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Brief introduction
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	Three theoretical models:

• Theory of motion of single charged particles in given magnetic and electric fields;
[ book: Sec. 2.2 ]

• Kinetic theory of a collection of such particles, describing plasmas microscopically
by means of particle distribution functions fe,i(r,v, t) ; [ book: Sec. 2.3 ]

• Fluid theory (magnetohydrodynamics), describing plasmas in terms of averaged
macroscopic functions of r and t . [ book: Sec. 2.4 ]

Within each of these descriptions, we will give an example illustrating the plasma property
relevant for our subject, viz. plasma confinement by magnetic fields.
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	Plasma

• Most common (90%) state of matter in the universe.

• On earth exceptional, but obtained in laboratory thermonuclear fusion experiments at
high temperatures (T ∼ 108 K).

• Crude definition: Plasma is a completely ionised gas, consisting of freely moving
positively charged nuclei and negatively charged electrons.
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Applications

• Magnetic plasma confinement for (future) energy production by Controlled Thermonu-
clear Reactions.

• Dynamics of astrophysical plasmas (solar corona, planetary magnetospheres, pulsars,
accretion disks, jets, etc.).

• Common ground: Plasma interacting with a magnetic field.
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	The Standard View of Nature

Nuclear forces

⇓
quarks / leptons

nuclei (+) / electrons (−) 10−15 m

Electrostatic forces

⇓
atoms / molecules 10−9 m

(ordinary matter: electrically neutral)

.........

Gravity

⇓
stars / solar system 109/1013 m

galaxies / clusters 1020/1023 m

universe 1026 m

However, ...
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The universe does not consist of ordinary matter

• > 90% is plasma:
electrically neutral, where the nuclei and electrons are not tied in atoms but

freely move as fluids.

• The large scale result is Magnetic fields
(example: interaction solar wind – magnetosphere).
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Geometry

• Spherical symmetry of atomic physics and gravity (central forces) not present on the
plasma scale:

∇ · B = 0 is not compatible with spherical symmetry
(example: solar flares).
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Example: The Sun

a magnetized plasma!
(sunatallwavelengths.mpeg)
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Example: Coronal loops (cont’d)

[ from recent observations with TRACE spacecraft ]
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Example: Stellar wind outflow (simulation)

• Axisymmetric magnetized
wind with a ‘wind’ and a
‘dead’ zone

[ Keppens & Goedbloed,

Ap. J. 530, 1036 (2000) ]
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Example: Polar lights

Beauty of the polar lights (a1smallweb.mov)

Solar wind powering auroral displays (fuvmovie.mpeg)
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Example: Accretion disk and jets (YSO)

Young stellar object
(M∗ ∼ 1M⊙):
accretion disk ‘seen’
edge-on as dark strip,
jets colored red.
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Example: Accretion disk and jets (AGN)

Active galactic nucleus (M∗ ∼ 108M⊙):
optical emission (blue) centered on disk,
radio emission (red) shows the jets.
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Example: Accretion disk and jets (simulation)

Stationary end state from the simulation of
a Magnetized Accretion Ejection Structure:
disk density surfaces (brown), jet magnetic
surface (grey), helical field lines (yellow),
accretion-ejection particle trajectory (red).
[ Casse & Keppens, Ap. J. 601, 90 (2004) ]
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	Crude definition:

Plasma is an ionized gas.

Rate of ionization: ni
nn

=
(

2πmek
h2

)3/2 T 3/2

ni
e−Ui/kT (Saha equation)

– air: T = 300 K , nn = 3 × 1025 m−3 , Ui = 14.5 eV ⇒ ni/nn ≈ 2 × 10−122 (!)

– H in tokamak: T = 108 K , ni = 1020 m−3 , Ui = 13.6 eV ⇒ ni/nn ≈ 2.4× 1013

– solar corona: T = 106 K , ni = 1012 m−3 , Ui = 13.6 eV ⇒ ni/nn ≈ 2.4 × 1018

�
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Microscopic definition:

Plasma is a quasi-neutral gas of charged and neutral particles which exhibits collective
behaviour (cf. Chen).

(a) Long-range collective interactions dominate over binary collisions with neutrals

(b) Length scales large enough that quasi-neutrality (ne ≈ Zni) holds

(c) Sufficiently many particles in a Debye sphere (statistics)
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	Collective behavior

Conditions:

(a) τ ≪ τn ≡ 1

nnσvth

tokamak: τ ≪ 2.4 × 106 s

corona: τ ≪ 2 × 1020 s ;

(b) λ ≫ λD ≡
√

ǫ0kT

e2n

tokamak: λD = 7×10−5 m

corona: λD = 0.07 m ;

(c) ND ≡ 4
3πλ3

D n ≫ 1

tokamak: ND = 1.4 × 108

corona: ND = 1.4 × 109 .

tokamak

air

T

corona sun

1032

108

1

core sun

102 104
 106

 1010

n

108
 

1024

1016

λD = 10- 8 m

τn = 6 x 1017 s

λD = 10- 4 m

λD = 1 m

τn = 1 s  
N D = 108

tokamak

N D = 1016

N D = 1
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So far, only the electric field appeared. (LOCAL)
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Macroscopic definition:

For a valid macroscopic model of magnetized plasma dynamical configurations, size,
duration, density, and magnetic field strength should be large enough to establish
fluid behavior and to average out the microscopic phenomena (i.e. collective plasma
oscillations and cyclotron motions of electrons and ions).

Now, the magnetic field enters: (GLOBAL !)

(a) τ ≫ Ω−1
i ∼ B−1 (time scale longer than inverse cyclotron frequency);

(b) λ ≫ Ri ∼ B−1 (length scale larger than cyclotron radius).

�

�
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⇒ MHD ≡ magnetohydrodynamics
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Elements of plasma physics
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	Three theoretical models:

• Theory of motion of single charged particles in given magnetic and electric fields;
[ book: Sec. 2.2 ]

• Kinetic theory of a collection of such particles, describing plasmas microscopically
by means of particle distribution functions fe,i(r,v, t) ; [ book: Sec. 2.3 ]

• Fluid theory (magnetohydrodynamics), describing plasmas in terms of averaged
macroscopic functions of r and t . [ book: Sec. 2.4 ]

Within each of these descriptions, we will give an example illustrating the plasma property
relevant for our subject, viz. plasma confinement by magnetic fields.
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Cyclotron motion

• Equation of motion of charged particle in
given E(r, t) and B(r, t):

m
dv

dt
= q(E + v × B) . (1)

• Apply to constant B = Bez and E = 0 :

ẍ − (qB/m) ẏ = 0 ,
(2)

ÿ + (qB/m) ẋ = 0 .

B

 

R i

+

R e--

⇒ periodic motion about a fixed point x = xc, y = yc (the guiding centre).

This yields periodic motion in a magnetic field, with gyro- (cyclotron) frequency

Ω ≡ |q|B
m

(3)

and cyclotron (gyro-)radius

R ≡ v⊥
Ω

≈
√

2mkT

|q|B . (4)

⇒ Effectively, charged particles stick to the field lines.
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Cyclotron motion (cont’d)

Orders of magnitude

• Typical gyro-frequencies, e.g. for tokamak plasma (B = 3 T):

Ωe = 5.3 × 1011 rad s−1 ( frequency of 84 GHz ) ,

Ωi = 2.9 × 108 rad s−1 ( frequency of 46 MHz ) .

• Gyro-radii, with v⊥ = vth ≡
√

2kT/m for Te = Ti = 1.16 × 108 K :

vth,e = 5.9 × 107 m s−1 ⇒ Re = 1.1 × 10−4 m ≈ 0.1 mm ,

vth,i = 1.4 × 106 m s−1 ⇒ Ri = 4.9 × 10−3 m ≈ 5 mm .

⇒ Tokamak time scales (∼ 1 s) and dimensions (∼ 1 m) justify averaging.

Since the gyro-frequencies essentially depend on B alone

⇒ excellent diagnostic to determine the magnetic field strength!
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	Drifts

• Single particle motion in constant E (= Eey) ⊥ constant B (= Bez) .

• Transverse equations of motion:

ẍ − qB

m
ẏ = 0 ,

(5)

ÿ +
qB

m
(ẋ − E/B) = 0 ,

replacing ẋ → ẋ − E/B ⇒ gyration superposed with constant drift in x-direction.

• Hence, ⊥ electric field gives E × B drift :

vd =
E × B

B2
, (6)

independent of the charge, so that elec-
trons and ions drift in same direction!

E

(y)

B

(z)

vd

(x)

+

--
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	Mirror effect

• Particles entering region
of higher |B| are reflected
back into region of smaller
|B| where gyro-radius is
larger and v⊥ smaller ⇒
(a) mirror, (b) cusp.

coil

B

I

a b

coil

I

coil

I

coil

I

J1 : gyration

N

S

z

B

r

φ

J3 : drift

W

E

J2 : bouncing

i

e

Example: Charged particles
trapped in the magnetosphere
(Van Allen belts).
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	Distribution functions

• A plasma consists of a very large number of interacting charged particles ⇒ kinetic
plasma theory derives the equations describing the collective behavior of the many
charged particles by applying the methods of statistical mechanics.

• The physical information of a plasma consisting of electrons and ions is expressed in
terms of distribution functions fα(r,v, t), where α = e, i. They represent the density
of particles of type α in the phase space of position and velocity coordinates. The
probable number of particles α in the 6D volume element centered at (r,v) is given
by fα(r,v, t) d3r d3v. The motion of the swarm of phase space points is described by
the total time derivative of fα:

dfα

dt
≡ ∂fα

∂t
+

∂fα

∂r
· dr

dt
+

∂fα

∂v
· dv

dt

=
∂fα

∂t
+ v · ∂fα

∂r
+

qα

mα
(E + v × B) · ∂fα

∂v
. (7)
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Boltzmann equation

• Interactions (collisions) between the particles determine this time derivative:

∂fα

∂t
+ v · ∂fα

∂r
+

qα

mα
(E + v × B) · ∂fα

∂v
= Cα ≡

(
∂fα

∂t

)

coll

. (8)

• Here, E(r, t) and B(r, t) are the sum of the external fields and the averaged inter-
nal fields due to the long-range inter-particle interactions. Cα represents the rate of
change of the distribution function due to the short-range inter-particle collisions. In
a plasma, these are the cumulative effect of many small-angle velocity changes ef-
fectively resulting in large-angle scattering. The first task of kinetic theory is to justify
this distinction between long-range interactions and binary collisions, and to derive
expressions for the collision term.

• One such expression is the Landau collision integral (1936). Neglect of the collisions
(surprisingly often justified!) leads to the Vlasov equation (1938).
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Completing the system

• Combine the Boltzmann equation, determining fα(r,v, t) , with Maxwell’s equations,
determining E(r, t) and B(r, t). In the latter, charge density τ (r, t) and current density
j(r, t) appear as source terms. They are related to the particle densities nα(r, t) and
the average velocities uα(r, t):

τ (r, t) ≡
∑

qαnα , nα(r, t) ≡
∫

fα(r,v, t) d3v , (9)

j(r, t) ≡
∑

qαnαuα , uα(r, t) ≡ 1

nα(r, t)

∫

vfα(r,v, t) d3v. (10)

This completes the microscopic equations.

