

∫ ∞
0

1

αν

dBν
dT

dT

dz
dν.

where we used that the height dependence of Bν is through the temperature varia-
tion: B(T (z)).

With the use of the Stefan-Boltzmann law we have∫ ∞
0

dBν
dT

dν =
d

dT

∫ ∞
0

Bν dν =
dB

dT
=

4σ

π
T 3

and we define the Rosseland mean extinction coefficient αR by∫ ∞
0

1

αν

dBν
dT

dν ≡ 1/αR

∫ ∞
0

dBν
dT

dν

or

1/αR ≡
(∫ ∞

0

1

αν

dBν
dT

dν

)
/

(∫ ∞
0

dBν
dT

dν

)
, (7.4)

so that we arrive at:

F(z) = −16

3

σT 3

αR

dT

dz
. (7.5)

This is the Rosseland approximation for the radiative flux. Its form is that of a
diffusion equation with an effective conduction coefficient 16σT 3/3αR; this approxi-
mation is then also commonly called the diffusion approximation. Radiative energy
transport deep inside a star is of the same nature as heat conduction. It shows
that in LTE a net outward radiative flux is associated with an inwardly increasing
temperature.

The Rosseland mean αR of the extinction coefficient αν behaves analogously to an
equivalent parallel resistance: the frequency bands with the smallest extinction con-
tribute the most — the radiative flux “chooses” i.e., selectively leaks through the most
transparent spectral windows. The weighting function

Gν(T ) =
dBν/dT

dB/dT
=

π

4σT 3

dBν
dT

in

1/αR ≡
∫ ∞

0

(Gν/αν) dν

weights this choice of transparent windows by the temperature sensitivity of the Planck
function. Gν resembles the Planck function but peaks at hν/kT ≈ 3.8 instead of 2.8,
and thus at a somewhat shorter wavelength. Examples in Novotny, Fig. 3-12.

7.2.3 Radiation from a thick LTE medium

For an optically thick slab in LTE, we have in Eddington-Barbier approximation:

I+
ν (τ ′ν =0, µ) ≈ Bν

[
T (τ ′ν =µ)

]
.

Figure 7.1 shows an adaptation of the diagram in Figure 3.4 for LTE line forma-
tion in such a slab. The observed line profile (below left) is determined by:

– the variation of the extinction coefficient αtot
ν = αlν+αcν with the frequency (above

left, illustrated for a specific location z). A bb transition can enhance the total
extinction by many orders of magnitude compared to the value of the continuous
extinction;
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Figure 7.1: Diagram for LTE line formation in optically thick media. The depth-
dependent extinction coefficient (above left) determines the optical depth scale (above
right). When convolved with the temperature dependence of the Planck function (be-
low right), the variation of the temperature with the monochromatic optical depth
determines the emergent intensity at each frequency (below left). The larger the ex-
tinction αν , the farther out the Eddington-Barbier representative height of formation
τ ′ν(z) = 1. Where the temperature is falling towards the surface, absorption lines are
the result.

– the variation of the extinction coefficient with position (not illustrated). Here
axial symmetry (plane parallel slabs) is assumed, so we are dealing here with the
variation of αν(z) with the height z. Because the density in an optically thick
cloud of gas (which is probably gravitationally bound by its own mass) falls off
roughly exponentially outward, αν usually falls off steeply with z;

– the variation of the monochromatic optical depth τ ′ν(z) with the geometrical
height (or depth −z , above right, sketched for two frequencies along the y-
axis). This variation follows from the two given above and is strongly frequency-
dependent. With an exponential falloff of the density we have approximately
that log τ ′ν ∼ −z, with departures dependent on αν(z); the optical depth scales
for different frequencies differ and are shifted with respect to one another; the
geometrical surface z = 0 is here defined at log τ ′ν0 = 0 or τ ′ν0 = 1 (often the
geometrical surface is defined at τ ′cont = 1);

– the variation of the temperature with z (above right); the temperature is de-
creasing with height; τ ′ν0 is at larger height (z = 0) and lower temperature than
τ ′ν1 = 1 (z ≈ −500);
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– the variation of the Planck function with the temperature. The temperature
sensitivity of the Planck function varies across the spectrum (Figure 7.2); and
so this curve is also frequency-dependent (so strictly two different curves for Bν0
and Bν1 should be drawn, however, over small frequency domain the two curves
would be indistinguisable). The slope dB/dT is always positive.

The line is in absorption if the temperature falls outward and is in emission if the
temperature rises outward.

Figure 7.2: The temperature sensitivity of the Planck function Bλ, absolute (left)
and relative (right), for T = 4000 K and T = 5000 K.

Question 7.5 How can you tell in Figure 7.1 that the Eddington-Barbier approximation
is assumed? Is the assumption correct?

Question 7.6 Does the diagram in Figure 7.1 apply also for the formation of the continuum
at radically different wavelengths?

Question 7.7 What kind of spectral lines do you have in LTE from an optically thin ho-
mogeneous slab? And from an optically thick homogeneous slab? And from
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a homogeneous slab which is optically thin in the continuum and optically
thick in the spectral line?

Question 7.8 From the observation that the solar Na I D lines are absorption lines and the
assumption of LTE for these lines, what can we say about the temperature
structure of the solar atmosphere?

Question 7.9 How does the intensity in the line center of the Na D lines change from the
center to the limb of the Sun?

Question 7.10 Just outside the limb of the Sun during a total solar eclipse the chromosphere
appears. This is a thin layer of tenuous gas. During a solar eclipse you look
transversely through it; even then the whole chromosphere is optically thin
along the line of sight in the visible region of the spectrum. Explain why
the chromosphere shows the yellow Na D lines in emission. Does that say
something about the temperature of the chromosphere, if LTE is a good
assumption?

Question 7.11 In the spectrum of the center of the solar disk the Hα line is an absorp-
tion line but the Lyα line is in emission. How is that explained with the
assumption of LTE?

7.3 Radiative transfer with photon scattering

The essence of LTE is that the source function is determined locally, due to suffi-
cient local coupling of particle energy and radiative energy. If however it is not the
collisional processes but the scattering processes which dominate, this local determi-
nation is lost —the photons to be scattered come from somewhere else. Scattering
contributes both to jν and to αν , thus both together to Sν .

The free path length of a photon between two successive extinction processes,
according to equation (3.11), is:

lν = 1/αν

but if most extinction processes are elastic scattering processes, the identity of the
quantum of radiative energy remains constant between successive scatterings: the
photon changes in direction but not in energy in each scattering. The distance
between creation and destruction or between creation and escape of a photon can
thus be effectively much larger then lν .

For example in a stellar atmosphere. The outgoing photons emerge from the slab at an
optical thickness roughly τν = 1, measured along the line of sight, that is from a radial
optical depth τ ′ν = µ. But this depth of escape is merely the place where the photons
experienced their last interaction, i.e., where they were scattered. Their creation depth
can be much larger. From that point they diffused by a “random walk” in scattering
steps towards the surface.

It doesn’t matter here what type of photon scattering is involved. Below we will always
be discussing bb scattering because the creation and destruction probabilities can then
be conveniently expressed via the Einstein transition probabilities, but the treatment
holds for each type of elastic scattering: Thomson, Rayleigh, etc. In bb resonant scat-
tering the line photon is also scattered elastically, with conservation of energy. That
can be the case precisely (coherent scattering) or there can be a redistribution over
the width of the line profile (frequency redistribution). In spontaneous deexcitation the
new direction then is arbitrary (complete angular redistribution) while in self-induced
deexcitation the direction of the induced photon is fixed.
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Question 7.12 Why do the scattering steps become larger towards the surface?

Question 7.13 According to the Eddington-Barbier approximation the escaped photons
exhibit the source function of the depth τ ′ν = µ. Does that also hold for
scattering?

7.3.1 Pure scattering

Consider a homogeneous slab of gas in which in a bb transition there is only scatter-
ing. There is no photon conversion, no photon absorption and no thermal emission,
thus there is no photon creation or photon destruction. Assume that the scattering
is isotropic and elastic (= “coherent” = monochromatic: ν2 = ν1). In each extinc-
tion process the photons then change only in direction. Instead of the line extinction
coefficient αlν we use a scattering coefficient αsν that gives the scattering cross section
in cm2 per cm3, defined as

dIν = −αsνIν ds.

What is the emission coefficient jsν? Each “new” photon is a scattered “old” photon
from the extant radiative field. Thus we must have that the total emission per cm3

in all directions is equal to the total extinction per cm3 from all bundles:∫
jsν dΩ =

∫
αsνIν dΩ.

The angle-averaged radiative field is Jν = (1/4π)
∫
Iν dΩ, and so the emission coef-

ficient is given by
jsν = αsνJν

and the line source function by

Slν = jsν/α
s
ν = Jν .

The radiative transport equation then becomes:

dIν
ds

= αsν [Jν − Iν ]

The average intensity Jν must thus be known in order to determine Iν , and so we
must know Iν in all directions in order to calculate Iν for a specific bundle. Here the
analytical treatment ends; for a precise evaluation an iterative numerical calculation
is necessary.

In these paragraphs about scattering we must therefore limit ourselves to approxi-
mations. We begin with an estimate of the radiative transport under pure scattering,
with “random walk” arguments applied to individual photons. The free path length
of a photon between two successive scatterings is given by (equation 3.11):

lν =
<τν>

αν
=

1

αsν
.

What is the total path length l∗ traveled by a quantum after N scatterings? A
description as a 1-dimensional diffusion process provides (Rybicki and Lightman
§1.7):

l∗ν ≈
√
N lν . (7.6)

After how many scattering steps does a photon migrate through a slab with thickness
D? There are roughly as many steps required so that the ultimate path length l∗ν



7.3. RADIATIVE TRANSFER WITH PHOTON SCATTERING 93

is equal to D, thus N ≈ (l∗ν)2/l2ν ≈ D2/l2ν . With lν = 1/αsν and τν = αsνD follows
N ≈ τ2

ν provided that the slab is sufficiently thick (τν � 1) that the diffusion
description applies.

For a thin slab with τν � 1 the photon usually escapes immediately — with a
small chance of being retained, roughly equal to τν = αsνD � 1.

7.3.2 Absorption and scattering in a two-level atom

Consider now a medium that for convenience consists only of two-level atoms: parti-
cles with only one lower level l and one upper level u. In such a situation only discrete
transitions are possible, namely the five processes of Figure 1.5 that were discussed
in Chapter 5. We assume as well that the upper level u is sharp, Heisenberg’s un-
certainty principle notwithstanding, so that the transition is strictly monochromatic
with frequency ν = ν0. In all equations of Chapter 5 in which the frequency-averaged
angle-averaged intensity Jν0 appears, we have the monochromatic angle-averaged in-
tensity Jν0 instead.

The five processes can be combined according to Figure 1.6 into the pairs of
processes photon creation, photon destruction and photon scattering.

The fourth pair, collisional excitation followed by collisional deexcitation, involves no
interaction with photons and is not of interest here, aside from the fact that it helps to
maintain the Maxwellian distribution (also assumed here).

These assumptions provide a medium with strictly elastic scattering, without any pho-
ton conversion. There is no radiative excitation followed by excitation or deexcitation
to another level or continuum, neither per photon nor per collision. Each line photon
that is created by means of a creation pair of processes (collisional excitation followed by
radiative deexcitation) keeps undergoing a random walk, continuously being monochro-
matically scattered, until such time as it is destroyed by a destruction pair of processes
(radiative excitation followed through collisional deexcitation) — or leaves the medium
altogether.

This is a convenient approximation for the illustration of radiative transport with scat-
tering without having to be troubled by coupling to other spectral regions and to other
parts of the medium via various other transitions into and out of the two levels. We
arrive upon a good description of the nonlocal nature of radiative transport as a result of
photon scattering, while passing over for the time being the nonmonochromatic nature
that results from photon conversion.