• Solving such kinetic equations in seven dimensions (with the details of the single
particle motions entering the collision integrals!) is a formidable problem
⇒ look for macroscopic reduction!
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	Moment reduction

• Systematic procedure to obtain macroscopic equations, no longer involving velocity
space details, is to expand in finite number of moments of the Boltzmann equation, by
multiplying with powers of v and integrating over velocity space:

∫

d3v · · · ,

∫

d3v v · · · ,

∫

d3v v2 · · · |truncate. (11)

• E.g., the zeroth moment of the Boltzmann equation contains the terms:
∫

∂fα

∂t
d3v =

∂nα

∂t
,

∫

v · ∂fα

∂r
d3v = ∇ · (nαuα) ,

∫
qα

mα
(E + v × B) · ∂fα

∂v
d3v = 0 ,

∫

Cα d3v = 0 .

Adding them yields the continuity equation for particles of species α:

∂nα

∂t
+ ∇ · (nαuα) = 0 . (12)
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Moment reduction (cont’d)

• The first moment of the Boltzmann equation yields the momentum equation:

∂

∂t
(nαmαuα) + ∇ · (nαmα〈vv〉α) − qαnα(E + uα × B) =

∫

Cαβ mαv d3v . (13)

• The scalar second moment of Boltzmann Eq. yields the energy equation:

∂

∂t
(nα

1
2mα〈v2〉α) + ∇ · (nα

1
2mα〈v2v〉α) − qαnαE · uα =

∫

Cαβ
1
2mαv

2 d3v . (14)

• This chain of moment equations can be continued indefinitely. Each moment intro-
duces a new unknown whose temporal evolution is described by the next moment of
the Boltzmann equation. The infinite chain must be truncated to be useful. In fluid
theories truncation is just after the above five moments: continuity (scalar), momentum
(vector), and energy equation (scalar).
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From kinetic theory to fluid description

• (a) Collisionality: Lowest moments of Boltzmann equation with transport closure
gives system of two-fluid equations in terms of the ten variables ne,i, ue,i, Te,i. To
establish the two fluids, the electrons and ions must undergo frequent collisions:

τH ≫ τi [ ≫ τe ] . (15)

• (b) Macroscopic scales: Since the two-fluid equations still involve small length and
time scales (λD, Re,i, ω−1

pe , Ω−1
e,i ), the essential step towards the MHD description is to

consider large length and time scales:

λMHD ∼ a ≫ Ri , τMHD ∼ a/vA ≫ Ω−1
i . (16)

The larger the magnetic field strength, the more easy these conditions are satisfied.
On these scales, the plasma is considered as a single conducting fluid .

• (c) Ideal fluids: Third step is to consider plasma dynamics on time scales faster than
the slow dissipation causing the resistive decay of the magnetic field:

τMHD ≪ τR ∼ a2/η . (17)

This condition is well satisfied for the small size of fusion machines, and very easily for
the sizes of astrophysical plasmas ⇒ model of ideal MHD.
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In summary:

Kinetic theory

⇓
frequent collisions

⇓

Two-fluid theory

⇓
large scales

⇓

Diss. MHD ⇒ slow dissipation ⇒ Ideal MHD

�
�

�


�
�

�


�
�

�
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Resistive MHD equations

• Define one-fluid variables that are linear combinations of the two-fluid variables:

ρ ≡ neme + nimi , (total mass density) (18)
τ ≡ −e (ne − Zni) , (charge density) (19)
v ≡ (nemeue + nimiui)/ρ , (center of mass velocity) (20)
j ≡ −e (neue − Zniui) , (current density) (21)
p ≡ pe + pi . (pressure) (22)

• Operate on pairs of the two-fluid equations

• Evolution expressions for τ and j disappear by exploiting:

|ne − Zni| ≪ ne , (quasi charge-neutrality) (23)
|ui − ue| ≪ v , (small relative velocity of ions & electrons) (24)
v ≪ c . (non-relativistic speeds) (25)
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Resistive MHD equations (cont’d)

Combining one-fluid moment equations thus obtained with pre-Maxwell equations (drop-
ping displacement current and Poisson’s equation) results in resistive MHD equations:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (continuity) (26)

ρ (
∂v

∂t
+ v · ∇v) + ∇p − j × B = 0 , (momentum) (27)

∂p

∂t
+ v · ∇p + γp∇ · v = (γ − 1)η|j|2 , (internal energy) (28)

∂B

∂t
+ ∇× E = 0 , (Faraday) (29)

where

j = µ−1
0 ∇× B , (Ampère) (30)

E′ ≡ E + v × B = η j , (Ohm) (31)

and
∇ · B = 0 (no magnetic monopoles) (32)

is initial condition on Faraday’s law.
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Ideal MHD equations

• Substitution of j and E in Faraday’s law yields the induction equation:

∂B

∂t
= ∇× (v × B) − µ−1

0 ∇× (η∇× B) , (33)

where the resistive diffusion term is negligible when the magnetic Reynolds number

Rm ≡ µ0l0v0

η
≫ 1 . (34)

• Neglect of resistivity and substitution of j and E leads to the ideal MHD equations:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (35)

ρ (
∂v

∂t
+ v · ∇v) + ∇p − µ−1

0 (∇× B) × B = 0 , (36)

∂p

∂t
+ v · ∇p + γp∇ · v = 0 , (37)

∂B

∂t
−∇× (v × B) = 0 , ∇ · B = 0 , (38)

which will occupy us for most of this course.
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The MHD model
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	Overview

• The ideal MHD equations: postulating the basic equations, scale independence,
what is a physical model?; [ book: Sec. 4.1 ]

• Magnetic flux: flux tubes, global magnetic flux conservation; [ book: Sec. 4.2 ]

• Conservation laws: conservation form of the equations, global conservation laws,
local conservation laws – conservation of magnetic flux; [ book: Sec. 4.3 ]

• Discontinuities: shocks and jump conditions, boundary conditions for interface plas-
mas; [ book: Sec. 4.5 ]

• Model problems: laboratory models I–III, astrophysical models IV–VI.
[ book: Sec. 4.6 ]
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Postulating the basic equations

Equations of magnetohydrodynamics can be introduced by

• averaging the kinetic equations by moment expansion and closure through transport
theory (book: Chaps. 2 and 3);

• just posing them as postulates for a hypothetical medium called ‘plasma’ and use
physical arguments and mathematical criteria to justify the result (Chaps. 4, . . . ).

[ There is nothing suspicious about posing the basic equations. That is what is actually
done with all basic equations in physics. ]

In the second approach, since the MHD equations describe the motion of a conducting
fluid interacting with a magnetic field , we need to combine Maxwell’s equations with the
equations of gas dynamics and provide equations describing the interaction.
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• Maxwell’s equations describe evolution of electric field E(r, t) and magnetic field
B(r, t) in response to current density j(r, t) and space charge τ (r, t):

∇× E = −∂B

∂t
, (Faraday) (1)

∇× B = µ0j +
1

c2

∂E

∂t
, c ≡ (ǫ0µ0)

−1/2 , (‘Ampère’) (2)

∇ · E =
τ

ǫ0
, (Poisson) (3)

∇ · B = 0 . (no monopoles) (4)

• Gas dynamics equations describe evolution of density ρ(r, t) and pressure p(r, t):

Dρ

Dt
+ ρ∇ · v ≡ ∂ρ

∂t
+ ∇ · (ρv) = 0 , (mass conservation) (5)

Dp

Dt
+ γp∇ · v ≡ ∂p

∂t
+ v · ∇p + γp∇ · v = 0 , (entropy conservation) (6)

where
D

Dt
≡ ∂

∂t
+ v · ∇

is the Lagrangian time-derivative (moving with the fluid).



The MHD model: The ideal MHD equations (3) 2-4

• Coupling between system described by {E,B} and system described by {ρ, p}
comes about through equations involving the velocity v(r, t) of the fluid:
‘Newton’s’ equation of motion for a fluid element describes the acceleration of a fluid
element by pressure gradient, gravity, and electromagnetic contributions,

ρ
Dv

Dt
= F ≡ −∇p + ρg + j × B + τE ; (momentum conservation) (7)

‘Ohm’s’ law (for a perfectly conducting moving fluid) expresses that the electric field E′

in a co-moving frame vanishes,

E′ ≡ E + v × B = 0 . (‘Ohm’) (8)

• Equations (1)–(8) are complete, but inconsistent for non-relativistic velocities:

v ≪ c . (9)

⇒ We need to consider pre-Maxwell equations .
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Consequences of pre-Maxwell

1. Maxwell’s displacement current negligible [O(v2/c2)] for non-relativistic velocities:

1

c2
|∂E

∂t
| ∼ v2

c2

B

l0
≪ µ0|j| ≈ |∇ × B| ∼ B

l0
[using Eq. (8)] ,

indicating length scales by l0 and time scales by t0, so that v ∼ l0/t0.

⇒ Recover original Ampère’s law:

j =
1

µ0
∇× B . (10)

2. Electrostatic acceleration is also negligible [O(v2/c2)]:

τ |E| ∼ v2

c2

B2

µ0l0
≪ | j × B| ∼ B2

µ0l0
[using Eqs. (3), (8), (10)] .

⇒ Space charge effects may be ignored and Poisson’s law (3) can be dropped.

3. Electric field then becomes a secondary quantity, determined from Eq. (8):

E = −v × B . (11)

⇒ For non-relativistic MHD, |E| ∼ |v||B|, i.e. O(v/c) smaller than for EM waves.
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Basic equations of ideal MHD

• Exploiting these approximations, and eliminating E and j through Eqs. (10) and (11),
the basic equations of ideal MHD are recovered in their most compact form:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (12)

ρ(
∂v

∂t
+ v · ∇v) + ∇p − ρg − 1

µ0
(∇× B) × B = 0 , (13)

∂p

∂t
+ v · ∇p + γp∇ · v = 0 , (14)

∂B

∂t
−∇× (v × B) = 0 , ∇ · B = 0 . (15)

⇒ Set of eight nonlinear partial differential equations (PDEs) for the eight variables

ρ(r, t), v(r, t), p(r, t), and B(r, t).

• The magnetic field equation (15)(b) is to be considered as a initial condition: once
satisfied, it remains satisfied for all later times by virtue of Eq. (15)(a).
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Thermodynamic variables

• Alternative thermodynamical variables (replacing ρ and p):
e – internal energy per unit mass (∼ temperature T ) and s – entropy per unit mass.
Defined by the ideal gas relations, with p = (ne + ni)kT :

e ≡ 1

γ − 1

p

ρ
≈ Cv T , Cv ≈

(1 + Z)k

(γ − 1)mi
,

(16)
s ≡ Cv ln S + const , S ≡ pρ−γ .

• From Eqs. (12) and (14), we obtain an evolution equation for the internal energy,

De

Dt
+ (γ − 1) e∇ · v = 0 , (17)

and an equation expressing that the entropy convected by the fluid is constant (i.e. adi-
abatic processes: thermal conduction and heat flow are negligible),

Ds

Dt
= 0 , or

DS

Dt
≡ D

Dt
(pρ−γ) = 0 . (18)

This demonstrates that Eq. (14) actually expresses entropy conservation.
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Gravity

• In many astrophysical systems, the external gravitational field of a compact object
(represented by point mass M∗ situated at position r = r∗ far outside the plasma) is
more important than the internal gravitational field. The Poisson equation

∇2Φgr = 4πG[M∗δ(r − r∗) + ρ(r)] (19)

then has a solution with negligible internal gravitational acceleration (2nd term):

g(r) = −∇Φgr(r) = −GM∗
r − r∗
|r − r∗|3

− G

∫

ρ(r′)
r − r′

|r − r′|3 d3r′ . (20)

• Estimate gravitational forces F
ex/in
g ≡ ρgex/in compared to Lorentz force FB ≡ j×B:

1) Tokamak (with radius a of the plasma tube and M∗, R∗ referring to the Earth):

|FB| ≡ | j × B| ∼ B2

µ0a
= 7.2 × 106 kg m−2 s−2 ,

|Fex
g | ≡ |ρgex| ∼ ρG

M∗
R2∗

= 1.7 × 10−6 kg m−2 s−2 , (21)

|Fin
g | ≡ |ρgin| ∼ ρ2Ga = 1.9 × 10−24 kg m−2 s−2 .
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Scale independence

• The MHD equations (12)–(15) can be made dimensionless by means of a choice for
the units of length, mass, and time, based on typical magnitudes l0 for length scale,
ρ0 for plasma density, and B0 for magnetic field at some representative position. The
unit of time then follows by exploiting the Alfvén speed :

v0 ≡ vA,0 ≡
B0√
µ0ρ0

⇒ t0 ≡
l0
v0

. (22)

• By means of this basic triplet l0, B0, t0 (and derived quantities ρ0 and v0), we create
dimensionless independent variables and associated differential operators:

l̄ ≡ l/l0 , t̄ ≡ t/t0 ⇒ ∇̄ ≡ l0∇ , ∂/∂t̄ ≡ t0 ∂/∂t , (23)

and dimensionless dependent variables:

ρ̄ ≡ ρ/ρ0 , v̄ ≡ v/v0 , p̄ ≡ p/(ρ0v
2
0) , B̄ ≡ B/B0 , ḡ ≡ (l0/v

2
0)g . (24)

• Barred equations are now identical to unbarred ones (except that µ0 is eliminated).

⇒ Ideal MHD equations independent of size of the plasma (l0), magnitude of the

magnetic field (B0), and density (ρ0), i.e. time scale (t0).
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Scales of actual plasmas

l0 (m) B0 (T) t0 (s)

tokamak 20 3 3 × 10−6

magnetosphere Earth 4 × 107 3 × 10−5 6

solar coronal loop 108 3 × 10−2 15

magnetosphere neutron star 106 108 ∗ 10−2

accretion disc YSO 1.5 × 109 10−4 7 × 105

accretion disc AGN 4 × 1018 10−4 2 × 1012

galactic plasma 1021 10−8 1015

(= 105 ly) (= 3× 107 y)

* Some recently discovered pulsars, called magnetars, haverecord
magnetic fields of1011 T : the plasma Universe is ever expanding!

• Remark: value p̄0 automatically becomes important: β ≡ 2µ0p0

B2
0

= 2p̄0

⇒ often: β ≪ 1 ⇒ pressure terms frequently neglected
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A crucial question:

Do the MHD equations (12)–(15) provide a complete model for p lasma dynamics?

Answer: NO!

Two most essential elements of a scientific model are still missing, viz.

1. What is the physical problem we want to solve?

2. How does this translate into conditions on the solutions of the PDEs?

This brings in the space and time constraints of the boundary conditions and initial data.
Initial data just amount to prescribing arbitrary functions

ρi(r) [≡ ρ(r, t=0) ] , vi(r) , pi(r) , Bi(r) on domain of interest . (25)

Boundary conditions is a much more involved issue since it implies specification of a
magnetic confinement geometry .

⇒ magnetic flux tubes (Sec.4.2), conservation laws (Sec.4.3), discontinuities (Sec.4.4),
formulation of model problems for laboratory and astrophysical plasmas (Sec.4.5).



The MHD model: Magnetic flux (1) 2-12

�




�

	Flux tubes

• Magnetic flux tubes are the basic magnetic structures that determine which boundary
conditions may be posed on the MHD equations.

b

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

a

• Two different kinds of flux tubes:
(a) closed onto itself, like in thermonuclear tokamak confinement machines,
(b) connecting onto a medium of vastly different physical characteristics so that the
flux tube may be considered as finite and separated from the other medium by suitable
jump conditions, like in coronal flux tubes.
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Flux tubes (cont’d)

• Magnetic fields confining plasmas are essen-
tially tubular structures: The magnetic field
equation

∇ · B = 0 (26)

is not compatible with spherical symmetry.
Instead, magnetic flux tubes become the es-
sential constituents.

S1

S2

• Gauss’ theorem:
∫∫∫

V

∇ · B dτ =

∫

©
∫

B · n dσ = −
∫∫

S1

B1 · n1 dσ1 +

∫∫

S2

B2 · n2 dσ2 = 0 ,

Magnetic flux of all field lines through surface element dσ1 is the same as through
arbitrary other element dσ2 intersecting that field line bundle.

⇒ Ψ ≡
∫∫

S

B · n dσ is well defined (27)

(does not depend on how S is taken). Also true for smaller subdividing flux tubes!



The MHD model: Conservation laws (1) 2-14

Conservative form of the MHD equations

• general form of a (scalar) conservation law:

∂u

∂t
+ ∇ · (f(u)) = 0

u: conserved quantity (actually

∫

V

u dV , not u)

f(u): rate of flow (or ‘flux’)

⇒ expresses the fact that

∫

V

u dV can only change due to a flux f(u) through the

surface of the volume V

⇒ used to obtain local and global conservation laws and shock conditions and also in
numerical techniques (FVM)

• Remark: this is the differential form of the conservation law ⇒ derived from the
integral form (even more general):

ASSUMING u and f(u) are DIFFERENTIABLE!
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Derivation of differential from integral form

• e.g. scalar integral form in 1D:

total change ofu in [x1, x2]
︷ ︸︸ ︷∫ x2

x1

[u(x, t2) − u(x, t1)]
︸ ︷︷ ︸

∫ t2

t1

∂u

∂t
dt

dx =

total flux ofu (through boundaries)
︷ ︸︸ ︷∫ t2

t1

[f(x1, t) − f(x2, t)]
︸ ︷︷ ︸

−
∫ x2

x1

∂f

∂x
dx

dt

⇓

(provided u and f are differentiable!)

∫ x2

x1

∫ t2

t1

[
∂u

∂t
+

∂f

∂x

]

dxdt = 0

• must hold for all x1, x2, t1, and t2 ⇒ ∂u

∂t
+

∂f

∂x
= 0
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Conservation form of the MHD equations

• Next step: systematic approach to local conservation properties.

• The MHD equations can be brought in conservation form:

∂

∂t
(· · ·) + ∇ · (· · ·) = 0 . (28)

This yields: conservation laws, jump conditions, and powerful numerical algorithms!

• By intricate vector algebra, one obtains the conservation form of the ideal MHD equa-
tions (suppressing gravity): ⇓ From now on, putting
µ0 → 1

∂ρ

∂t
+ ∇ · (ρv) = 0 , (29)

∂

∂t
(ρv) + ∇ · [ ρvv + (p + 1

2
B2) I − BB ] = 0 , p = (γ − 1)ρe , (30)

∂

∂t
(1
2ρv2 + ρe + 1

2B
2) + ∇ · [(1

2ρv2 + ρe + p + B2)v − v · BB] = 0 , (31)

∂B

∂t
+ ∇ · (vB − Bv) = 0 , ∇ · B = 0 . (32)

It remains to analyze the meaning of the different terms.
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	Conservation

• Defining

– momentum density : π ≡ ρv , (33)

– stress tensor : T ≡ ρvv + (p + 1
2
B2) I − BB , (34)

– total energy density : H ≡ 1
2ρv2 + 1

γ−1 p + 1
2B

2 , (35)

– energy flow : U ≡ (1
2ρv2 + γ

γ−1 p)v + B2v − v · BB , (36)

– (no name): Y ≡ vB − Bv , (37)

yields
∂ρ

∂t
+ ∇ · π = 0 (conservation of mass), (38)

∂π

∂t
+ ∇ · T = 0 (conservation of momentum), (39)

∂H
∂t

+ ∇ · U = 0 (conservation of energy), (40)

∂B

∂t
+ ∇ · Y = 0 (conservation of magnetic flux). (41)
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Conservation laws, gravity included

• Including gravity, momentum and energy equation are:

∂π

∂t
+ ∇ · T = −ρ∇Φ (momentum), (42)

∂H
∂t

+ ∇ · U = −ρv · ∇Φ (energy). (43)

(44)

⇒ work done by gravitational force

• include gravitational potential energy: Hg ≡ H + ρΦ and rewrite to

∂Hg

∂t
+ ∇ · [U + ρvΦ] = ρ

∂Φ

∂t
(energy) (45)
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	Global conservation laws

• Defining – total mass: M ≡
∫

ρ dτ , (46)

– total momentum: Π ≡
∫

π dτ , (47)

– total energy : H ≡
∫

H dτ , (48)

– total magnetic flux : Ψ ≡
∫

B · ñ dσ̃ , (49)

gives, by the application of the right BCs (see later):

Ṁ =

∫

ρ̇ dτ = −
∫

∇ · π dτ
Gauss
= −

∮

π · n dσ = 0 , (50)

F = Π̇ =

∫

π̇ dτ = −
∫

∇ · T dτ
Gauss
= −

∮

(p + 1
2
B2)n dσ , (51)

Ḣ =

∫

Ḣ dτ = −
∫

∇ · U dτ
Gauss
= −

∮

U · n dσ = 0 , (52)

Ψ̇ =

∫

Ḃ · ñ dσ̃ =

∫

∇× (v × B) · ñ dσ̃
Stokes!