Each radiative excitation of a two-level atom is followed either by radiative deexci-
tation (scattering), or by collisional deexcitation (destruction). The total extinction
(all radiative excitations) is the sum of these pairs of processes; therefore we divide
the bb extinction coefficient αlν0 in two parts: an absorption part αa

ν0 that describes
photon extermination and a scattering part αs

ν0 that describes elastic scattering.
The total transition probability for deexcitation per excited particle per second is
(equations 5.1–5.6):

P tot
ul = Aul +BulJν0 + Cul.

The first two terms on the right-hand side together comprise the creation and scat-
tering fractions, the third term is the fraction undergoing destruction = absorption.
These are the fractions per excited particle, thus also per radiative excitation. The
two partial extinction coefficients are:

αa
ν0 =

hν0

4π
nlBlu

Cul
Pul

[
1− e−hν0/kT

]
(7.7)

αs
ν0 =

hν0

4π
nlBlu

Aul
Pul

(7.8)
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with
αlν0 ≡ α

a
ν0 + αs

ν0 .

A full derivation is given in Rutten 2003 Sect. 3.4.1 which involves separating all up-
down sequences in the two-level atom between αa

ν0 and αs
ν0 . The factor [1−e−hν0/kT ]

is the TE correction factor for induced emission which is taken as negative absorption
according to convention.

What are the associated emission coefficients? With thermal destruction there
is similarly thermal creation; the source function associated with the collisional
processes is the Planck function. Thus it follows for the first part, i.e., the destruction
process:

ja
ν0 = αa

ν0Bν0 .

The scattering is monochromatic and isotropic, and so the emission coefficient for
the second part, i.e., as a result of scattering per cm3 per second per Hz and per
steradian radiated energy, is again equal to the average energy extinguished by
scattering per cm3 per second per Hz and per steradian:

js
ν0 = αs

ν0Jν0 .

The corresponding bb source function Slν0 is

Slν0 ≡
∑
jν0∑
αν0

=
αa
ν0Bν0 + αs

ν0Jν0
αa
ν0 + αs

ν0

,

and the transport equation becomes :

dIν0 = −αa
ν0Iν0 ds− αs

ν0Iν0 ds+ αa
ν0Bν0 ds+ αs

ν0Jν0 ds,

where the first two terms on the right-hand side are the absorption part and the
scattering part of the extinction, the third and fourth terms are the creation and
the scattering parts of the emission, along the bundle. With

dτν0 ≡ αν0 ds = (αa
ν0 + αs

ν0) ds

and the corresponding source function we recover the standard form:

dIν0
dτν0

=
dIν0

(αa
ν0 + αs

ν0) ds
= Slν0 − Iν0 .

We now introduce the probability εν0 that a photon is extinguished following an
extinction process:

εν0 ≡
αa
ν0

αa
ν0 + αs

ν0

= destruction probability per extinction. (7.9)

The probability that it is scattered in the next extinction process is then:

1− εν0 =
αs
ν0

αa
ν0 + αs

ν0

= scattering probability per extinction.

Expressed in terms of Einstein coefficients εν0 is:

εν0 =
Cul

Aul +BulBν0 + Cul
. (7.10)
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This important parameter measures the fractional absorption per extinction, thus
the amount of coupling to the local temperature. The two-level line source function
then becomes:

Slν0 = (1− εν0)Jν0 + εν0Bν0 . (7.11)

This is a important result. The source function is equal to the Planck function if
εν0 ≈ 1; on the contrary the source function is dominated by the angle-averaged
radiative field Jν0 if εν0 � 1. In intermediate cases the source function is an average
of Jν0 and Bν0 weighted by εν0 . When does Slν0 = Bν0 hold? If εν0 ≈ 1 or if
Jν0 ≈ Bν0 , or if both conditions are satisfied at the same time.

The term Jν0 is the reservoir term: the quantity of available photons. The term
εν0Jν0 is the loss term (“photon sink”); this specifies the energy of the photons that
disappear from the reservoir per extinction. The term εν0Bν0 is the source term
(“photon source”); this is the energy of the photons newly created per extinction.
This source term can not be neglected because otherwise no photons would be cre-
ated for scattering, unless a large radiative field were imposed. That means that
also whenever εν0 is very small, the photon source εν0Bν0 usually must be evaluated
precisely: it builds up the radiative field Jν0 by which the source function then is
largely determined. This inhomogeneous term makes the numerical solution of the
transport equation difficult for the case εν0 � 1.

For simplicity the above is presented for a two–level atom with monochromatic
scattering, but the resulting source functions are illustrative for every extinction
process. The source function is always a weighted average over the different sub-
processes. The line source function of a bb transition in a multi–level atom can for
example be written as:

Slν0 = (1− εν0 − ην0)Jν0 + εν0Bν0(Te) + ην0Bν0(T ∗),

where Jν0 is the angle-averaged intensity averaged over the extinction profile, Te

is the kinetic temperature (electron temperature), and T ∗ a typical or mean tem-
perature for which the Planck function provides the source function of all processes
by which an atom can eventually go from the upper level to the lower level other
than by direct deexcitation. Bν0(T ∗) is then the aggregate source function for all
pathways from u to l; the parameter ην0 measures the probability of such a pathway
per l→ u extinction.

Question 7.14 Derive from the statistical equilibrium equations that in the case of complete
redistribution over the line profile and pure scattering (no collisions), the line
source function in a two-level atom is given by Slν0 = Jν0 . Demonstrate also
that Slν0 = Bν0 if the populations of the two levels are completely determined
by collisions.

Question 7.15 Here εν0 is defined as the destruction probability per extinction process.
Other usage is that ε′ν0 = αa

ν0/α
s
ν0 , i.e., is the destruction probability per

scattering. Express ε′ν0 in εν0 and in Einstein coefficients. What does equa-
tion (7.11) become with the use of ε′ν0?

Question 7.16 Derive equation (7.11) ab initio from the equations of Chapter 5.

Question 7.17 Demonstrate that for a two-level atom with the profile functions ψ, ϕ and
χ of Chapter 5 (and so with a broadened upper level) we have in the case of
complete redistribution:

Slν0 = (1− εν0)Jν0 + εν0Bν0 .
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How must εν0 be defined for this?
Show that in this case the line source function does not vary with frequency
across the line profile, while the “coherent” line source function in equa-
tion (7.11) does. Is there a difference in the emergent intensity between
these two cases?

7.3.3 Effective optical thickness

Consider once again a homogeneous medium with photons wandering at random.
The free path length of a photon between two successive extinction processes is
(equation 3.11):

lν =
<τν>

αν
=

1

αa
ν + αs

ν

, (7.12)

but it is more interesting to know over what distance a photon’s identity is preserved,
i.e., what the path length is between its creation and destruction. The extinction
probability per step is εν , thus the average number of steps that a photon can make
while being scattered is:

N = 1/εν

and from equation (7.6) it follows that:

l∗ν ≈ lν/
√
εν (7.13)

with l∗ν the characteristic distance between creation and destruction, i.e., the identity
conservation path length, or the diffusion length, or the thermalization length, or the
effective free path length of a photon.
For εν = 1 (αs

ν = 0, no scattering) we have: l∗ν = lν .
For εν � 1ν (αs

ν � αa
ν , much scattering) we have: l∗ν � l.

For εν = 0 (αa
ν = 0, scattering only) we have: l∗ν =∞.

With equations (7.12) and (7.9) it follows that:

l∗ν ≈ 1/
√
αa
ν(αa

ν + αs
ν) (7.14)

and we define, as a sequel to equations (3.7) and (3.11), the:

– optical path length τν as dτν = (αa
ν + αs

ν) ds;

– absorption path length τa
ν as dτa

ν = αa
ν ds;

– scattering path length τ s
ν as dτ s

ν = αs
ν ds;

– and lastly the effective optical path length dτ∗ν as dτ∗ν =
√
αa
ν(αa

ν + αs
ν) ds.

For a homogeneous slab of thickness D the effective optical thickness τ∗ν is:

τ∗ν = D/l∗ν ≈
√
τa
ν (τa

ν + τ s
ν), (7.15)

with τ∗ν < τν because

τ∗ν /τν =
√
τa
ν /(τ

a
ν + τ s

ν).

The slab is effectively thin if τ∗ν < 1 and effectively thick if τ∗ν > 1.
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7.3.4 Radiation from a thin scattering slab

We look now at radiation from homogeneous layers in which scattering occurs. First
for a thin slab. Assume homogeniety in the sense that the temperature, density and
extinction coefficient do not depend on position, but that the source function can
vary because of scattering. The total monochromatic luminosity from an effectively
thin object is then:

Lν ≈ 4παa
νBνV (7.16)

with V the volume of the object. The term αa
νBν describes all the photons created

from thermal energy which contribute to a given bundle; multiplication by 4πV gives
the total number of photons escaping from the object under the assumption that
all photons ever created at some point leave the object, however often they may be
scattered. The direction is thereby lost, which is why an expression is given here for
the luminosity.

This assumption of homogeneity is not internally consistent: if the source function
varies as a result of scattering, the relative populations do also, and therefore also
the populations and the extinction coefficients. For a two–level atom, for example,
overexcitation of the excited level goes hand in hand with an underpopulation of the
ground level, thus an increase in the source function is accompanied by a decrease in
the extinction coefficient. On account of the Boltzmann factor, however, the decrease
for the lower level is usually a smaller fraction of the population than for the increase
of the upper level; to first order the source function does change considerably but the
extinction coefficient does not.

Question 7.18 What is the luminosity of a homogeneous, effectively thin sphere with ab-
sorption coefficient αa

ν and scattering coefficient αs
ν?

Question 7.19 Can an object be effectively thin and optically thick at the same time? Does
equation (7.16) hold in consequence?

7.3.5 Radiation within a thick scattering inhomogeneous medium:
the Eddington approximation

We now look at a thick object in which the conditions do indeed vary. The Rosseland
approximation of §7.2.2 demands that the intensity differ only to first order from
the Planck function. A more broadly applicable approximation is to assume that
Iν once again departs only to first order from isotropy, but that it may be nonther-
mal as well. The addition of photons to a bundle takes place isotropically both for
the thermal creation of new photons as well as for the scattering of already extant
photons (provided that spontaneous deexcitation dominates over induced deexcita-
tion); therefore this approximation can also hold if scattering is important (εν � 1)
and has a broader domain of applicability than the Rosseland approximation. We
assume axial symmetry once again and set:

Iν(z, µ) ≡ aν(z) + bν(z)µ,

then the first three “moments” of the intensity Iν with respect to µ are:

Jν(z) ≡ 1

4π

∫
Iν(z, µ) dΩ =

1

2

∫ +1

−1
Iν dµ = a (7.17)

Hν(z) ≡ 1

4π

∫
cos θ Iν(z, µ) dΩ =

1

2

∫ +1

−1
µIν dµ = b/3 (7.18)
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Kν(z) ≡ 1

4π

∫
cos2 θ Iν(z, µ) dΩ =

1

2

∫ +1

−1
µ2Iν dµ = a/3. (7.19)

The dimensions of the Eddington flux Hν and the K integral Kν are [erg cm−2 s−1

Hz−1 ster−1], just as for Iν and Jν . Jν and Kν are always positive; Hν can also be
negative.

From this there follows the important Eddington approximation

Jν = 3Kν . (7.20)

From the transport equation (for radial optical depth τ ′ν and axial symmetry, cf.
question 3.23) it follows by integrating over µ:

µ
dIν
dτ ′ν

= Iν − Sν

1

2

∫ +1

−1
µ

dIν
dτ ′ν

dµ =
1

2

∫ +1

−1
Iν dµ− 1

2

∫ +1

−1
Sν dµ

dHν

dτ ′ν
= Jν − Sν

with Sν assumed isotropic, this being usually the case. Multiplication by µ and a
second integration over µ provides

1

2

∫ +1

−1
µ2 dIν

dτ ′ν
dµ =

1

2

∫ +1

−1
µIν dµ− 1

2

∫ +1

−1
µSν dµ

dKν

dτ ′ν
= Hν =

1

3

dJν
dτ ′ν

with use of the Eddington approximation.
This leads to:

1

3

d2Jν

dτ ′ν
2 = Jν − Sν . (7.21)

For elastic scattering we have Sν = (1− εν)Jν + ενBν and therefore

1

3

d2Jν

dτ ′ν
2 = εν (Jν −Bν) . (7.22)

This is the radiative transport equation in the Eddington approximation with elastic
scattering. Provided that the boundary conditions are known, this provides from
T (z) and εν(z) first Jν(z), then Sν(z), and finally Iν(z) from the transport equation.
This historically much-used approximation holds thus if the radiative field is not too
anisotropic, i.e., within slabs that are at least effectively thick.

7.3.6 Radiation from a thick scattering medium

Now consider an effectively thick slab with τ∗ν � 1, also with homogeneous condi-
tions. Photons which originate more deeply than l∗ν from the surface do not escape,
but are extinguished after N = 1/εν random–walk steps. Photons that are created
less than l∗ν from the surface can escape. Assuming that they always do, they then
provide an upper limit for the emergent luminosity. The volume from which they
escape is given by:

V = Al∗ν
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with A a piece of the upper surface. Thus it follows with equation (7.16)

Lν ≈ 4παa
νAl
∗
νBν

and with equations (7.14) and (7.9)

Lν ≈ 4π
√
ενBνA,

and finally
F+
ν = Lν/A ≈ 4π

√
ενBν .

This is somewhat too large. Consider εν = 1, for which Sν = Bν ; the surface flux of
a black body is F+

ν = πBν instead of 4πBν . A better approximation follows from
the Eddington approximation (see exercise 1.10 of Rybicki and Lightman) with the
effective optical thickness defined by τ∗ν ≡

√
3ετν =

√
3τa
ν (τa

ν + τ s
ν) and the effective

optical depth by τ ′∗ν =
√

3εντ
′
ν , thus a factor of

√
3 larger than in equation (7.15).

For the outgoing flux this approximation yields

F+
ν ≈

4π√
3

√
εν

1 +
√
εν
Bν

and for the source function

Sν(τ ′) = Bν
[
1− (1−

√
εν) e−τ

′∗
ν

]
.

The source function at the surface is only

Sν(τ ′ν = 0) =
√
ενBν (7.23)

and with much scattering (εν � 1) the emergent intensity is only barely larger:

Iν(τ ′ν = 0) ≈ Sν(τ ′ν = 1) ≈ (1 +
√

3)
√
ενBν .

With very much scattering (εν � 1) thus much less radiation than Bν emerges
from the slab — in spite of the fact that the emergent photons actually originate
from a deeper level than that from which you see them emerging. With scattering
you receive photons from deeper layers than the depth τ ′ν = 1, but you receive
fewer of them than you would from a black body. That happens because with
much additional scattering the visible radiating volume becomes smaller and the
representative depth τ ′ν = 1 lies much closer to the surface.

Consider Figure 7.3. The crosses are photon-creating atoms. Throw in quite a few
scattering atoms (dots): q � 1 times as many, thus αs = qαa and εν = 1/(1 + q) ≈
1/q. Then the size of the volume in which emergent photons are produced in the case
of no scattering (no dots) is proportional to the free absorption path length laν , i.e.,
the creation of emergent photons takes place within the absorption thickness τa

ν = 1
from the surface. With scattering (extra dots) the production of emergent photons
is proportional to l∗ν = l/

√
εν = l

√
q = (laν/q)

√
q = laν/

√
q, i.e., the production of

emergent photons now takes place only within the effective optical thickness τ∗ν = 1
from the surface. The place with extinction depth τ ′ν = 1 lies even closer to the surface.

There are then only 1/
√
q =
√
εν photon creations involved. The rest of the manufac-

tured photons are trapped. That occurs because the effective lifetime of the photons
is larger when there is a great deal of scattering, so that the probability of photon de-
struction increases. The probability of photon creation does not increase proportionally
because photon loss occurs. Any escaping quantum, not just scattered ones, leaves be-
hind a non-excited atom that is not directly compensated statistically. There are fewer
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Figure 7.3: Schematic explanation of the small intensity from an effectively thick slab
in the presence of much elastic scattering. The radial optical depth τ ′ν = 1 at which
the source function is representative of the emergent intensity lies only one average
step length from the surface; that is much closer to the surface than the path length
that a photon would traverse if there were no scattering (τ ′aν = 1). The effective
path length that a photon can randomly traverse after its creation falls between these
values; this determines the effective depth of escape τ ′∗ν = 1 at which the local Planck
function is representative of the intensity of the emergent radiation.

excited and more non-excited atoms than is the case in equilibrium, thus the emission
coefficient jν is smaller, the extinction coefficient αν is larger, and the source function
Sν ≡ jν/αν is smaller than in equilibrium.

The average radiative field Jν decreases outwards from approximately the depth l∗ν =
1/
√
εν where this radiative loss begins; from there on photons can reach the outer

edge by random walks and be lost1 before they happen to be extinguished. The source
function is given by Sν = (1− εν)Jν + ενBν and thus always falls between Jν and Bν .
At the surface we have Sν =

√
ενBν and Jν is even less than this. In sufficiently deep

slabs Jν → Bν because no photons escape from there. The existence of an outer edge,
which marks the sudden cessation of the homogenity of the medium, is not yet felt by the
radiative field and the source function. Thus we have there Sν = (1−εν)Jν+ενBν ≈ Bν ,
whatever the value of εν . The latter determines however where this “thermalization”
appears.

The decrease of Sν/Bν near the surface of an optically thick medium as a result of
radiative losses is actually a decrease in the potential energy of the radiative field that
is available to excite or ionize etc. If there is some coupling between the radiative field
and the kinetic energy distribution (εν 6= 0), then the radiative losses also lead to a
decrease in temperature near the surface. An entirely homogeneous thick slab of gas
can thus actually not exist. The existence of an surface as a transition to empty space
into which photons disappear irrevocably results in a loss of the local energy density
available for the excitation of atoms and the motions of atoms.

Question 7.20 What do you expect for the behavior of the photon destruction probability
εν with increasing depth, starting at the surface of a star?

1from the medium, but available for observation.
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Question 7.21 What is the region of applicability of respectively the Rosseland approxima-
tion and the Eddington approximation in terms of optical depth?

7.4 Radiative transfer with photon conversion

In the preceding paragraphs, the nonlocality of the source function in the presence
of much elastic scattering was stressed: in that case the source function is deter-
mined at a different place from that from which the emergent radiation is observed.
With inelastic scattering it can also happen that the source function is influenced by
another frequency than the observed frequency. In the extreme case of photon con-
version the observed radiation may have scarcely anything to do with the observed
object.

We look at this again from a schematic standpoint. Postulate once again a slab
which is homogeneous in its thermodynamical state variables and extinction coeffi-
cients but in which the source function can vary locally as a result of scattering and
conversion. Suppose also that the medium consists of three-level atoms, with strong
permitted bb transitions between the levels, all three with the same transition prob-
ability Aul. Photon conversion is then possible via conversion of 3–1 photons into
3–2 plus 2–1 photons, and vice versa. Assume that the populations are distributed
in a Boltzmann-like fashion. Then the population of level 1 is much larger than the
populations of levels 2 and 3; thus it is entirely possible that the slab is optically
thick in the lines 2–1 and 3–1 (equally thick in both – why?) but optically thin in
the line 3–2. Let us assume that that is indeed the case.

Suppose then that the slab has a low temperature and a low density, and is
irradiated from the left by a hot source with much stronger radiation at λ31 than
at longer wavelengths. What happens in the slab to the incoming photons at the
wavelengths λ21, λ31 and λ32? For the latter, the slab is optically thin: a 3–2 photon
will pass through unhindered for the most part; a few might give rise to 2–3 photon
excitation. The 2–1 and 3–1 photons however will be confined. The 2–1 photons will
provide for photon excitation into level 2. In view of the low density, 2–1 collisional
deexcitation is less probable than radiative deexcitation, thus resonant scattering
is especially prevalent: 2–1 photons will either random-walk through the medium
until they leave the slab entirely, will be extinguished by a rare 2–1 collision, or will
lose their identity via a rare 2–3 excitation (by a 3–2 photon or collision). Finally,
the numerous incident 3–1 photons undergo photon excitation to level 3. Collisional
deexcitation from level 3 to level 1 or 2 is relatively infrequent, and so spontaneous
deexcitation dominates, with an equal probability (“branching ratio”) for 3–1 and
3–2. The first case is again resonant scattering and the new 3–1 photon will not
go much farther than an original one. In the second case, the 3–2 photon on the
contrary will usually escape the scene — because at that wavelength the slab is
optically thin. There then remains an atom in level 2. That will usually add a 2–1
photon to the 2–1 radiative field already present.

The result: each incident 3–1 photon provides, possibly after a few 3–1 resonant
scatterings, an escaping 3–2 photon; their number is much larger than the number
of 3–2 photons from the source itself. The number of 3–2 photons escaping from
the slab is thus a good measure of the number of 3–1 photons falling on the slab.
That is a situation which indeed lies very far from LTE: the observed 3–2 intensity
is determined by the intensity of a totally different object at an entirely different
wavelength. Assume for example that you are looking at λ32 through the slab
towards the hot source. The slab is optically thin and cold and, in the absence of
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conversion, would cause an absorption line to be observed in the continuum of the
hot source, analogous to the telluric lines in the solar spectrum; but now the slab
provides a very strong emission line that has nothing whatsoever to do with the
temperature of the slab but is very dependent on the temperature of the source.

It is improbable that the populations will follow Boltzmann distribution if collisions are
hardly involved. The statistical-equilibrium equations for the three levels are then:

n1(B12J21 +B13J31) = n2(A21 +B21J21) + n3(A31 +B31J31)

n2(A21 +B21J21) = n1B12J21 + n3A32

n3(A31 +B31J31 +A32) = n1B13J31.

These must be solved together with the radiative transport equations for the three lines
(at a number of frequencies in each line) in order to find the populations and radiative
fields.

In more realistic term diagrams photon conversion can take place in various ways,
for example by means of bf transitions or making use of a coincidence in wavelength
with a strong spectral line of another element such as Lyα (“optical pumping”). It
is also possible that the 2–1 transition is not permitted or has a very small transition
probability. Then level 2 accumulates a large overpopulation whose growth is ultimately
capped, whether by collisional deexcitation to level 1 which then results in heating of
the local medium, or by radiative deexcitation in such a “forbidden” line that then will
be notably strong.

Question 7.22 Within the slab J21 can be larger than in the incident radiative field – why?

Question 7.23 Show what happens in the example above if the slab is not optically thin
but is effectively thin in line 3–2.

Question 7.24 Suppose that the slab consists of two-level-plus-continuum atoms, with bf
transitions for 3–1 and 3–2. Does this differ from the example?



Chapter 8

Applications

8.1 Introduction: between thick and thin

This extra chapter gives a few applications of radiative processes and radiative trans-
port to various astrophysical circumstances. These examples illustrate where this
course material can be applied and at the same time provide insightful practical
material.

There are many more applications in astronomy; this chapter contains only a first
selection. In the future more will certainly be included; suggestions are welcome.

All the applications treated here have in common that they pertain to the do-
main between optically thick and optically thin. That is not surprising because
τν ≈ 1 properly typifies the circumstances in which radiative transport is on the
one hand important and on the other hand complex. For optically very thick con-
ditions radiative transport is simple because the free path length of the photons in
the medium is usually small with respect to typical scale lengths of changes in tem-
perature and pressure; in these circumstances the Rosseland approximation usually
holds. Optically very thin circumstances usually only involve the evaluation of the
local extinction coefficient and source function, without complications brought on
by radiative transport.