=

∮

v × B · dl = 0 . (53)

⇒ Total mass, momentum, energy, and flux conserved: the system is closed!
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Magnetic helicity conservation

• magnetic helicity H ≡
∫

V

A · B dV with B = ∇× A

• Elsasser (1956) and Woltjer (1958): helicity is conserved in ideal MHD
when the volume of integration is bounded by a magnetic surface S, i.e. B · n|S = 0

• Berger (1984): ‘relative helicity’ = the difference in helicities between a given field
and the potential field with the same boundary conditions

HR ≡
∫

V

A · B dV −
∫

V

Ap · Bp dV

⇒ is also conserved in ideal MHD:

dHR

dt
= −2

∮

S

(Ap · v)B · n dS
︸ ︷︷ ︸

shear and twist

+ 2

∮

S

(Ap · B)v · n dS
︸ ︷︷ ︸

flux emergence/disappearence
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Conservative form resistive MHD equations

The resistive MHD equations for ρ, v, e, and B can be transformed into:

∂

∂t
















ρ

ρv

ρv2

2 + ρe + B2

2

B
















+ ∇ ·



















ρv

ρvv +

(

p + B2

2

)

I − BB

(

ρv2

2 + ρe + p

)

v − (v × B− ηJ) × B

vB− Bv



















=


















0

0

0

η∇2B

+(J) ×∇η


















with ∇ · B = 0

⇒ conserved quantities (in ‘closed’ systems):

– total mass: M ≡
∫

V ρ dV

– total momentum: Π ≡
∫

V ρv dV

– total energy: H ≡
∫

V

(
ρv2

2 + ρe + B2

2

)

dV
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• magnetic flux, magnetic helicity, and entropy are not conserved in resistive MHD

⇒ can diffuse, change due to magnetic reconnection,. . .

⇒ the dissipation rate of these quantities is limited by the diffusion time scale

Some relevant parameters are:

• magnetic Reynolds number: Rm ≡ µ0l0V0

η
≫ 1

– solar corona: Rm ∼ 1013, tokamak: Rm = 109

• Lundquist number: Lu ≡ µ0l0vA

η
≫ 1

– used for study of instabilities which also occur in static plasmas

⇒ Alfvén Mach number:
Rm

Lu
= MA ≡ V0

vA
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Other dissipative effects

• viscosity ⇒ momentum equation:

ρ(
∂

∂t
+ v · ∇)v = −∇p + ρg +

1

µ0
(∇× B) × B + Fvisc

Fvisc≈ ρν(∇2v + 1
3∇∇ · v)

where ν is the kinematic viscosity coefficient

• thermal conductivity ⇒ internal energy equation:

ρ [
De

Dt
+ (γ − 1)e∇ · v ] = −∇ · h + Q

– heat flow: h ≈ −κ∇T with κ the coefficient of thermal conductivity

– generated heat: Q ≡ H − L ,

H = Hres + Hvisc + Hfus + · · · , L = Lrad + · · ·
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Jump conditions

Extending the MHD model

• The BCs for plasmas surrounded by a solid wall:

nw · v = 0 (on W ) ⇒ no flow accross the wall,

nw · B = 0 (on W ) ⇒ magnetic field lines do not intersect the wall.

Under these conditions, conservation laws apply and the system is closed.

• For many applications (both in the laboratory and in astrophysics) this is not enough.
One also needs BCs (jump conditions) for plasmas with an internal boundary where
the magnitudes of the plasma variables ‘jump’.

Example: at the photospheric boundary the density changes ∼ 10−9.

• Such a boundary is a special case of a shock, i.e. an irreversible (entropy-increasing)
transition. In gas dynamics, the Rankine–Hugoniot relations relate the variables of the
subsonic flow downstream the shock with those of the supersonic flow upstream.

We will generalize these relations to MHD, but only to get the right form of the jump
conditions, not to analyze transonic flows (subject for a much later chapter).
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	Shock formation

• Excite sound waves in a 1D compressible gas (HD): the local perturbations travel with
the sound speed c ≡

√

γp/ρ .

⇒ Trajectories in the x−t plane (characteristics): dx/dt = ±c .

• Now suddenly increase the pressure, so that p changes in a thin layer of width δ :

δ

p

x

2 1

shocked unshocked

⇒ ‘Converging’ characteristics in the x−t plane.

⇒ Information from different space-time points accumulates, gradients build up until
steady state reached where dissipation and nonlinearities balance ⇒ shock.
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Shock formation (cont’d)

• Without the non-ideal and nonlinear effects, the characteristics would cross (a).

With those effects, in the limit δ → 0, the characteristics meet at the shock front (b).

t

a

x

t

b

x

c2

shock

c1

⇒ Moving shock front separates two ideal regions.

• Neglecting the thickness of the shock (not the shock itself of course), all there remains
is to derive jump relations across the infinitesimal layer.

⇒ Limiting cases of the conservation laws at shock fronts.
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Procedure to derive the jump conditions

Integrate conservation equations across shock from ©1 (undisturbed) to ©2 (shocked).

• Only contribution from gradient normal to the front:

lim
δ→0

∫ 2

1

∇f dl = − lim
δ→0

n

∫ 2

1

∂f

∂l
dl = n(f1−f2) ≡ n [[f ]] .

(54)

• In frame moving with the shock at normal speed u :

(Df

Dt

)

shock
=

∂f

∂t
− u

∂f

∂l
finite ≪ ∂f

∂t
≈ u

∂f

∂l
∼ ∞

⇒ lim
δ→0

∫ 2

1

∂f

∂t
dl = u lim

δ→0

∫ 2

1

∂f

∂l
dl = −u [[f ]] . (55)

n

u
1

2

v1
v2

 

• Hence, jump conditions follow from the conservation laws by simply substituting

∇f → n [[f ]] , ∂f/∂t → −u [[f ]] . (56)



The MHD model: Discontinuities (5) 2-23
�

�

�


⇒ MHD jump conditions

• Conservation of mass,
∂ρ

∂t
+ ∇ · (ρv) = 0 ⇒ −u [[ρ]] + n · [[ρv]] = 0 . (57)

• Conservation of momentum,
∂

∂t
(ρv) + ∇ · [ ρvv + (p + 1

2
B2) I − BB ] = 0

⇒ −u [[ρv]] + n · [[ρvv + (p + 1
2B

2) I − BB]] = 0 . (58)

• Conservation ot total energy,
∂

∂t
(1
2ρv2 + ρe + 1

2B
2) + ∇ · [(1

2ρv2 + ρe + p + B2)v − v · BB] = 0

⇒ −u [[12ρv2 + 1
γ−1 p + 1

2B
2]] + n · [[(1

2ρv2 + γ
γ−1 p + B2)v − v · BB]] = 0 . (59)

• Conservation of magnetic flux,

∂B

∂t
+ ∇ · (vB − Bv) = 0 , ∇ · B = 0

⇒ −u [[B]] + n · [[vB − Bv]] = 0 , n · [[B]] = 0 . (60)
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MHD jump conditions in the shock frame

• Simplify jump conditions by transforming to co-moving shock frame, where relative
plasma velocity is v′ ≡ v − un , and split vectors in tangential and normal to shock:

[[ρv′n]] = 0 , (mass) (61)

[[ρv′n
2
+ p + 1

2B
2
t ]] = 0 , (normal momentum) (62)

ρv′n [[v′
t]] = Bn [[Bt]] , (tangential momentum) (63)

ρv′n [[ 1
2(v

′
n
2
+ v′t

2
) + ( γ

γ−1p + B2
t )/ρ ]] = Bn [[v′

t · Bt]] , (energy) (64)

[[Bn]] = 0 , (normal flux) (65)

ρv′n [[Bt/ρ ]] = Bn[[v
′
t]] . (tangential flux) (66)

⇒ 6 relations for the 6 jumps [[ρ]], [[vn]], [[vt]], [[p]], [[Bn]], [[Bt]] .

• Do not use entropy conservation law since shock is entropy-increasing transition:

not
∂

∂t
(ρS) + ∇ · (ρSv) = 0 ⇒ ρv′n [[S]] = 0 , but [[S]] ≡ [[ρ−γp]] ≤ 0 . (67)

⇒ This is the only remnant of the dissipative processes in the thin layer.
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⇒ Two classes of discontinuities:

(1) Boundary conditions for moving plasma-plasma interfaces, where there is no flow
accross the discontinuity (v′n = 0) ⇒ will continue with this here.

(2) Jump conditions for shocks (v′n 6= 0) ⇒ leave for advanced MHD lectures.

�

�

�


BCs at co-moving interfaces

• When v′n = 0 , jump conditions (61)–(66) reduce to:

[[p + 1
2B

2
t ]] = 0 , (normal momentum) (68)

Bn [[Bt]] = 0 , (tangential momentum) (69)

Bn [[v′
t · Bt]] = 0 , (energy) (70)

[[Bn]] = 0 , (normal flux) (71)

Bn [[v′
t]] = 0 . (tangential flux) (72)

• Two possibilities, depending on whether B intersects the interface or not:

(a) Contact discontinuities when Bn 6= 0 ,

(b) Tangential discontinuities if Bn = 0 .
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(a) Contact discontinuities

• For co-moving interfaces with an intersecting magnetic field, Bn 6= 0 , the jump
conditions (68)–(72) only admit a jump of the density (or temperature, or entropy)
whereas all other quantities should be continuous:

– jumping: [[ρ]] 6= 0 ,
(73)

– continuous: v′n = 0 , [[v′
t]] = 0 , [[p]] = 0 , [[Bn]] = 0 , [[Bt]] = 0 .

Examples: photospheric footpoints of coronal loops where density jumps,

‘divertor’ tokamak plasmas with B intersecting boundary.

• These BCs are most typical for astrophysical plasmas, modelling plasmas with very
different properties of the different spatial regions involved (e.g. close to a star and far
away): difficult! Computing waves in such systems usually requires extreme resolu-
tions to follow the disparate time scales in the problem.
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(b) Tangential discontinuities

• For co-moving interfaces with purely tangential magnetic field, Bn = 0 , the jump
conditions (68)–(72) are much less restrictive:

– jumping: [[ρ]] 6= 0 , [[v′
t]] 6= 0 , [[p]] 6= 0 , [[Bt]] 6= 0 ,

(74)
– continuous: v′n = 0 , Bn = 0 , [[p + 1

2B
2
t ]] = 0 .

Examples: tokamak plasma separated from wall by tenuous plasma (or ‘vacuum’),

dayside magnetosphere where IMF meets Earth’s dipole.

• Plasma–plasma interface BCs by transforming back to lab frame, vn − u ≡ v′n = 0 :

n · B = 0 (B ‖ interface) , (75)

n · [[v]] = 0 (normal velocity continuous) , (76)

[[p + 1
2
B2]] = 0 (total pressure continuous) . (77)

• Jumps tangential components, [[Bt]] & [[vt]], due to surface current & surface vorticity:

j = ∇× B ⇒ j⋆ ≡ lim δ→0, |j|→∞ (δ j) = n × [[B]] , (78)

ω ≡ ∇× v ⇒ ω⋆ ≡ lim δ→0, |ω|→∞ (δ ω) = n × [[v]] . (79)
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Model problems

• We are now prepared to formulate complete models for plasma dynamics ≡
MHD equations + specification of magnetic geometries ⇒ appropriate BCs.