8.2 Spectra from stellar photospheres

8.2.1 Continua from the Sun

8.2.1.1 Extinction coefficient

The photosphere of a star is the layer from which the visible light emerges. In the
photosphere of the Sun (Teff = 5770 K, Ne ≈ 1014 cm−3) H is neutral but Na, Fe,
Mg, Si are singly ionized (Saha). These “metals” are abundant and supply many
electrons; therefore H− provides the largest contribution to the continuous extinction
in the visual (H−bf) and infrared (H−ff ). At radio frequencies Hff contributes the
most. In the ultraviolet the extinction coefficient is determined by an assortment of
mutually overlapping series limit continua (Al I, Mg I, Si I, C I, Fe I); in the far UV
by the H and He I Lyman continua, and in the X-ray region by series limit continua
of species with a high degree of ionization, e.g., Fe XXIV bf. See Figure 8.1.

Figure 8.1 holds for one specific electron pressure Pe (why?) but has about the same
shape for values which do not deviate too much from Pe (see Novotny for examples).
How does the size of the extinction vary with Pe?

103
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Figure 8.1: Sketch of the continuous extinction coefficient in the photosphere of the
Sun.

The Sun is smallest in the visual region: you look most deeply into the Sun at λ = 1.6 µm
in the near infrared.

The Rosseland weighting function Gν(T ) is also included. The major portion of the
solar flux runs between log λ = 3.5 and log λ = 4.5, why? (Note: the maximum of
Bν(T = 5770 K) falls at log λ = 3.9 or λ = 800 nm but Bλ(T = 5770 K) reaches its
maximum at 600 nm.)

8.2.1.2 Height of formation

The continuous extinction coefficient changes by orders of magnitude across the
spectrum, see Figure 8.1. Thus the location of τ ′ν = 1 varies strongly with wave-
length. According to the Eddington-Barbier approximation, this location is the one
that is representative of the emergent intensity. Moreover, the extinction of the line
wavelengths of very highly probable bb transitions such as the Balmer and Lyman
lines of H I, the H & K resonance lines of Ca II and the h & k resonance lines of Mg II
is even larger by many order of magnitude than the continuous extinction.

Figure 8.2 shows the resulting heights of formation. The temperature and the
height in the solar atmosphere are plotted against each other, with the height in-
creasing to the left. The temperature is a type of horizontal average over the inho-
mogeneities the Sun shows in actuality. The zero point of the height scale is defined
by taking h = 0 where τ ′ν = 1 for the continuum at λ = 500 nm, thus approximately
the location where the visual continuum the Sun arises. The second abscissa shows
the density, in the conventional form of the mass column density m ≡ the mass of
an infinitely long column of 1 cm2 cross section above the given height.

The density drops roughly exponentially outward (why?) so that the geometrical height
scale (h ≡ z) is reasonably linear in logm. The log τ ′ν scale varies roughly linearly with
logm as well. Why? What is the frequency dependence of τν?

The temperature declines in the photosphere up to the location where the princi-
pal continua (with log λ = 3.5− 4.5 for λ in Å) become optically thin: τ ′ν < 1. The
falloff of the temperature is in accord with energy transport by solar radiation where
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Figure 8.2: The height of formation of continua and strong spectral lines in the solar
atmosphere. From Vernazza, Avrett and Loeser (1981).

this still dominates the medium (radiative equilibrium). The more superficial layers,
however, are not coupled to F because the visual solar radiation passes through
them without being disturbed; they therefore may deviate from Teff just as they do
in the earth’s atmosphere. In these higher layers the temperature once again rises,
first moderately in the chromosphere and then very rapidly in the transition region
to the very hot (2× 106 K) corona.

The heights of formation of the various continua are determined by the extinction
coefficient in Figure 8.1: the larger the extinction, the higher the formation; the same
holds for spectral lines. For large extinction the photosphere is optically thick: the
representative Eddington-Barbier location τν = 1 then lies higher up. That is the
case both in the far infrared and in the far ultraviolet; and for radio and X-ray
radiation, the continuum arises in the chromosphere and the corona. The core of
the Lyα line also has a very large extinction (why?) and becomes optically thin only
just in the transition region to the corona.

Each piece T (logm) is a rough indicator of the behavior of Sν(log τ ′ν) for the
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corresponding piece of spectrum with log τ ′ν ≈ 0. It is a good indicator where LTE
is valid. That is certainly the case for the infrared continuum because H−ff is the
principal extinction source there and the density in the photosphere is sufficiently
large that the Maxwellian distribution applies there (Figure 8.3).

Figure 8.3: Bν , Jν and Sν in the photosphere of the Sun for λ = 1.6 µm. From
Vernazza, Avrett and Loeser (1981).

Figure 8.3 shows the formation of the solar radiation at λ = 1.6 µm. Compare the
height scale and the log τ ′ν-scale with Figure 8.1 and Figure 8.2. Is the continuum at
λ = 500 nm formed higher or lower than the 1.6 µm radiation? What determines the
sides of the contribution function dI/dh with

dI/dh =
d

dh

∫ ∞
0

S e−τ
′
dτ ′ = − d

dh

∫ −∞
+∞

j e−τ
′
dh = j e−τ

′
?

Why isn’t the top of this integrand at τ ′ν = 1? Do the emergent intensities Iν(µ=1.0)
and Iν(µ = 0.3) tally with the Eddington-Barbier relation? Above an isotropically
radiating surface we have Jν = 1

2Iν . Does that work here? If LTE holds somewhere
it must do so at this wavelength, why? How does this figure indicate that LTE holds?
And that εν ≈ 1? Is it true that Sν(τ ′ν = 0) =

√
ενBν? And that Jν ≈ Bν for τ ′ν = 1?

Where does τ ′∗ν = 1 occur?

8.2.1.3 Variation of emergent intensity and temperature stratification

The observed continuous spectrum Iν(0, µ) is a convolution of:

– the temperature behavior T (h);

– the behavior of the source function, given by Sν(h) = Bν [Te(h)] where the as-
sumption of LTE holds, and by Sν(h) = (1− εν(h))Jν(h) + εν(h)Bν [Te(h)] where
elastic scattering (such as Thomson scattering) is important;

– the behavior of the extinction αν(m);

– the density stratification m(h) (column mass).
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Figure 8.4: Left: the emergent intensity Iλ(τ ′ν =0, µ=1) for the middle of the solar
disk compared to the three Planck functions Bλ(T = 5500, 6000, 6500 K). Right:
the same, in the form of brightness temperatures.

Figure 8.5: Brightness temperature of the Sun (above) and the relative contribution
of the principal sources of continuous extinction, always at the height where τ ′ν = 1,
as a function of frequency. Avrett (IAU Symposium 138, 1990).
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You look through to a depth τ ′ν ≈ 1 and see the source function at that spot.
Better expressed: the value of the source function at the Eddington-Barbier depth
τ ′ν ≈ 1 is representative of the emergent intensity; this formulation is better because
the integrand

dI

dh
=

d

dh

∫ ∞
0

S e−τ
′
dτ ′ = − d

dh

∫ −∞
+∞

j e−τ
′
dh = j e−τ

′

is reasonably broad, see Figure 8.3.
Figure 8.4 shows the intensity of the Sun compared to Planck functions, as energy

and as brightness temperature Tb with Bν(Tb) = Iν(0, 1). Why doesn’t Iλ(0, 1)
follow a single Planck relation if LTE holds well for λ > 400 nm? Which quantities
determine the run of the brightness temperature T�b at the right? Where did you
previously see this shape?

Figure 8.5 shows the brightness temperature variation of the Sun for the whole
spectrum, with the principal contributors to the continuous extinction indicated
below. With a knowledge of this αν(h), a model atmosphere T (h) can be deduced
from the observed intensities Iν(0, 1). Vernazza et al. did that for all the spectral
regions in Figure 8.2 to determine the temperature behavior shown there: this is
an “empirical” model atmosphere determined from various continua and individual
strong spectral lines, observed at the center of the Sun.

To this end Vernazza et al. had to carry out detailed NLTE radiative transport
calculations for the ultraviolet bf transitions of H I, Mg I, Si I, Fe I and C I in the
high photosphere because the ionization equilibria for these producers of extinction
and contributors of electrons do not behave according to LTE. Their ultraviolet bf
energy jumps are larger (3–5 eV) than the typical kinetic energy (1–2 eV) avail-
able in collisions in the cool layer between photosphere and chromosphere, so the
radiative processes dominate in determining the ionization equilibrium: radiative
ionization and spontaneous radiative recombination. (Why no induced recombina-
tion and collisional recombination?) In the ultraviolet the energy difference from
a bound level to the ionization limit is so much larger than the kinetic part of the
energy above, which falls off as ν−3, that these ionization edges behave essentially
as resonance lines, including resonant scattering.

8.2.1.4 Center-limb variation

Obliquely emergent radiation comes from more superficial layers according to equa-
tion (3.19):

I+
ν (0, µ) =

∫ ∞
0

Sν(τ ′ν) e−τ
′
ν/µ dτ ′ν/µ.

The visual radiation comes from the photosphere; there LTE holds for the continuum
(because H−bf provides the extinction, see Figure 8.1). The temperature decreases
toward the outer layers of the photosphere (Figure 8.2, right side), thus Sν(h) =
Bν [T (h)] also decreases outward, and so the Sun shows limb darkening: the observed
intensity diminishes from the center towards the limb of the solar disk. If LTE and
the Eddington-Barbier relation (equation 3.21) apply, we have:

Iν(0, µ)

Iν(0, 1)
=
a+ bµ

a+ b
= 1− β + βµ

with β ≡ b/(a+ b) the limb-darkenening coefficient.
The limb darkening of the Sun was historically very important in:
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– the conclusion that the photosphere is in radiative equilibrium, thus that the
energy transport is provided primarily by radiation. Convection dominates up to
just below the photosphere, due to the escape of radiation;

– the conclusion that H− is the principal source of continuous extinction and emis-
sion;

– the empirical determination of the run of T (h) before the infrared and ultraviolet
intensities became available.

Radiation at λ = 400 nm and λ = 1450 nm emerge from approximately the same layer
(Figure 8.2, Figure 8.4 right). Yet the limb darkening at λ = 400 nm is larger, why? In
the far infrared the Eddington-Barbier relation is satisfied if the temperature increases
linearly with τ ′ν . Why? Is that also true if the temperature declines inward linearly with
τ ′ν? For λ > 1 mm, limb brightening is observed instead of limb darkening. Why? Do
you expect limb darkening or limb brightening in the Lyman continuum (λ ≤ 90.6 nm)?

8.2.2 Spectral lines from the Sun

8.2.2.1 Extinction coefficient

A spectral line is always the result of a positive peak in the extinction coefficient.
The size of the peak is given by

αlν(ν=ν0) =
πe2

mec
bln

TE
l fluϕ(∆ν=0)

[
1− bu

bl
e−hν0/kT

]
with flu the bb oscillator strength and ϕ(∆ν = 0) the maximum of the extinction

profile function. The amount of extinction varies to first order in proportion to
the population of the lower level nl. This is determined by the local density and
temperature according to the Saha and Boltzmann LTE equations (nTE

l ), with a
correction factor (bl) for departures from LTE if nonlocal radiative fields play a role
in the population equations. To the next level of approximation, the line extinction
is also dependent on the population of the upper level, because of sensitivity to
departures from LTE in the source function via the negative correction for induced
emission (1− bu/bl e−hν/kT ) if Slν 6= Bν .

The shape of the peak, given by φ(ν−ν0), is the convolution of a Gaussian profile
and a Lorentzian profile, determined by the local Doppler broadening, the radiative
damping and the local collisional damping. These line-broadening mechanisms are
treated extensively elsewhere: see Gray (1976) or Mihalas (1978).