• For example, recall two generic magnetic structures: (a) tokamak; (b) coronal loop.

b
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a

• Generalize this to six model problems, separated in two classes:

⇒ Models I–III (laboratory plasmas) with tangential discontinuities;

⇒ Models IV–VI (astrophysical plasmas) with contact discontinuities.
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Laboratory plasmas (models I–III)

model I model II (*) model III
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a
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cylindrical
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Model I: plasma confined inside rigid wall

• Model I: axisymmetric (2D) plasma contained in a ‘donut’-shaped vessel (tokamak)
which confines the magnetic structure to a finite volume. Vessel + external coils need
to be firmly fixed to the laboratory floor since magnetic forces are huge.

⇒ Plasma–wall, impenetrable wall needs not be conducting (remember why?).

⇒ Boundary conditions are

n · B = 0 (at the wall) , (80)

n · v = 0 (at the wall) . (81)

⇒ just two BCs for 8 variables!

• These BCs guarantee conservation of mass, momentum, energy and magnetic flux:
the system is closed off from the outside world.

• Most widely used simplification: cylindrical version (1D) with symmetry in θ and z.

⇒ Non-trivial problem only in the radial direction, therefore: one-dimensional.
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Model II: plasma-vacuum system inside rigid wall

• Model II: as I, but plasma separated from wall by vacuum (tokamak with a ‘limiter’).

⇒ Plasma–vacuum–wall, wall now perfectly conducting (since vacuum in front).

• Vacuum has no density, velocity, current, only B̂ ⇒ pre-Maxwell dynamics:

∇× B̂ = 0 , ∇ · B̂ = 0 , (82)

∇× Ê = −∂B̂

∂t
, ∇ · Ê = 0 . (83)

BC at exterior interface (only on B̂ , consistent with Êt = 0 ):

n · B̂ = 0 (at conducting wall) . (84)

• BCs at interior interface (B not pointing into vacuum and total pressure balance):

n · B = n · B̂ = 0 (at plasma–vacuum interface) , (85)

[[p + 1
2B

2]] = 0 (at plasma–vacuum interface) . (86)

⇒ Consequence (not a BC) is jump in Bt , i.e. skin current:

j⋆ = n × [[B]] (at plasma–vacuum interface) . (87)
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Model II*: plasma-plasma system inside rigid wall

• Variant of Model II with vacuum replaced by tenuous plasma (negligible density, with
or without current), where again the impenetrable wall needs not be conducting.

⇒ Applicable to tokamaks to incorporate effects of outer plasma.

⇒ Also for astrophysical plasmas (coronal loops) where ‘wall’ is assumed far away.

• BCs at exterior interface for outer plasma:

n · B̂ = 0 (at the wall) ,

n · v̂ = 0 (at the wall) .

• BCs at interior interface for tangential plasma-plasma discontinuity:

n · B = n · B̂ = 0 (at plasma–plasma interface) ,

n · [[v]] = 0 (at plasma–plasma interface) ,

[[p + 1
2
B2]] = 0 (at plasma–plasma interface) .

Note: Model II obtained by just dropping conditions on v and v̂.
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Model III: plasma-vacuum system with external currents

• Model III is an open plasma–vacuum configuration excited by magnetic fields B̂(t) that
are externally created by a coil (antenna) with skin current.

⇒ Open system: forced oscillations pump energy into the plasma.

⇒ Applications in laboratory and astrophysical plasmas: original creation of the
confining magnetic fields and excitation of MHD waves.

• BCs at coil surface:
n · [[B̂]] = 0 (at coil surface) , (88)

n × [[B̂]] = j⋆c(r, t) (at coil surface) . (89)

where j⋆c(r, t) is the prescribed skin current in the coil.

• Magnetic field outside coil subject to exterior BC (84) at wall (possibly moved to ∞),

combined with plasma-vacuum interface conditions (85) and (86):

n · B = n · B̂ = 0 (at plasma–vacuum interface) ,

[[p + 1
2B

2]] = 0 (at plasma–vacuum interface) .
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Astrophysical plasmas (models IV–VI)

model Vmodel IV

a

θ

a

pl.

line 
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Model IV: ‘closed’ coronal magnetic loop

• In model IV, the field lines of finite plasma column (coronal loop) are line-tied on both
sides to plasma of such high density (photosphere) that it is effectively immobile.

⇒ Line-tying boundary conditions:

v = 0 (at photospheric end planes) . (90)

⇒ Applies to waves in solar coronal flux tubes, no back-reaction on photosphere:

• In this model, loops are straightened out to 2D configuration (depending on r and z).
Also neglecting fanning out of field lines ⇒ quasi-1D (finite length cylinder).
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Model V: open coronal magnetic loop

• In model V, the magnetic field lines of a semi-infinite plasma column are line-tied on
one side to a massive plasma.

⇒ Line-tying boundary condition:

v = 0 (at photospheric end plane) .

⇒ Applies to dynamics in coronal holes, where (fast) solar wind escapes freely:

• Truly open variants of models IV & V: photospheric excitation (v(t) 6= 0 prescribed).
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�

	Model VI: Stellar wind

• In model VI, a plasma is ejected from photosphere of a star and accelerated along the
open magnetic field lines into outer space.

⇒ Combines closed & open loops (models IV & V), line-tied at dense photosphere,
but stress on outflow rather than waves (requires more advanced discussion).

• Output from an actual simulation with the
Versatile Advection code: 2D (axisymm.)
magnetized wind with ‘wind’ and ‘dead’ zone.
Sun at the center, field lines drawn, veloc-
ity vectors, density coloring. Dotted, drawn,
dashed: slow, Alfvén, fast critical surfaces.

[ Keppens & Goedbloed,

Ap. J. 530, 1036 (2000) ]
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Linear MHD waves and characteristics
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�

	Overview

• MagnetohydraSTATICS

• Physics and accounting: use example of sound waves to illustrate method of lin-
earization and counting of variables and solutions; [ book: Sec. 5.1 ]

• MHD waves: different representations and reductions of the linearized MHD equations,
obtaining the three main waves, dispersion diagrams; [ book: Sec. 5.2 ]

• Phase and group diagrams: propagation of plane waves and wave packets, asymp-
totic properties of the three MHD waves; [ book: Sec. 5.3 ]

• Characteristics: numerical method, classification of PDEs, application to MHD.
[ book: Sec. 5.4 ]
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Magnetohydro statics

• static equilibrium configurations can be found by assuming no time dependence and
by putting the velocity equal to zero in the MHD equations:

ρ = ρ0(r), e = e0(r), B = B0(r), v0 ≡ 0

⇒ the MHD equations than reduce to:

∇p0 = ρ0g + (∇× B0) × B0 the equilibrium force balance

∇ · B0 = 0 which now fully counts! (not just an initial condition)

⇒ four equations for the determination of ρ0(r), p0(r), B0(r)

⇒ a lot of freedom is left!
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	Sound waves
• Perturb the gas dynamic equations (B = 0),

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1)

ρ
(∂v

∂t
+ v · ∇v

)
+ ∇p = 0 , (2)

∂p

∂t
+ v · ∇p + γp∇ · v = 0 , (3)

about infinite, homogeneous gas at rest,

ρ(r, t) = ρ0 + ρ1(r, t) (where|ρ1| ≪ ρ0 = const) ,

p(r, t) = p0 + p1(r, t) (where|p1| ≪ p0 = const) , (4)
v(r, t) = v1(r, t) (sincev0 = 0) .

⇒ Linearised equations of gas dynamics:
∂ρ1

∂t
+ ρ0∇ · v1 = 0 , (5)

ρ0
∂v1

∂t
+ ∇p1 = 0 , (6)

∂p1

∂t
+ γp0∇ · v1 = 0 . (7)
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Wave equation

• Equation for ρ1 does not couple to the other equations: drop. Remaining equations
give wave equation for sound waves:

∂2v1

∂t2
− c2 ∇∇ · v1 = 0 , (8)

where
c ≡

√

γp0/ρ0 (9)

is the velocity of sound of the background medium.

• Plane wave solutions
v1(r, t) =

∑

k

v̂k ei(k·r−ωt) (10)

turn the wave equation (8) into an algebraic equation:

( ω2
I − c2 kk ) · v̂ = 0 . (11)

• For k = k ez , the solution is:

ω = ±k c , v̂x = v̂y = 0 , v̂z arbitrary, (12)

⇒ Sound waves propagating to the right (+) and to the left (−):
compressible (∇ · v 6= 0) and longitudinal (v ‖ k) waves.
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Counting

• There are also other solutions:

ω2 = 0 , v̂x , v̂y arbitrary, v̂z = 0 , (13)

⇒ incompressible transverse (v1 ⊥ k) translations. They do not represent interesting
physics, but simply establish completeness of the velocity representation.

• Problem: 1st order system (5)–(7) for ρ1, v1, p1 has 5 degrees of freedom, whereas
2nd order system (8) for v1 appears to have 6 degrees of freedom (∂2/∂t2 → −ω2).
However, the 2nd order system actually only has 4 degrees of freedom, since ω2 does
not double the number of translations (13). Spurious doubling of the eigenvalue ω = 0
happened when we applied the operator ∂/∂t to Eq. (6) to eliminate p1.

• Hence, we lost one degree of freedom in the reduction to the wave equation in terms
of v1 alone. This happened when we dropped Eq. (5) for ρ1. Inserting v1 = 0 in the
original system gives the signature of this lost mode:

ωρ̂ = 0 ⇒ ω = 0 , ρ̂ arbitrary, but v̂ = 0 and p̂ = 0 . (14)

⇒ entropy wave: perturbation of the density and, hence, of the entropy S ≡ pρ−γ. Like
the translations (13), this mode does not represent important physics but is needed to
account for the degrees of freedom of the different representations.