8.2.2.2 Height of formation

Once again the extinction coefficient determines from which layer the radiation es-
capes. In this case it does not vary across a wide spectral domain such as for the
continua above, but rather across a very small spectral domain, that of the line
profile. Once again the source function at the monochromatic depth of escape is
representative of the emergent intensity according to the Eddington-Barbier ap-
proximation

I+
ν (0, µ) =

∫ ∞
0

Sν(τ ′ν) e−τ
′
ν/µ dτ ′ν/µ ≈ Sν(h[τ ′ν = µ]),
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now with the total source function Sν which is composed of the line source function
Slν and the continuum source function Scν according to

Sν =
αcνS

c
ν + αlνS

l
ν

αcν + αlν
.

Where LTE holds, T (h) also determines directly Sν = Bν [Te] and therefore the
emergent intensity. Where LTE does not hold, the line source function is given by

Slν = (1− εν)Jν + ενBν [Te]

in the two-level approximation, or by

Slν = (1− εν − ην)Jν + ενBν [Te] + ηνBν [T ∗]

if, besides resonant scattering, photon conversion also contributes, with ην the chance
per extinction of multilevel processes and T ∗ a representative process temperature
for such circuitous routes.

8.2.2.3 The Na I D lines

Figure 1.2 shows the two yellow Na I D lines in the solar spectrum. In question 1.24
it was stated that by the end of these lecture notes an answer could be given to the
question of how far the textbooks’ analogy goes between a radiating flame sprinkled
with salt and the solar spectrum. The mistake of the textbooks is that cows and
horses are compared: the flame is optically thin so that the interpretation demands
no radiative transport, but the Sun is optically thick. Whether the Na I D lines in
the solar spectrum are in emission or in absorption does not follow simply from
equation (3.18), as it does for the flame, but from the Eddington-Barbier relation
and the behavior of the source function.

Figure 8.6: Formation of the Na I D lines in the solar spectrum. The probability
of destruction ε declines as ε ≈ 1 in the deep photosphere to ε ≈ 10−4 above the
temperature minimum. The source function follows the Planck function only in the
deep layers; in higher layers the source function follows the angle-averaged intensity
Jν0, with Jν0 < Bν on account of photon losses. For the wings of the lines LTE
holds, but the line cores are deeper than they would be in LTE; the Na I D lines are
“scattering lines” in the core.
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Detailed numerical solution of the statistical-equilibrium equations for the excita-
tion and ionization of sodium atoms in the solar atmosphere shows that the two-level
approximation is a good one for these resonance lines. Therefore the result in Fig-
ure 8.6 is readily understood. As the density drops, the collisional probability Cul
falls sharply with the height h; since Aul is large for these resonance lines and does
not depend on the height, the photon destruction probability ε ≈ Cul/Aul also falls
sharply with h; in deep layers ε ≈ 1 holds. The line source function follows Jν0 in
the higher layers and approaches the Planck function only in the deep photosphere
where ε ≈ 1.

The line wings are formed in deep layers; thus LTE holds for them. The line
extinction αl in the wings decreases monotonically with the distance in wavelength
from the line center ∆λ = λ− λ0; the larger ∆λ, the deeper the emergent intensity
is determined. Moreover, for sufficiently large ∆λ, αl � αc; then the continuum
source function dominates the total source function and LTE formation is ensured.

The line cores have αl � αc. The cores are formed much higher; for them, the
emergent intensity is determined in the regime where Sν ≈ Jν0 . This is much lower
than the Planck function at that height. In consequence the source function (≈ line
source function) is not influenced by the ambient temperature there. The existence
of the temperature minimum does not affect the line source function or the emergent
line profile; the line cores formed there are entirely determined by the strong resonant
scattering of photons formed deeper, and so their intensities drop much lower than
they would under LTE. The physical cause of this is the occurrence of large photon
losses whose effect on the source function is noticeable until well below the τ ≈ 1
height of formation.

So there is after all an analogy with the flame experiment: in both cases resonant
scattering plays an important role in the line extinction. The manner in which they
affect the observed intensity is however completely different in the two cases — even
if both cases result in dark Na I D lines.

8.2.2.4 The Ca II K line

Figure 8.8 sketches an extension of Figure 7.1 for the formation of the strong Ca II K
line in the solar spectrum (Figure 8.7).

The extinction coefficient (top left panel) varies strongly with the wavelength
because the bb processes offer an extra possibility for absorption and scattering.
The size of the bb peak varies strongly with height, being dependent on the level
populations which are sensitive to the density, the temperature and (in NLTE) the
radiative field. The shape of the bb peak varies with height, being dependent on the
density (collisional damping) and the temperature (collisional damping and Doppler
broadening).

The extinction coefficient determines where the representative height of formation
h, with log τ ′ν(h) = 0, lies (top middle panel). Each frequency has its own optical
depth scale τ ′ν(h), roughly exponential in h near log τν(h) = 0. The intensity Iν(0, 1)
of the emergent radiation in the Eddington-Barbier approximation is given by the
value of the monochromatic source function Sν at the representative log τ ′ν = 0
depth.

The monochromatic (total) source function Sν (bottom middle panel) is the con-
volution of the continuum source function Sc and the line source function Sl (bot-
tom right panel). (Because of this convolution the total source function is always
frequency-dependent, even if the line source function Sl does not vary across the
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Figure 8.7: The Ca II K line in the solar spectrum. The broad deep absorption in
this part of the solar spectrum was christened by Fraunhofer the “K” resonance line
of the Ca+ ion. This is the strongest line in the visually observable part of the solar
spectrum. Superimposed on the broad line wings are many weaker spectral lines
(“blends”); most arise from neutral “metals” such as Fe I. In its core the K line
shows two minuscule peaks which are extensively studied in the Sun and stars: the
K2V and K2R peaks (V for violet and R for red – signifying the peak on the violet or
red side of line center, K3).

Figure 8.8: 6-panel diagram for the formation of the Ca II K resonance line
(393.3 nm) in the solar spectrum and the K3, K2, and K1 features.
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line profile, as a result of complete redistribution over the line profile, as is assumed
here.) Both source functions are determined by the temperature variation T (h) and
the amount of coupling to it, given by the destruction probabilities εc and εl which
are small if scattering is dominant in the extinction. The line source function dom-
inates in the Ca II K core because of the large line extinction in the layers where
the radiation escapes; scattering is important there. In the deep photosphere where
it participates in the formation of the far line wings, the continuum source function
is to a good approximation equal to the Planck function, with εcν ≈ 1.

The Ca II K line is just strong enough that the line source function is sensitive
to the temperature rise at the base of the chromosphere before photon scattering
losses start dominating and induce decoupling from the Planck function. The result
is a small increase in Sl that is evident as two small emission peaks in the observed
line profile: the K2 peaks (bottom left panel).

Once again the Eddington-Barbier approximation is assumed. How do you know that?
What would be different if the Eddington-Barbier approximation did not hold? Scat-
tering plays an important role in the shape of the observed line core (K3). How do you
know that? How is the strong scattering expressed in the behavior of the line source
function? In the far wings, on the contrary, LTE is a good approximation. How can
you tell that?

Only the lower part of the term diagram of Ca II is included in the sketch in the margin.
The uppermost part is not important, why? Also the bf processes from Ca II to Ca III
and Ca I are not important, why? The transitions marked IR refer to the Ca II infrared
triplet lines (at λ = 8498, 8542 and 8662 Å).

Photon conversion is possible from the Ca II H & K lines to the three “infrared”
Ca II lines and vice versa because they share common upper levels. The two lower
levels of the infrared lines are metastable because there are no permitted radiative
transitions from them to the ground level. Such photon conversion is not really
important for the H & K lines because they have larger transition probabilities:
the branching ratio from the common upper levels favors the resonance lines. Con-
version is quite important for the three infrared lines because their extinction is
smaller (Boltzmann): where they become optically thin, their line source function
faithfully follows the Planck function because coupling occurs via conversion to the
still optically thick H & K lines.

The diagram illustrates the formation of the Ca II K line according to Jefferies and
Thomas (1960). With this analysis these authors set forth the basics of the NLTE
interpretation of spectral lines of the Sun and stars. This description was however
by no means final. For one thing, there is also some partial frequency redistribution
so that the line source function itself is frequency dependent: different parts of the
line have their own source function, which each in their own fashion differs from the
Planck function (Uitenbroek 1989). For another, the small emission peaks at the K2

wavelengths actually originate exclusively in regions on the Sun with an enhanced
concentration of magnetic field. The actual line formation is thus more complicated
than is sketched here.

8.2.2.5 Emergent intensity and temperature stratification

How is the photospheric temperature variation expressed in the spectral lines? In
LTE that is clear: Sν = Slν = Scν = Bν [T (h)], and the line profile “illustrates
the T (τ ′ν) variation”, convolved with the (strongly depth dependent) profile of the
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extinction coefficient and the temperature sensitivity of the Planck function. The
temperature declines outward, thus the lines are absorption lines.

But if scattering or photon conversion is important, it is possible that the observed
line profile does not say much about the temperature variation. That is for example
the case in the core of the Ca II K line: the fact that the K3 line core is darker
than the K2 emission peak does not imply that the temperature drops again after
an initial rise, but is the result of the NLTE photon losses in a scattering line.

For the Ca II K line LTE holds in the line wings (how can you tell that in Figure 8.8?).
The observed intensity variation Iν(0, 1) for ∆λ = λ − λ0 = 0.1–1 nm can serve to
determine the temperature variation in the photosphere. Which quantities must be
known for this and how would you attack the problem?

Violet spectral lines have a much lower central intensity than the corresponding spectral
lines in the red for equal αlν(h) and τ ′cν (h) scales. Explain that on the basis of the
temperature sensitivity of the Planck function.

Spectral lines with λ ≤ 180 nm and with λ ≥ 150 µm are not absorption lines but
emission lines. Explain that, bearing in mind that the continua at 180 nm and 150 µm
are formed just in the region of the temperature minimum between photosphere and
chromosphere (Figure 8.2), and that spectral lines are always formed higher that the
adjacent background continuum.

8.2.2.6 Center-limb variation

Assume for convenience that the source functions fall off linearly outward: Slν =
al + blτ ′ν and Scν = ac + bcτ ′ν , so that the Eddington-Barbier approximation holds
exactly (Figure 8.9).

Figure 8.9: The center-limb variation of photospheric spectral lines.

In going from the center to the limb of the observed solar disk, the contrast of
absorption lines diminishes because the total source function falls outwards. For
LTE we have Slν = Scν and the contrast of the strongest lines weakens up to Iν = a;
near the solar limb the lines disappear completely. If ε� 1, however, then Slν falls
much more steeply than Scν . The central intensities of the strongest lines are then
much deeper than in LTE, and they do not disappear at the solar limb (al � ac).

In the real Sun the temperature rises again into the chromosphere. Nearer the
limb the radiation arises from higher layers; for many lines the height of formation
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near the solar limb lies completely above the temperature minimum. The fact that
these lines exhibit no emission cores near the solar limb proves that they have ε� 1,
thus a NLTE source function.

8.2.2.7 Outside the limb

Beyond the solar limb all lines become emission lines, whatever their mechanism of
formation. (Why? Recall that the “solar limb” is seen where the total continuous
optical thickness of the Sun along the line of sight is approximately unity.) For lines
of sight sufficiently far outside the solar limb the Sun also becomes optically thin in
the strongest lines. Then the intensity of such a line is directly proportional to the
population of the upper level (why?).

The strongest visual line in the eclipse spectrum is Hα: it appears as a reddish-
purple arc at the limb of the Sun at the beginning and end of a total solar eclipse.
Hence the name chromosphere.

8.2.3 Spectra of stellar photospheres

With the above insights, we can readily understand most photospheric lines in the
solar spectrum (that is, the lines in the visual spectral region, why?). Therefore the
spectrometry of stellar photospheres has become a “classical” discipline. For the
most part, LTE is assumed and abundance determination is the goal.

Figure 8.10: Spectral classification. The upper graph gives estimates (by eye,
from photographic plates) of the strengths of representative spectral lines as a
function of the empirically assigned spectral type. Below are given the popula-
tion ratios as a function of temperature, calculated from Saha and Boltzmann for
Pe = 131 dyne cm−2. After Payne.
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The differences in stellar spectra across the HR-diagram, however, are hardly
due to abundance differences, but rather to the effects of Te and Pe on the pop-
ulations via Boltzmann and Saha. That was not understood for a long time; the
spectral classification arose long before the role of the temperature became clear
and the Hertzsprung-Russell diagram could be translated from pure empiricism into
astrophysics. That happened in the most famous doctoral thesis in astronomy, by
Cecilia Payne (1925, Harvard): spectral classification was shown to be temperature
classification (Figure 8.10).

The continuous extinction mechanisms vary across the HR-diagram. In cool stars
such as the Sun hydrogen is predominantly a neutral atom, and H−bf dominates in
the visual spectral domain and H−ff in the infrared. The free electrons involved in
this come from the ionization of those metals that have both a reasonable abundance
and a low ionization potential: Na, Mg, Al, Si, Ca and Fe. In the solar photosphere
these elements are predominantly singly ionized. LTE is a good approximation for
these processes because they are coupled with collisions. Furthermore, in G and K
stars Rayleigh scattering off hydrogen also occurs. That is especially important in
the visual because the resonance lines of hydrogen, i.e., the Lyman lines, lie in the
far ultraviolet (how do you know that?) and especially for Population II stars with
a low abundance of metals (why?). The spectral lines come primarily from neutral
metals (visual) and singly ionized metals (near ultraviolet), with a few molecular
bands.

In hotter stars hydrogen is however mostly ionized and thus H− is not a factor
any more; most of the free electrons then come from hydrogen. Thomson scattering
provides a large contribution to the continuous extinction in O stars, with the conse-
quence that LTE cannot be assumed for the corresponding continua. The scattered
photons are then created as a rule in Hff processes. Moreover, in O stars He II comes
into play (the n = 2 ionization edge coincides with the Lyman continuum, why?) as
does He I in B stars. The metals are all ionized and therefore show few lines in the
visible spectral region (the neutral levels of metals such as Fe I have many lines in
the visible; for higher ionization levels the electron energy differences are larger so
that their lines fall in the ultraviolet). Many important resonance lines lie beyond
the Lyman limit (91.2 nm) and can only be observed from space.

Situated between the hot and the cool stars are the A stars. In them H+
2 ions

provide extra extinction: a singly-ionized molecule with two protons and one elec-
tron.

In the coolest stars there is much Rayleigh scattering off molecules, especially off
H2. H−2 also contributes at long wavelengths via ff processes. The line spectrum of
M stars is dominated by strong molecular bands, especially in the infrared where
the majority of vibration and rotation transitions lie. If there is more carbon than
oxygen in the star then all the oxygen is taken up into CO and there appear as well
the lines of many carbon compounds (e.g., C2, CN, HCN, C2N2, SiC2); conversely, if
oxygen dominates all carbon is locked up in CO and there appear the lines of many
oxygen compounds (e.g., OH, H2O, TiO, ZrO, VO).

8.3 Stellar envelopes

8.3.1 Stellar coronae

Coronae are very hot (Te ≥ 106 K), tenuous (Ne ≤ 107 cm−3), more or less spherical
envelopes of stars. The majority of late-type stars have a corona. Here we discuss
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radiative processes in the solar corona.
At Te = 106 K the solar corona for λ ≤ 10 cm is optically thin. That means

that there are no complications due to radiative transport; specification of the rate
equations provides the emergent intensities directly. The situation is however far
from LTE, so that for this specification all possible population mechanisms must
be evaluated to see if they are influential, and those that are must be evaluated
explicitly. Table 8.1 provides an overview of the atomic processes; ions are especially
involved in coronal processes because the combination of very high temperature and
low density results in a high degree of ionization.

Table 8.1: Atomic processes. After Zirin.

In coronal circumstances, both radiative excitation and ionization and the in-
duced radiative processes are negligible with respect to the corresponding collisional
processes because the electron temperature Te ≈ 106 K is much higher than the typ-
ical radiative temperature Teff ≈ 6000 K of the local radiation field, generated in the
underlying photosphere. Therefore radiative excitation is negligible, and excitation
is collisional:

Plu ≈ Clu
radiative ionization is negligible, and ionization is collisional:

Plk ≈ Clk
collisional and radiatively-induced deexcitation are negligible, and deexcitation is
spontaneous radiative:

Pul ≈ Aul
collisional and radiatively-induced recombination are negligible, and recombination
is spontaneous radiative:

Pkl ≈ Abf
kl (8.1)
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with Abf
kl the transition probability analogous to the Einstein coefficient Aul for

spontaneous radiative recombination. Thus the population equations become:

dni
dt
≈
∑
j<i

(njCij − niAij) +
∑
i<j

(njAji − niCij),

(with Abf
ki also written as Aji). The excitation of a two-level atom is given by

statistical equilibrium:

n1C12 = n1Ne

∫ ∞
v0

σ12 f(v) v dv ≈ n2A21,

in which the population ratio n2/n1 ≈ C12/A21 depends not only on the temper-
ature (which enters into the velocity distribution f(v)), but also on the electron
density, and remains far below the Boltzmann ratio n2/n1 = C12/C21 (itself barely
temperature-dependent) which is achieved at much larger density. The two-level
photon destruction probability εν ≈ Cul/Aul is very small; the two-level line source
function becomes

Slν ≈ Jν ≈ (1/2)Bν(Teff)� Bν(Te)

in accord with

Slν ≈
bu
bl
Bν(Te).

Even though the excitation is achieved through collisions, i.e., with a knowledge of
the local temperature, the collisional frequency is too low to bring the population of
the excited level up to the Boltzmann value. Each ion that is excited then promptly
decays spontaneously, and the escape of the bb photon represents a large NLTE
loss of energy; local detailed balance, which demands as many collisions upwards as
collisions downwards, is not achieved by a long shot.

For the bf ionization-equilibrium, on the contrary, the electron density just drops
out because an ion waits a long time for a passing electron for photorecombination.
The probability for that is proportional to the electron density, just as for collisional
ionization; the rate equations then result in Boltzmann-like ionization ratios which
are independent of the temperature, which strongly simplifies their calculation and
makes diagnostic applications easier. On the contrary, the Saha formula for the
TE ionization ratio depends on Ne; that arises because collisional recombination
is proportional to N2

e . The second colliding electron in this three-particle process
provides the Saha Ne but only counts if collisions are sufficiently dominant. In
coronal circumstances the dependence of excitation and ionization on Ne is thus
just reversed with respect to TE circumstances.

This description of the bb and bf processes is incomplete. In coronal circum-
stances, one should also consider dielectronic processes, for which two electrons un-
dergo energetic transitions at the same time. Configurations in which two electrons
are excited at the same time can have autoionization-energy levels, lying above the
ionization limit of the configuration for a single valence electron. The excitation of
such a level can lead to ionization by a radiation-free transition in which one electron
is released (autoionization). That would occur if an already excited atom encoun-
tered a photon or electron suitable for a second excitation; however, the probability
for this is small in coronal circumstances because for both encounters the rate is
small with respect to the rate of spontaneous deexcitation (i.e., the probability of
spontaneous deexcitation is higher than the probability of encountering a suitable
photon or electron for the excited atom).
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Figure 8.11: Dielectronic recombination. The left pair of diagrams sketches how
the term diagram of an atom with two excited electrons (right diagram, marked 2e)
can have excited levels that are above the ionization limit of an atom with a single
excited electron (1e). The right pair of diagrams sketches how first, an energetic free
electron excites a bound electron in an ion as it itself is captured into another excited
level (left diagram). Then, spontaneous deexcitation of both electrons, possibly in a
cascade or series of transitions to progressively lower levels, provides line photons
and leaves the ion in the ground state, one ionization level lower (right).

The reverse process, dielectronic recombination, is important, however. In this
process a passing energetic electron excites a bound electron and at the same time
is itself captured into an autoionization state. From here the atom can undergo a
nonradiative ionization which leaves it in its original state of ionization; but the
atom can also undergo doubly spontaneous radiative deexcitation of both electrons
– there is plenty of time – leaving it in the next lower ionization stage. At high
temperature this recombination process is more efficient than radiative recombina-
tion, ten times more so in the solar corona, because the collisional excitation of the
bound electron helps to reduce the kinetic energy of the captured electron – much
more energetic electrons can participate than those rather scarce ones near the ion-
ization edges. (Slower electrons are captured more easily: the capture cross section
σfb for photon recombination for hydrogen-like ions decreases quadratically with the
electron energy: σfb ∼ 1/v2. Energy loss from extra bb excitation compensates this
decrease.)

The ratio between the probability of photon recombination and the probability of
dielectronic recombination depends solely on Te and not on Ne, why? The conclusion
above that the ionization equilibria depend only on the temperature thus doesn’t
hold. At high temperature dielectronic recombination wins because the peak of the
Maxwellian distribution and the 1/v2-dependence of the photon recombination are
shifted further apart from one another with increasing temperature.

Figure 8.12 by Carole Jordan shows coronal ionization ratios in a Cecilia Payne-
like diagram for successive ionization stages of iron. At any given temperature there
are several stages of ionization present at the same time. The levels with filled shells
are difficult to ionize and exhibit broad maxmima (7+, 16+). The ions one stage
below (6+, 15+) have many dielectronic recombination levels which provide a long
high-energy tail.

Because of the low density the ionization equilibria are established slowly: after
a temperature disturbance this takes several minutes. The attainment of statistical
equilibrium between the populations takes even longer.
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Figure 8.12: Ionization stages of iron in the solar corona. After Jordan.

The many dielectronic recombinations are evidenced by spectral lines: each re-
combination is always followed by two bb emissions, or even more if the deexcitation
of the excited level to the ground state goes via intermediate levels. That provides
a cascade spectrum, characteristic of circumstances in which recombination from
excited levels is important. The spectral lines can thus be much stronger than
predicted from the two-level approximation.

The spatial dependence of electron temperature Te is smoothed by the large free
path lengths of the particles over large distances. If a magnetic field is present,
this smoothing only occurs parallel to the magnetic field, not perpendicular to it,
because the electrons then spiral around the field lines (coronal loops). Then large
temperature and density gradients are possible across the field lines. These indeed
occur, because the dissipation of “mechanical” energy appears to take place via
such magnetic structures. These lead to sharply defined structures with different
temperature and density parameters and therefore with different emission coeffi-
cients; because the immediate surroundings are optically thin these structures are
also readily observable. The best far-UV images of the Sun (from NASA’s Hi-C
instrument, launced on a rocket in 2012) show coronal fine structure all the way to
the instrumental resolution of 0.2 arc second or 150 km on the Sun.

8.3.1.1 The solar corona in X-rays

The coronal X-ray spectrum consists of overlapping series limit continua with su-
perimposed emission lines (why in emission?), see Figure 8.13. There are several
ionization stages evident at the same time (seven due to iron are seen here) which
provide good temperature diagnostics. Coronal X-ray spectra are very rich in spec-
tral lines.

Each photon represents the destruction of thermal energy and its disappearance
from the local medium: i.e., each photon provides radiative loss. The line strengths
are proportional to nuAul (why?), the loss per spectral line is proportional to NeNH

(why?), and because we have approximately that Ne = NH(1 + 2B), with B1 the
fraction NHe/NH, it follows that the loss per transition is proportional to N2

H. The
sum over all lines and continua then provides the total radiative loss; Figure 8.14
gives an example as a function of temperature. The indicated curve is unreliable for
Te ≤ 5× 104 K because the corona is then no longer optically thin in the strongest
lines such as Lyα. There the corona is still effectively thin so that all photons created

1NB: This B is the fifth B in these lecture notes.
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Figure 8.13: An X-ray spectrum of the Sun, taken from a rocket. Plasmas found
in coronal circumstances (optically thin, hot, and tenuous) produce spectra with nu-
merous emission lines from high ionization stages.

still count, but the term BijJν then is involved in the excitation processes so that
the populations also depend on the radiation field.