Waves and characteristics: MHD waves (1) 3-5
�




�

	MHD waves
• Similar analysis for MHD in terms of ρ , v , e

(
≡ 1

γ−1 p/ρ
)

, and B :

∂ρ

∂t
+ ∇ · (ρv) = 0 , (15)

ρ
∂v

∂t
+ ρv · ∇v + (γ − 1)∇(ρe) + (∇B) · B − B · ∇B = 0 , (16)

∂e

∂t
+ v · ∇e + (γ − 1)e∇ · v = 0 , (17)

∂B

∂t
+ v · ∇B + B∇ · v − B · ∇v = 0 , ∇ · B = 0 , (18)

• Linearise about plasma at rest, v0 = 0 , ρ0 , e0 ,B0 = const:

∂ρ1

∂t
+ ρ0∇ · v1 = 0 , (19)

ρ0
∂v1

∂t
+ (γ − 1)(e0∇ρ1 + ρ0∇e1) + (∇B1) · B0 − B0 · ∇B1 = 0 , (20)

∂e1

∂t
+ (γ − 1)e0∇ · v1 = 0 , (21)

∂B1

∂t
+ B0∇ · v1 − B0 · ∇v1 = 0 , ∇ · B1 = 0 . (22)
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	Transformation

• Sound and vectorial Alfvén speed ,

c ≡
√

γp0

ρ0
, b ≡ B0√

ρ0
, (23)

and dimensionless variables,

ρ̃ ≡ ρ1

γ ρ0
, ṽ ≡ v1

c
, ẽ ≡ e1

γ e0
, B̃ ≡ B1

c
√

ρ0
, (24)

⇒ linearised MHD equations with coefficients c and b:

γ
∂ρ̃

∂t
+ c∇ · ṽ = 0 , (25)

∂ṽ

∂t
+ c∇ρ̃ + c∇ẽ + (∇B̃) · b − b · ∇B̃ = 0 , (26)

γ

γ − 1

∂ẽ

∂t
+ c∇ · ṽ = 0 , (27)

∂B̃

∂t
+ b∇ · ṽ − b · ∇ṽ = 0 , ∇ · B̃ = 0 . (28)
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Symmetry

• Plane wave solutions, with b and k arbitrary now:

ρ̃ = ρ̃(r, t) = ρ̂ ei(k·r−ωt) , etc. (29)

yields an algebraic system of eigenvalue equations:

ck · v̂ = γ ω ρ̂ ,

k c ρ̂ + k c ê + (kb · −k · b) B̂ = ω v̂ ,
(30)

ck · v̂ = γ
γ−1 ω ê ,

(bk · −b · k) v̂ = ω B̂ , k · B̂ = 0 .

⇒ Symmetric eigenvalue problem! (The equations for ρ̂ , v̂ , ê , and B̂ appear to know
about each other.) .

• The symmetry of the linearized system is closely related to an analogous property of
the original nonlinear equations: the nonlinear ideal MHD equations are symmetric
hyperbolic partial differential equations.
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Matrix eigenvalue problem

• Choose b = (0, 0, b) , k = (k⊥, 0, k‖) :

















0 k⊥c 0 k‖c 0 0 0 0

k⊥c 0 0 0 k⊥c −k‖b 0 k⊥b

0 0 0 0 0 0 −k‖b 0

k‖c 0 0 0 k‖c 0 0 0

0 k⊥c 0 k‖c 0 0 0 0

0 −k‖b 0 0 0 0 0 0

0 0 −k‖b 0 0 0 0 0

0 k⊥b 0 0 0 0 0 0

































ρ̂

v̂x

v̂y

v̂z

ê

B̂x

B̂y

B̂z

















= ω


















γ ρ̂

v̂x

v̂y

v̂z
γ

γ−1 ê

B̂x

B̂y

B̂z


















.

(31)
⇒ Another representation of the symmetry of linearized MHD eq uations.

• New features of MHD waves compared to sound: occurrence of Alfvén speed b and
anisotropy expressed by the two components k‖ and k⊥ of the wave vector. We
could compute the dispersion equation from the determinant and study the associated
waves, but we prefer again to exploit the much simpler velocity representation.
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MHD wave equation

• Ignoring the magnetic field constraint k · B̂ = 0 in the 8 × 8 eigenvalue problem (31)
would yield one spurious eigenvalue ω = 0 . This may be seen by operating with the
projector k· onto Eq. (30)(d), which gives ω k · B̂ = 0 .

• Like in the gas dynamics problem, a genuine but unimportant marginal entropy mode
is obtained for ω = 0 with v̂ = 0 , p̂ = 0 , and B̂ = 0 :

ω = 0 , p̂ = ê + ρ̂ = 0 , Ŝ = γê = −γρ̂ 6= 0 . (32)

• Both of these marginal modes are eliminated by exploiting the velocity representation.
The perturbations ρ1, e1, B1 are expressed in terms of v1 by means of Eqs. (19),
(21), and (22), and substituted into the momentum equation (20). This yields the MHD
wave equation for a homogeneous medium :

∂2v1

∂t2
−

[
(b · ∇)2 I + (b2 + c2)∇∇− b · ∇ (∇b + b∇)

]
· v1 = 0 . (33)

The sound wave equation (8) is obtained for the special case b = 0 .
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MHD wave equation (cont’d)

• Inserting plane wave solutions gives the required eigenvalue equation:
{[

ω2 − (k · b)2
]
I − (b2 + c2)kk + k · b (kb + bk)

}
· v̂ = 0 , (34)

or, in components:






− k2
⊥(b2 + c2) − k2

‖b
2 0 −k⊥k‖c

2

0 −k2
‖b

2 0

− k⊥k‖c
2 0 −k2

‖c
2












v̂x

v̂y

v̂z




 = −ω2






v̂x

v̂y

v̂z




 . (35)

Hence, a 3 × 3 symmetric matrix equation is obtained in terms of the variable v̂,
with quadratic eigenvalue ω2, corresponding to the original 6 × 6 representation with
eigenvalue ω (resulting from elimination of the two marginal modes).

• Determinant yields the dispersion equation:

det = ω (ω2 − k2
‖b

2)
[

ω4 − k2(b2 + c2) ω2 + k2
‖k

2b2c2
]

= 0 (36)

(where we have artificially included a factor ω for the marginal entropy wave).
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	Roots

1) Entropy waves:
ω = ωE ≡ 0 , (37)

v̂ = B̂ = 0 , p̂ = 0 , but ŝ 6= 0 . (38)

⇒ just perturbation of thermodynamic variables.

2) Alfv én waves:
ω2 = ω2

A ≡ k2
‖b

2 → ω = ±ωA , (39)

v̂x = v̂z = B̂x = B̂z = ŝ = p̂ = 0 , B̂y = −v̂y 6= 0 . (40)

⇒ transverse v̂ and B̂ so that field lines follow the flow.

3) Fast (+) and Slow ( −) magnetoacoustic waves:

ω2 = ω2
s,f ≡ 1

2k
2(b2 + c2)

[
1 ±

√

1 −
4k2

‖b
2c2

k2(b2 + c2)2
]

→ ω =

{ ±ωs

±ωf
(41)

v̂y = B̂y = ŝ = 0 , but v̂x , v̂z , p̂ , B̂x , B̂z 6= 0 , (42)

⇒ perturbations v̂ and B̂ in the plane through k and B0.
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Eigenfunctions

(x)

k

(y)

(z)
ϑ

vA

BA

B0

(z)

(x)

k

ϑ
v s

Bs,f

B0

v f

Alfv én waves Magnetosonic waves

• Note: the eigenfunctions are mutually orthogonal:

v̂s ⊥ v̂A ⊥ v̂f . (43)

⇒ Arbitrary velocity field may be decomposed at all times (e.g. at t = 0) in the three
MHD waves: the initial value problem is a well-posed problem .
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Dispersion diagrams (schematic) [ exact diagrams in book: Fig. 5.3,

scaling ω̄ ≡ (l/b) ω , k̄ ≡ k l ]

b

k⊥   

fast

slow

ω2

4

5

6

Alfven

7

a

k //   

ω2

fast

slow

2

3

Alfven

1

0

• Note: ω2(k‖=0) = 0 for Alfvén and slow waves ⇒ potential onset of instability.

• Asymptotics of ω2(k⊥→∞) characterizes local behavior of the three waves:






∂ω/∂k⊥ > 0 , ω2
f → ∞ for fast waves,

∂ω/∂k⊥ = 0 , ω2
A → k2

‖b
2 for Alfvén waves,

∂ω/∂k⊥ < 0 , ω2
s → k2

‖
b2c2

b2 + c2 for slow waves.

(44)
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Phase and group velocity

Dispersion equation ω = ω(k) ⇒ two fundamental concepts:

1. A single plane wave propagates in the direction of k with the phase velocity

vph ≡ ω

k
n , n ≡ k/k = (sin ϑ, 0, cos ϑ) ; (45)

⇒ MHD waves are non-dispersive (only depend on angle ϑ, not on |k| ):

(vph)A ≡ b cos ϑn , (46)

(vph)s,f ≡
√

1
2
(b2 + c2)

√

1 ±
√

1 − σ cos2 ϑn , σ ≡ 4b2c2

(b2 + c2)2
. (47)

2. A wave packet propagates with the group velocity

vgr ≡
∂ω

∂k

[
≡ ∂ω

∂kx
ex +

∂ω

∂ky
ey +

∂ω

∂kz
ez

]
; (48)

⇒ MHD caustics in directions b, and mix of n and t (⊥ n):

(vgr)A = b , (49)

(vgr)s,f = (vph)s,f

[

n± σ sin ϑ cos ϑ

2
√

1 − σ cos2 ϑ
[
1 ±

√
1 − σ cos2 ϑ

] t

]

. (50)
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Wave packet

Wave packet of plane waves satisfying dispersion equation ω = ω(k) :

Ψi(r, t) =
1

(2π)3/2

∫ ∞

−∞
Ai(k) ei(k·r−ω(k)t) d3k . (51)

Evolves from initial shape given by Fourier synthesis,

Ψi(r, 0) =
1

(2π)3/2

∫ ∞

−∞
Ai(k) eik·r d3k , (52)

where amplitudes Ai(k) are related to initial values Ψi(r, 0) by Fourier analysis,

Ai(k) =
1

(2π)3/2

∫ ∞

−∞
Ψi(r, 0) e−ik·r d3r . (53)

MHD: Ψi – perturbations (ρ̃1 ,) ṽ1 (, ẽ1, B̃1); Ai – Fourier amplitudes (ρ̂1 ,) v̂1 (, ê1, B̂1).

Example: Gaussian wave packet of harmonics centered at some wave vector k0 ,

Ai(k) = Âi e
−1

2
|(k−k0)·a|2 , (54)

corresponds to initial packet with main harmonic k0 and modulated amplitude centered at
r = 0 :

Ψi(r, 0) = eik0·r × Âi

axayaz
e−

1

2
[(x/ax)

2+(y/ay)
2+(z/az)

2] . (55)
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Wave packet (cont’d)

For arbitrary wave packet with localized range of wave vectors, we may expand the dis-
persion equation about the central value k0:

ω(k) ≈ ω0 + (k − k0) ·
(

∂ω

∂k

)

k0

, ω0 ≡ ω(k0) . (56)

Inserting this approximation in the expression (51) for the wave packet gives

Ψi(r, t) ≈ ei(k0·r−ω0t) × 1

(2π)3/2

∫ ∞

−∞
Ai(k) ei(k−k0)·(r−(∂ω/∂k)k0

t) d3k , (57)

representing a carrier wave exp i(k0 · r − ω0t) with an amplitude-modulated envelope.
Through constructive interference of the plane waves, the envelope maintains its shape
during an extended interval of time, whereas the surfaces of constant phase of the envelope
move with the group velocity,

vgr =

(
dr

dt

)

const. phase

=

(
∂ω

∂k

)

k0

, (58)

in agreement with the definition (48).
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Example: Alfvén waves

ba

b

vph

ϑ

c

b- b

(a) Phase diagram for Alfvén waves is circle ⇒ (b) wavefronts pass through points ±b
⇒(c) those points are the group diagram.
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Group diagram: queer behavior

• Group diagrams with vgr relative to n for
the three MHD waves in the first quadrant.