8.3.1.2 The solar corona in the visible

There are various “coronae” = circles of light visible around the Sun, see Figure 8.15.
The F-corona arises from scattering of photospheric sunlight by interplanetary

dust with cross section d ≈ 1 µm ≈ λ; this scattering is therefore “white” (∼ λ0)
and strongly peaked in the forward direction. The scattering is elastic, thus its
spectrum is the photospheric line spectrum (Fraunhofer spectrum, from which the F
is taken). Because these photons are strongly scattered forwards, viewed from Earth
they principally appear near the Sun: the intensity increases towards the Sun. That
holds also for the sky background at sunset, resulting from the scattering off dust and
water droplets in the Earth’s atmosphere. For the brighter sky, however, Rayleigh
scattering off molecules dominates, with the associated dipole phase function, and
is scarcely increasing with proximity to the solar disk. (A good criterion for sky
brightness is then to hold your thumb in front of the Sun and then to see how close
to the Sun the sky remains blue.)

The K corona refers to the radiation of the corona itself, i.e., the emission from the
tenuous shell of hot gas around the Sun. The largest contribution to the continuous
extinction (and emission) is given by Thomson scattering. The electrons move with
an average velocity

v =

√
2kT

me
≈ 109 cm s−1,
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Figure 8.14: Radiative losses curve. On the vertical axis is plotted the loss of energy
from photon emission divided by the product of electron density Ne and hydrogen
density NH ; temperature is plotted on the horizontal axis. The curve holds for an
optically thin gas plasma with solar abundances (Cook et al. 1989).

thus the associated typical Doppler shift is

∆λD = λ
v

c
≈ 10 nm.

These shifts are quite large; although the scattering is elastic (monochromatic in the
PRS, in the “frame of the particle”), the Fraunhofer line spectrum appears smeared
out to an observer on Earth. Only the broadest lines are seen, notably in the case
of the Ca II H and K lines where two broad, shallow absorption troughs remain; on
this basis Grotrian first proposed that the corona contains fast-moving scattering
electrons, and thus it must be very hot.

wavelength identification ∆λD v Aul

530.3 nm [Fe XIV] 0.051 nm 29 km/s 60 s−1

569.4 [Ca XV] 0.087 46 95
637.4 [Fe X] 0.049 23 69

Table 8.2: Coronal emission lines in the visible spectrum during a solar eclipse.

The visible spectrum also exhibits individual well-known emission lines, see Ta-
ble 8.2. Together these form the E corona. These forbidden transitions with
Aul ≈ 102 s−1 (the notation [Fe XIV] means a forbidden transition in the spec-
trum of Fe13+. All permitted transitions (with Aul ≈ 104–108 s−1) fall in the far
ultraviolet and the X-ray region for such high stages of ionization). From the as-
sumption that the observed line width is due to thermal Doppler shifts v, we have
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Figure 8.15: The visual corona of the Sun. The radiation from the solar corona itself
falls off with distance from the solar limb according to the curve K. This changes
with the activity of the Sun. The F corona describes the contribution to the intensity
observed about the Sun resulting from scattering by interplanetary dust. The “earth-
shine” is light scattered from the moon back to Earth during a total solar eclipse.
After Van de Hulst.

for the temperature: T ≈ 2−5×106 K. The [Ca XV] line is the only one observable
in highly active regions; there the corona is apparently hotter.

Why are these lines visible although they are forbidden? Once again it is thanks
to the combination of very high temperature and low density: radiative deexcitation
dominates over collisional deexcitation even for these long lifetimes in the upper
level.

These coronal lines long remained a puzzle. They are very strong in coronal
spectra taken during total solar eclipses; in a “coronal sky” (blue all the way up to
your thumb) they can also by measured with a coronograph: a telescope with an
internal disk which eclipses the Sun. They were ascribed to a new element Coro-
nium although no place for this element was available in the periodic table. Finally
Grotrian and Edlánd provided the explanation based on the above identifications.
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8.3.1.3 The solar corona in radio waves

Figure 8.16 shows the variation from the photosphere to the Earth’s orbit for three
characteristic frequencies:

1. νB = gyro frequency = 2.8× 106B, with the magnetic field strength B in Gauss.
Cyclotron radiation occurs for ν = (1 − 5) × νB; synchrotron radiation for ν =
(10−1000)×νB. Of interest for 9 < log ν < 12, and only in active regions (why?).

2. νp = plasma frequency = 9× 103
√
Ne.

There is no wave propagation for ν < νp. Strong plasma radiation can be gener-
ated by exciting disturbances with frequency ν = νp and at the higher harmonics
ν = 2νp etc. Such plasma radiation dominates in the solar wind near the Earth
for frequencies ν < 1 GHz. Its measurement is carried out with space vehicles
because the ionosphere is not transparent to such long waves (νp ≈ 107 Hz).

3. ν(τff =1) = frequency at which the continuous Bremsstrahlung extinction reaches
an optical thickness τff = 1 over one scale height. Thus the corona is optically
thin for the ff processes to the right of the dashed curve and is optically thick to
the left; the curve shows where thermal Bremsstrahlung photons of this frequency
typically originate.

The thermal Bremsstrahlung provides the temperature. The observed antenna
temperature is:

TA ≡ ηATb = T (0) e−τ + Tcor (1− e−τ )

so that the coronal temperature Tcor is measured provided that τff > 1. That however
isn’t the case for regions where ν(τff = 1) < νp because waves of the frequencies
which reach that depth are bent or deflected. (Figure 8.17). This doesn’t happen
for 108 < ν < 109 Hz because at those frequencies νp is reached deeper than at
τff = 1. At ν ≈ 150 MHz for example the turnaround point is at τff ≈ 5.

Even though the place where ν = νp for 108 < ν < 109 Hz lies much deeper than
τff = 1, plasma radiation is observable at those frequencies because:

– the brightness temperature in the most active regions can readily reach Tb ≈
1015 K . With τ = 10 and e−τ = 2× 10−4 there still remains Tb = 1010 K;

– the corona is strongly inhomogeneous, thus τff = 1 fluctuates strongly. Radiation
from an optically thick coronal loop can escape in between the loops.

In the low-frequency domain (30 kHz — 1 GHz) we observe flares with a negative
frequency drift, caused by a shock front (Type II ) or a fast-moving packet of electrons
(Type III ) that are rapidly moving towards the outer part of the corona. The plasma
radiation then follows νp, thus the local frequency shift ∼

√
Ne.

The high frequency domain (1 Ghz — 30 GHz) is dominated by gyro radiation.
Figure 8.18 shows characteristic spectra for homogeneous sources. The slopes are
given and the arrows show how the curves shift as the various parameters increase.

Consider for example Bremsstrahlung spectrum (ff processes). For the Rayleigh-
Jeans portion we have Sν = Bν = 2kν2T/c2 (why does LTE hold?), thus

Tb =
c2

2kν2
Iν

{
= Te for τν � 1
= Te τν = (c2/2kν2) jνL for τν � 1
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Figure 8.16: Typical spatial scales for three characteristic radio frequencies between
Sun and Earth: the gyro frequency νB, the plasma frequency νp and the formation
frequency νff

τ . After a preprint by Gary and Hurford.

with L the source diameter. The emission coefficient jν ∼ N2
e , why? The flux

density (irradiance) is:

Rν = ∆Ω Iν

{
= ∆Ω Bν for τν � 1
= ∆Ω jνL = ∆Ω BνkνL for τν � 1.

Note the frequency dependence: for Tb this is ∼ ν0 for τ � 1 and ∼ ν−2 for τ � 1;

for Rν on the contrary ∼ ν2 for τν � 1 and ∼
[
ν2 ν−3(1− e−hν/kT )

]
= ν0 for

τν � 1.
For synchrotron spectra the pitch angle θ, the magnetic field B, the number of

particles N above the threshold energy and the spectral index δ of the particles
energy distribution n(E) = kE−δ join in. The peak of the curve always falls at the
frequency with τν ≈ 1 (why?).

These curves can be compared against observations to decide among mechanisms
and to determine parameters of the source. The upper figures then can be applied
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Figure 8.17: Curvature and reflection of radio waves in the corona. Here spherical
symmetry is assumed; in actuality the corona is strongly inhomogeneous.

to resolved sources, while the lower ones can also be used if the true source diameter
is unknown (why?).

8.3.2 Stellar winds

Many stars release not only photons and neutrinos into space as a sign of their
existence, but also shed matter. The hydrodynamical solar wind (the evaporation
of the hot corona) does not interest us here, but the radiatively driven winds of
hot stars do. They are discussed at some length in radiative transport theory (see
Chapters 14 and 15 of Mihalas 1978). At the heart of this lies the fact that the
line extinction coefficient is systematically shifted in wavelength in the presence of
systematic velocity structure within an object.

The formation of P Cygni profiles is geometrically determined. The unshifted
emission line emerges from the parts of the extended atmosphere on each side of the
star (A in Figure 8.19) that expand at right angles to the line of sight and give no
Doppler shift. (Why is this contribution in the form of emission?) In the direction of
the star, the layers with the largest expansion velocity give the largest blue shift in
their absorption contribution (why absorption?). Such P Cygni profiles are a good
indication of the occurrence of a stellar wind and mass loss. The P Cygni profiles
are observed in the visible spectrum but are the most evident in the ultraviolet
spectra of hot stars because the resonance lines of the most important ionization
levels fall in the ultraviolet. With the first ultraviolet spectrometer (Morton in 1967,
with a rocket for which the retrieval misfired and so it had to be dredged up from
the sea floor) it was unexpectedly discovered that O and B supergiants have Si IV
lines (140.28 nm and 154.95 nm) which show outwardly streaming velocities up to
2000 km s−1. That is much larger then the escape velocity:

vesc = 620

(
M

M�

) 1
2
(
R

R�

)− 1
2

km s−1.

The visual lines arise in the photosphere or in layers above the surface and only
reach a terminal velocity vD ≈ 300 km s−1, but the ultraviolet resonance lines have
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Figure 8.18: Characteristic radio spectra for Bremsstrahlung, thermal synchrotron
radiation and nonthermal synchrotron radiation, given as irradiance (below) and as
brightness temperature (above). The numbers indicate the slope; in these log-log plots
the slope is the power of the frequency dependence. The arrows indicate in which
direction the curves shift (their shapes are roughly conserved) with a variation of a
factor two in the parameters n (electron density), T (temperature), B (magnetic field
strength), L (layer depth), N (number of fast-moving particles above the threshold
energy), θ (pitch angle of the spiral movement) and δ (spectral index for the energy
distribution of the particles n(E) = kE−δ). After a preprint by Gary and Hurford.

much more extinction so that the outermost layer involved (shell D in Figure 8.19)
lies much farther out: they show vD ≈ 1500− 3000 km s−1.

How does this fast-moving stellar wind originate? The idea of Lucy and Solomon
(1970) was that the momentum transfer from these ultraviolet lines powers the wind.
Consider a thin shell at radius C. Photon excitation by means of outwardly directed
stellar radiation followed by isotropic reemission provides an acceleration outwards
with a sum in which the momentum transfer of the photon excitation contributes
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Figure 8.19: P Cygni profiles. An expanding extended atmosphere around a hot star
provides spectral lines with an emission peak at the rest wavelength and an absorption
trough towards shorter wavelengths.

but that of the photon deexcitation does not, on account of its isotropy:

flow of energy [sec−1 cm−2] Fν
with momentum Fν/c
momentum transfer [cm]−2 ανFν/c
contribution to the acceleration ανFν/ρc
total acceleration gr = (1/ρc)

∫∞
0 ανFν dν

We evaluate this acceleration first for the continuum. The continuous extinction
in O stars is dominated by Thomson scattering. This is frequency independent, thus

ges
r =

1

ρc
Ne σ

esF =
Ne σ

es

ρc

L

4πr2
,

and the relationship to the inwardly directed gravitational acceleration g = GM/r2

is

Γes ≡ ges

g
=

Ne σ
esL

4π ρc GM
.