Group velocities exhibit mutually exclusive
directions of propagation: When n goes
from ϑ = 0 (‖ B) to ϑ = π/2 (⊥ B),
the fast group velocity changes from par-
allel to perpendicular (though it does not
remain parallel to n), the Alfvén group ve-
locity remains purely parallel, but the slow
group velocity initially changes clockwise
from parallel to some negative angle and
then back again to purely parallel. In the
perpendicular direction, slow wave pack-
ages propagate opposite to direction of n!
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Friedrichs diagrams (schematic) [ exact diagrams in book: Fig. 5.5,

parameter c/b = 1
2γβ , β ≡ 2p/B2 ]

b

B
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a
2 2  b  + c2 2  b  + c

2 2  b  + c

Phase diagram Group diagram
(plane waves) (point disturbances)
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(a) Phase diagrams and (b) group diagrams
of the MHD waves for three values of the
ratio c/b of the sound speed to the Alfvén
speed. The phase and group velocities are
normalised as V ≡ v/ max(b, c).

( a )  Ph a s e  d i a g r ams
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	Method
• Linear advection equation in one spatial dimension with unknown Ψ(x, t),

∂Ψ

∂t
+ u

∂Ψ

∂x
= 0 , (59)

and given advection velocity u. For u = const, the solution is trivial:

Ψ = f(x − ut) , where f = Ψ0 ≡ Ψ(x, t = 0) . (60)

⇒ Initial data Ψ0 propagate along characteristics: parallel straight lines dx/dt = u .

• For u not constant, characteristics become solutions of the ODEs

dx

dt
= u(x, t) . (61)

Along these curves, solution Ψ(x, t) of (59) is
const: dΨ

dt
≡ ∂Ψ

∂t
+

∂Ψ

∂x

dx

dt
= 0 . (62)

⇒ For given initial data, the solution can be
determined at any time t1 > 0 by constructing
characteristics through suitable set of points.
E.g., Ψ(x′

i, t1) = Ψ0(xi) for ‘tent’ function.

i

t

x

t1

xxx i+1ii-1

x ...
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Application (cont’d)

B

bc
2 2  b  +c

Alfvén

b c

slow

fast

•• •

•
2 2  b  +c

f -

x

t

A - s - E s + A + f +

Group diagram is the ray surface,
i.e. the spatial part of characteristic
manifold at certain time t0.

x-t cross-sections of 7 characteristics
(x-axis oblique with respect to B;
inclination of entropy mode E indicates
plasma background flow).

• Locality of group diagrams and characteristics neglects global plasma inhomogeneity.
⇒ Next topic is waves and instabilities in inhomogeneous plasmas.
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Waves /instab. in inhomogeneous plasmas
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�

	Overview

• Hydrodynamics of the solar interior: radiative equilibrium model of the Sun, con-
vection zone; [ book: Sec. 7.1 ]

⇒ please read at home!

• Hydrodynamic waves & instabilities of a gravitating slab: HD wave equation,
convective instabilities, gravito-acoustic waves, helioseismology; [ book: Sec. 7.2 ]

⇒ not treated this year

• MHD wave equation for a gravitating magnetized plasma slab: derivation MHD
wave equation for gravitating slab, gravito-MHD waves; [ book: Sec. 7.3 ]

⇒ not treated this year

• Continuous spectrum and spectral structure: singular differential equations, Alfvén
and slow continua, oscillation theorems; [ book: Sec. 7.4 ]
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Motivation

• plasma WAVES and INSTABILITIES play an important role. . .

– in the dynamics of plasma perturbations
– in energy conversion and transport
– in the heating & acceleration of plasma

• characteristics (ν, λ, amplitude. . . ) are determined by the ambient plasma

⇒ can be exploited as a diagnostic tool for plasma parameters, e.g.

– wave generation, propagation, and dissipation in a confined plasma
⇒ helioseismology (e.g. Gough ’83)

⇒ MHD spectroscopy (e.g. Goedbloed et al. ’93)

– interaction of external waves with (magnetic) plasma structures
⇒ sunspot seismology (e.g. Thomas et al. ’82, Bogdan ’91)

⇒ AR / coronal seismology (e.g. Nakariakov et al. 2000)
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Fusion plasmas

controlled thermo-nuclear fusion:

• tokamaks / stellerators / in-
ertial plasmas, . . .

• MHD spectroscopy

⇒ complicated by inhomogeneity
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Solar wind – magnetosphere coupling

• interaction of time-varying
solar wind with the geomag-
netic field near the mag-
netopause results in wave
mode conversion

• ultra-low frequency (ULF)
waves (periods of seconds
to minutes)

⇒ standing AWs with fixed
ends in the ionosphere

⇒ interaction of time-varying solar wind with the geomagnetic field near the magnetopause
results in resonant wave mode conversion
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• corona: highly inhomogeneous

in both space and time
(Skylab, Yohkoh, Soho)

• structure dominated by mag-
netic field

• average temperature 2 − 3 ×
106 K

• hot material concentrated in
loops (Rossner et al. ’78)

• TRACE:
nloop

nbackgr
∼ 10 (As-

chwanden ’00)

• outline magnetic field (Orrall ’81)

Hot coronal loops (TRACE)

⇒ waves? (generation, propagation, dissipation?)

⇒ heating mechanism(s)? (what is the role of waves?)

• magnetohydrodynamics (MHD): simplest ⇒ most popular
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Helioseismology

• Power spectrum of solar oscillations, from Doppler velocity measurements in light
integrated over solar disk (Christensen-Dalsgaard, Stellar Oscillations, 1989):

⇒ Powerful tool for probing the interior of the sun!
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• Done by comparison with theoretically calculated spectrum for standard solar
model (of course, spherical geometry) (Christensen-Dalsgaard, 1989).

• Orders of magnitude :

τ ∼ 5 min ⇒ ν ∼ 3 mHz

ṽr < 1km/s ≈ 5 × 10−4R⊙/5 min

⇒ linear theory OK!

• p-modes of low order l penetrate deep in the Sun, high l modes are localized on
outside. g-modes are cavity modes trapped deeper than convection zone and,
hence, quite difficult to observe.

• Frequencies deduced from the Doppler shifts of spectral lines agree with calcu-
lated ones for p-modes to within 0.1%!
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Systematics of helioseismology

Solar Model:

X(r) , Y (r) , Z(r)

T (r) , ρ(r) , L(r)

Extensions:

Ω(r, θ) – diff. rotation

B(r, θ) – magn. field

f(t) – stellar evolution

ρ(r) , T (r)
Spectral Code:

ξ̂(r)Y m
l (θ, φ) eiωt

( p & g modes)
{ωl,n}theory

Observations:

Doppler shifts of

spectral lines
{ωl,n}observ.

- -

-

-

6

?

�

• Similar activities:

– MHD spectroscopy for laboratory fusion plasmas (Goedbloed et al., 1993),

– Sunspot seismology (Bogdan and Braun, 1995),

– Magneto-seismology of accretion disks (Keppens et al., 2002).
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Different approaches

• the system of linear PDEs L · ∂u

∂t
= R · u can be approached in three different

ways (after spatial discretization of L and R):

1) steady state approach: t-dependence is prescribed, e.g. ∼ eiωdt

⇒ linear algebraic system: (A− iωdB) · x = f

with force f : from BCs (driver)

2) time evolution approach: t-dependence is calculated

⇒ initial value problem: A · x = B · ∂x

∂t
with x(r, t = 0) given

⇒ ‘driven’ problem: A · x = B · ∂x

∂t
+ f

3) eigenvalue approach: t-dependence ∼ eλt, with λ calculated

⇒ eigenvalue problem: (A− λB) · x = 0
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• Starting point is the general MHD spectral equation:

F(ξ) ≡ −∇π−B×(∇×Q)+(∇×B)×Q+∇Φ∇·(ρξ) = ρ
∂2ξ

∂t2
= −ρω2ξ , (1)

where π = −γp∇ · ξ − ξ · ∇p , Q = ∇× (ξ × B) . (2)

Aside:

• Recall homogeneous plasmas (Chap. 5) with plane wave solutions ξ̂(k) exp(ik · r):
ρ−1F(ξ̂) =

[
− (k · b)2 I − (b2 + c2)kk + k · b (kb + bk)

]
· ξ̂ = −ω2ξ̂ . (3)

In components:





− k2
x(b

2 + c2) − k2
zb

2 −kxky(b
2 + c2) −kxkzc

2

− kxky(b
2 + c2) −k2

y(b
2 + c2) − k2

zb
2 −kykzc

2

− kxkzc
2 −kykzc

2 −k2
zc

2











ξx

ξy

ξz




 = −ω2






ξx

ξy

ξz




 .

(4)
Corresponds to Eq. (5.35) [book (5.52)] with ky 6= 0 : Coordinate system rotated to
distinguish between kx (becomes differential operator in inhomogeneous systems) and
ky (remains number).
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• Dispersion diagram ω2(kx) exhibits relevant asymptotics for kx → ∞:

a ω 2

k   x
(n)

ω 2
f0

1 2 3 4 5 6 71234567 0

ω2
s0

•••••• • • • • •••

•
• • • • •

• • • • •
• • • •

Aω 2•

•

•
•

•
• • •

•
•

•
•••

ω 2
S

b

ω 2
S

Alfvén

fast

slow

ω 2

Aω 2

∞

Yields the essential spectrum:

ω2
F ≡ lim

kx→∞
ω2

f ≈ lim
kx→∞

k2
x(b

2 + c2) = ∞ , (fast cluster point) (5)

ω2
A ≡ lim

kx→∞
ω2

a = ω2
a = k2

‖b
2 , (Alfvén infinitely degenerate) (6)

ω2
S ≡ lim

kx→∞
ω2

s = k2
‖

b2c2

b2 + c2
. (slow cluster point) (7)

End aside
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Finite homogeneous plasma slab

• equilibrium: B0 = B0ez

– with ρ0 , p0 , B0 = const

– enclosed by plates at x = ±a

• normal modes: ∼ exp(−iω t)

⇒ eigenvalueproblem

• plane wave solutions ∼ exp(~k · ~x)
⇒ kx = π

a n is quantized

⇒ three MHD waves: FMW, AW,
SMW

a ω 2

k   x
(n)

ω 2
f0

1 2 3 4 5 6 71234567 0

ω2
s0

•••••• • • • • •••

•
• • • • •

• • • • •
• • • •

Aω 2•

•

•
•

•
• • •

•
•

•
•••

ω 2
S

Dispersion diagram ω2 = ω2(kx) for ky and kz fixed
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Alfvén waves
• eigenfrequency: ω = ±ωA

ωA ≡ k‖b = k b cos ϑ

with b =
B0√
ρ0

• eigenfunctions:
(x)

k

(y)

(z)
ϑ

vA

BA

B0

Fast & slow magnetoacoustic
waves

• eigenfrequency: ω = ±ωs,f

ωs,f ≡ k

√

1
2
(b2 + c2) ± 1

2

√

(b2 + c2)2 − 4(k2
‖/k

2) b2c2

• eigenfunctions:

(z)

(x)

k

ϑ
v s

Bs,f

B0

v f
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• the eigenfunctions are mutually orthogonal:

v̂s ⊥ v̂A ⊥ v̂f

⇒ arbitrary velocity field may be decomposed in the three waves!