This ratio is the Eddington limit; if Γes > 1, the photosphere is blown off by the
continuous radiation. Stable stars thus have Γes < 1.

Now for the radiation pressure of spectral lines. In deep layers the Rosseland
approximation holds:

Fν =
4π

3

∫ ∞
0

1

αν

dB

dT

dT

dz
dν,

dus

gr =
1

ρc

∫ ∞
0

ανFν dν =
4π

3ρc

∫ ∞
0
Fν

dB

dT

dT

dz
dν

is independent of αν : the spectral lines are not effective in deep layers. They do
increase the extinction but the radiative flux leaks out through just those spectral
windows with small extinction.
But above the surface that is no longer so. There radiative flux doesn’t know what
lies above it and larger line extinction in an overlying shell counts as long as the
shell is optically thin. The contribution per spectral line:

glr =
1

ρc
αl ∆νDFν ≈

1

ρc
αl ∆νDBν(Teff)
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with ∆νD = νξ/c the Doppler width of the line, determined by the average thermal
velocity ξ of the scattering particles in the shell. The peak of Bν falls in the ultravi-
olet; for strong ultraviolet resonance lines such as C IV 154.8 nm with Fν = Bν(Teff)
we have glr/g ≈ 300. This is then a large effect; moreover, there are hundreds of
such strong lines available in the ultraviolet.

But now add radiative transport. An optically very thin layer captures few pho-
tons; in an optically thick layer the lines saturate and there is no more Bν(Teff)
radiation. Thus we introduce the optical thickness of the shell τ l for the line fre-
quency ν = νl. With radiation from below by the undisturbed continuum of the
star there follows from

τ l < gl >= gl(0)

∫ τ l

0
e−τ

′
dτ ′

that

< gl >=
αl ∆νD
ρc

Fν
1− e−τ

l

τ l
.

How large is τ l? For a static atmosphere we have τ l =
∫∞
R αldr, but for an expanding

atmosphere the extinction profile shifts in wavelength with the expansion velocity
as it increases outwards. Then we have the important Sobolev approximation:

τ l ≈ αl ξ

dv/dr
,

a type of effective optical thickness per line in an expanding shell. For sufficiently
large dv/dr each shell absorbs a new piece of the continuum because the line ex-
tinction profile for this shell is shifted with respect to that of any other shell; this
shell is not shielded by the inner shells. Each photon that traverses a path length of
about τ l (for example by scattering) escapes, in whatever direction; yet above and
below the shell there are atoms which can absorb the line photons at this Doppler
shift. For sufficiently large dv/dr this shell of interaction is also so thin that it can
be assumed to be homogeneous. Thus:

for strong lines (τ l � 1) < gl > =
Fν
ρc

∆νD
ξ

dv

dr

for weak lines (τ l � 1) < gl > =
Fν
ρc

∆νD α
l

For strong lines the line extinction coefficient αl drops out: only their number mat-
ters. Their contribution is proportional to dv/dr because for larger dv/dr there is
less self-screening.

8.3.3 Planetary nebulae

Planetary nebulae are the result of the loss of stellar material: shells of previously
ejected material are heated and made to reradiate by the central star. They have
nothing whatsoever to do with planets. The so-called H II regions are similar objects:
emission nebulae of H+ around hot stars. References: Bowers & Deeming Volume
II, chapters 20, 24. Here follows a description of relevant radiative processes taken
from the lecture notes of C. Zwaan.
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8.3.3.1 Zanstra mechanism

Stellar radiation in the Lyman continuum (λ < 91.2 nm) ionizes the nebula – the
nebula is thus heated. A recombining electron contributes to the recombination
spectrum – not only Lyman photons but also Balmer, Paschen, etc. photons are
released (thus: photon conversion, or photon degradation).

Figure 8.20: The Zanstra mechanism for planetary nebulae. The recombination cas-
cade which produces hydrogen emission lines in HII regions and planetary nebulae
can take many possible paths. But in a nebula that is optically thick to the Lyman
transitions, all such paths ultimately produce one Balmer photon plus one Lyα pho-
ton plus, perhaps, lower-energy continuum and line photons (the paths marked OK).
Taken from Shu “The Physical Universe” 1982, Figure 11.9.

Zanstra assumed that a (planetary) nebula is optically thick to all Lyman photons,
but optically thin to Balmer, Paschen, and other photons. Zanstra established that
the Lyβ, Lyγ, ... and Lyman continuum photons originating in the star, after
many extinctions and reemissions in the nebula, were eventually degraded into Lyα
photons and Balmer, Paschen, etc. photons (Figure 8.20). He noted that each Lyman
photon (from β up to the continuum) produced one Lyα and one Balmer photon. By
means of many scattering processes, the Lyα photons leak out of the nebula path,
the Balmer photons leave the nebula as soon as they are created. So by counting
all Balmer photons from the nebula, one counts all Lyman photons (from Lyβ on,
for which the Lyman continuum is the most important) which originate from the
star. Equating this with the photons in the optical stellar spectrum provides a
color index which is a very sensitive measure of the stellar temperature. In this way
one determines for the central stars of planetary nebulae the Zanstra temperature:
3× 104K ≤ T ?eff ≤ 3× 105 K.

One can naturally draw up a detailed description, without making extreme as-
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sumptions about the optical thickness of the nebula, and in which more is recovered
from the Balmer spectrum of the nebula. The populations of the energy levels of
hydrogen are completely determined by the radiative field of the star: as a result
of the low electron densities, collisional processes are negligible compared to all
non-forbidden line transitions.

The radiative field of the star has a very extreme character: the average intensity
in the nebula as a result of the radiation is:

Jν = Wν
2hν3/c2

ehν/kTr − 1
,

with Tr the (very high) radiative temperature of the star in the relevant line or series
limit continuum and Wν is the very small radiative dilution factor:

Wν =
R2

4r2
e−τν(r).

The first factor is the geometric dilution factor, with R the radius of the star, and
r the distance to the star. Assuming r � R, R2/4πr2 is very small: ≈ 10−15. The
second factor is the extinction factor, in which τν stands for the optical distance of
the star to the particular element in the nebula – this contains the density of the
(hydrogen) atoms along this distance. The radiative field is thus very “hot” though
extremely thin.

Because the nebula is optically thin to all transitions except the Lyman spectrum,
the radiative field of the nebula “itself” is negligible (except perhaps in Lyα). From
this scenario it follows that the statistical equilibrium is completely determined by:

1. photon-ionization and photon excitation, exclusively from the ground level, as a
result of Lyman radiation of the star;

2. photon-recombination and photon deexcitation (levels are thus populated only
via processes from the ground level and from higher levels or the continuum).

The system of equations for statistical equilibrium is thus relatively simple – one
can solve the problem using models for the stellar radiation and the density in
the nebula, and calculate from these e.g. the relative strengths of the Balmer lines
and the Balmer continuum (the Balmer decrement), and compare these with the
observed Balmer decrement – from this there then follow unique model parameters.

A result of the strongly diluted radiative field is that the local H atoms are
practically exclusively in the ground level n = 1. If the nebula is optically very thick
in Lyα, then the Lyα photons are efficiently trapped. Then the radiative field in
Lyα builds up to an average intensity that exceeds the diluted radiation field of the
star; however, the net flux remains small. An enhanced radiation field in Lyα then
leads to an enhanced population of the level n = 2.

Since the hydrogen in the nebula is almost completely (singly) ionized, practically
all emission in the Balmer, Paschen, etc. spectrum is produced by recombination.
So the emission per volume element is thus proportional to nH × Ne. The surface
brightness Iν of the nebula is thus determined by the so-called emission measure
EM :

EM =

∫
S
nH ×Ne ds

in which S is the segment along the line of sight inside the nebula.
The nebula has a sharp edge, especially as a result of the extinction factor in

the dilution factor Wν . At a certain distance from the star the intensity of the
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stellar radiation in the Lyman continuum decreases, consequently the fraction of
neutral hydrogen in the nebula becomes larger, the extinction coefficient for Lyman
radiation rises rapidly, and so on. The emission nebula extends to the so-called
Strömgren radius rs:

rs = rs,1 N
−(2/3)
H .

In this nH is the density of hydrogen particles. The Strömgren radius naturally
depends strongly on the effective temperature of the central star – see the table.

Spectral type: O5 O8 B0 B3 B9 A2

Teff 55000 49000 42000 28000 15500 12300 K
rs,1(nH = 1 cm−3) 130 80 50 15 2 0.6 pc

Table 8.3: Effective temperatures and Strömgren radii for hot stars

Since the particle density is somewhat nonuniform, the edge of the nebula will
have an irregular shape – certainly for diffuse nebulae and H+ regions.

The above scenario for the hydrogen spectrum in nebulae can also be applied to
the He II spectrum of singly-ionized helium – the wavelengths are shifted: the reso-
nance line corresponding to Lyα falls at 30.3 nm and the series limit corresponding
to the Lyman continuum at 22.8 nm. Owing to the lower helium abundance, the
nebula is somewhat less less thick in He II lines and continua than in H. With a
few modifications the preceding arguments also apply to He I: here there is also
photoelectric heating and photon degradation.

8.3.3.2 Fluorescence

In planetary nebulae individual strong UV lines are encountered, especially in O III,
which are noteworthy because other closely related lines from the same spectrum
are completely absent.

Bowen (1935) demonstrated that these lines arise from fluorescence resulting from
pumping in a strong line of the nebula (see Figure 8.21). The resonance line of He II
λ 30.3780 nm is very strong: just as for Lyα a rather strong radiative field can build
up in the line. This helium line overlaps the O III 30.3799 nm line, with the result
that O++ is excited from the ground level to the very specific fine-structure level
3d3P2. From there the O++ ion decays back to the ground state by spontaneous
emissions, via a whole cascade of lines, most of which lie in the optical UV. The
last transition O III λ 37.4436 nm overlaps two lines in the N III spectrum, which
cause an excitation to the 3d2D term of N++, which once again results in a number
of spontaneous emissions, also in the visible spectral region.

8.3.3.3 Forbidden lines

In the spectrum of emission nebulae spectral lines are seen which do not occur in
the laboratory – among which are the two blue-green “nebulium” lines N1 and N2,
that are brighter than all the remaining lines combined in the visible spectrum of
practically all nebulae. These lines were explained (by Bowen and others) as for-
bidden lines (i.e. not electronic dipole radiation) of O++: [O III]. The metastable
levels (1D and 1S in that case) are excited by collisions with electrons – that can
happen at the typical electron temperatures in nebulae, Te ≈ 1− 2× 104 K, because
the energy jumps are only a few eV. Because of the low Ne the probability for a
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Figure 8.21: The Bowen mechanism for fluorescence. Due to fortuitous wavelength
coincidences, high levels can be excited by photons from the spectra of other elements.
The wavelengths are given in Ångstrom.

collisional deexcitation is still considerably smaller then the probability for photode-
excitation, by which forbidden lines appear. Note (carefully) that the presence of
forbidden lines occurs optimally in a fairly hot gas of electrons, just dense enough to
provide collisional excitation, but indeed not so dense that collisions dominate the
deexcitation of the metastable levels.

8.3.3.4 Radio emission

Given that an emission nebula is practically completely (singly) ionized, free-free
radiation is emitted – this is especially natural in the radio region (why?). This is
an important diagnostic which provides the electron temperature of the nebula; in
the radio region there is no continuous extinction. Do check if in the radio region a
nebula is optically thick – (or an intermediate case) – or optically thin, but that can
be discerned from the I(ν) spectrum itself. If it is optically thick we have I(ν) ∼ ν2;
if it is optically thin we have I(ν) ∼ ν0.