(z)

(x)

k

ϑ
v s

Bs,f

B0

v f

• Remark: for θ = 0 the FMW is polar-
ized almost perpendicular to ~B0 but in the
(~k, ~B0)-plane

⇒ corresponds to the direction normal to the
magnetic flux surfaces in the inhomoge-
neous plasmas discussed below
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a ω 2

k   x
(n)

ω 2
f0

1 2 3 4 5 6 71234567 0

ω2
s0

•••••• • • • • •••

•
• • • • •

• • • • •
• • • •

Aω 2•

•

•
•

•
• • •

•
•

•
•••

ω 2
S

b

ω 2
S

Alfvén

fast

slow

ω 2

Aω 2

∞

(a) Dispersion diagram ω2 = ω2(kx) for ky and kz fixed; (b) Corresponding structure of the spectrum.

• the eigenfrequencies are well-ordered:

0 ≤ ω2
s ≤ ω2

s0 ≤ ω2
A ≤ ω2

f0 ≤ ω2
f < ∞

⇒ crucial for spectral theory of MHD waves!
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• three MHD waves exhibit a strong anisotropy depending on the direction of the wave
vector k with respect to the magnetic field B0

b

B

Alfvén

b c

slow

fast

••
 

bc
s A

 f

b c
B

n

slow
Alfvén fast

a
2 2  b  + c2 2  b  + c

2 2  b  + c

Friedrichs diagrams: Schematic representation of (a) reciprocal normal surface (or phase diagram) and (b) ray

surface (or group diagram) of the MHD waves (b < c).
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Finite inhomogeneous plasma slab

• B0 = B0y(x) ey + B0z(x) ez , ρ0 = ρ0(x) , p0 = p0(x)

• influence of inhomogeneity on the spectrum of MHD waves?

⇒ different k ’s couple ⇒ wave transformations can occur

(e.g. fast wave character in one place, Alfvén character in another)

⇒ two new phenomena, viz. instabilities and continuous spectra

• wave or spectral equation can be written in terms of

ξ ≡ ex · ξ = ξx, η ≡ ie⊥ · ξ, ζ ≡ ie‖ · ξ

⇒ eliminate η and ζ with 2nd and 3rd component (algebraic in η and ζ):

d

dx

N

D

dξ

dx
+ [ ρ(ω2 − f 2b2) ] ξ = 0

(Hain, Lust, Goedbloed equation)
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⇒ resulting wave or spectral equation for a plane slab:








d

dx
(γp + B2)

d

dx
− f 2B2 d

dx
g(γp + B2)

d

dx
fγp

− g(γp + B2)
d

dx
−g2(γp + B2) − f 2B2 −gfγp

− fγp
d

dx
−f g γp −f 2γp
















ξ

η

ζ








= −ρω2






ξ

η

ζ






where ξ ≡ ex · ξ = ξx, η ≡ ie⊥ · ξ, ζ ≡ ie‖ · ξ

⇒ eliminate η and ζ with 2nd and 3rd component (algebraic in η and ζ):

d

dx

N

D

dξ

dx
+ [ ρ(ω2 − f 2b2) ] ξ = 0

where N = N(x; ω2) ≡ ρ(ω2 − f 2b2)
[
(b2 + c2) ω2 − f 2b2c2

]

D = D(x; ω2) ≡ ω4 − k2
0(b

2 + c2) ω2 + k2
0f

2b2c2
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• the coefficient factor N/D of the ODE plays an important role in the analysis

⇒ may be written in terms of the four ω2’s introduced for homogeneous plasmas:

N

D
= ρ(b2 + c2)

[ ω2 − ω2
A(x) ] [ ω2 − ω2

S(x) ]

[ ω2 − ω2
s0(x) ] [ ω2 − ω2

f0(x) ]

where

ω2
A(x) ≡ f 2b2 ≡ F 2/ρ , ω2

S(x) ≡ f 2 b2c2

b2 + c2
≡ γp

γp + B2
F 2/ρ ,

ω2
s0,f0(x) ≡ 1

2k
2
0(b

2 + c2)
[

1 ±
√

1 − 4f 2b2c2

k2
0(b

2 + c2)2

]

⇒ only two continuous spectra (2 apparent singularities)

⇒ the four finite ‘limiting frequencies’ now spread out to a continuous range :

0
ω    2

{    } ω    2
S A{    } ω    2

{    } ω    2
s0

{    } ω    2
f0

F ω     2
 = ∞
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The continuous spectrum

• assume slow and Alfvén continuum do NOT overlap

• assume Alfvén frequency is monotone

⇒ inversion of the Alfvén frequency function: (a) ω2
A = ω2

A(x) ; (b) xA = xA(ω2)

{ ω   } 2
A

ω   2
A

x

x1 x2
x0

(b)(a)

ω   2
A1

ω   2

ω   2
0

ω   2
A2

ω   2
A(x  )0

xA
xA

(       )ω   2
0
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• expansion about the singularity:

ω2 − ω2
A(x) ≈ −ω2

A
′
(xs) (x − xs) = −ω2

A
′
(xs) [ x − xA(ω2) ]

⇒ close to the singularity s ≡ x − xA(ω2) = 0 , the ODE then reduces to

d

ds
[ s (1 + · · ·) dξ

ds
] − α (1 + · · ·) ξ = 0

⇒ indicial equation ν2 = 0 , so that the indices are equal: ν1 = ν2 = 0

⇒
{

ξ1 = u(s; ω2) (small solution)
ξ2 = u(s; ω2) ln |s| + v(s; ω2) (large solution) .

• since

η ∼ (ω2 − ω2
S) ξ′ , ζ ∼ (ω2 − ω2

A) ξ′
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• logarithmic contribution in ξ-component

⇒ but the dominant (non-square integrable) part of the eigenfunctions:

ξA ≈ 0 , ηA ≈ P 1

x − xA(ω2)
+ λ(ω2) δ(x − xA(ω2)) , ζA ≈ 0 ,

ξS ≈ 0 , ηS ≈ 0 , ζS ≈ P 1

x − xS(ω2)
+ λ(ω2) δ(x − xS(ω2)) ,

x   x x

non-monotonic
Sturmian
anti-Sturmian

continuum

x   x  x x  x   x
0

ω    2
x   x  x x  x   x x    

{    } ω    2
s0 {    } ω    2

f0

x    

{    } ω    2
S A{    } ω    2

F ω     2
 = ∞

Schematic structure of the spectrum of an inhomogeneous plasma with gravity.
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• MHD example: resistive MHD spec-
trum of a cylindrical plasma column
(from Poedts et al. ’89)

(only Alfvén and slow magnetosonic
subspectrum are shown)

⇒ resistive modes lie on fixed curves
in complex frequency plane (indepen-
dent of resistivity!)

⇒ ideal continuous spectrum only approx-
imated at end points

⇒ ideal quasi-mode clearly visible!

– collective mode

– weakly damped
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Body modes, surface modes, and leaky waves

Surface mode

Body mode

Leaky mode

Different wave types in flux tubes.
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Magnetic structures and dynamics
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	Overview

• Origin of solar magnetism: solar model, helioseismology, solar cycle, dynamo,
convection; [ book: Sec. 8.2.1 ]

• Solar magnetic structures: solar atmosphere and magnetic structuring and dynam-
ics; [ book: Sec. 8.2.2 ]

• Planetary magnetic fields: geodynamo, journey through the solar system;
[ book: Sec. 8.3 ]

• Solar wind and space weather: solar wind, interaction with magnetospheres;
[ book: Sec. 8.4 ]

• Astro-plasma physics: launching collimated astrophysical jets.
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	Questions

Eventually, all theory has to be confronted with empirical reality. This should lead to
attempt to answer the following questions:

• Is the MHD model developed so far an adequate starting point for the description of
observed plasma dynamics?

• Are important theoretical pieces still missing?

• What should be the main goals of present research to resolve these questions?

⇒ Inspiration for answers to these questions to be obtained from

phenomenology of magnetic structures and associated dynam ics.
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Solar magnetism

• Central question: Where does the solar magnetism come from?

Recall structure of the Sun:

• core, r ≤ 0.25R⊙ :
thermonuclear conversion of hydrogen
into helium;

• radiative zone, 0.25R⊙ ≤ r ≤ 0.71R⊙ :
outward radiative transport of produced
energy;

• convection zone, 0.71R⊙ ≤ r ≤ R⊙ :
temperature gradient so steep that the
plasma is convectively unstable

⇒ seat of the solar dynamo!

(from SOHO web site)
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	Convective flows

(from SOHO web site)
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Sunspots

• Dark spots in the (visible) photosphere that
are cooler (darker) than surroundings.

• Can live days–month and rotate west–east
across the disk in bands up to ±35◦ about
equator.

• Reveal existence of several 1000 Gauss
magnetic field!

(from SOHO web site)
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Solar cycle

• Butterfly diagram of the solar cycle shows variation sunspot number with years:

– drifting in latitude with roughly 11 year periodicity.

(David Hathaway, NASA, Huntsville)
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Solar dynamo

• The solar cycle (reversal of mag-
netic polarity every 11 years) is
a magnetic oscillation driven by
the periodic solar dynamo:

conversion of mechanical into
magnetic energy.

• Solar dynamo ingredients:

– differential rotation,
– convection,
– (small) magnetic diffusivity.

• Illustrated by Babcock cartoon
model (1961) of the solar cycle:

[H. Babcock, Ap. J.133, 572 (1961)]
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Crude approach:

• Mean field dynamo , which parameterizes the unknown diffusivity enhancement:

– Inhomogeneity of the magnetic field will decay in time τD determined by resistivity η
and length scale l0 ∼ ∇−1 of the inhomogeneity:

τD = µ0l
2
0/η = l20/η̃ .

– Classical values for l0 and η yield τD many orders of magnitude too long: reduce by
factors parameterizing turbulent vortex interactions.

• Procedure: Split v and B in mean + fluctuations: v = 〈v〉 + v′ , B = 〈B〉 + B′ ,
which yields averaged form of induction equation:

∂〈B〉
∂t

= ∇×
(
〈v〉 × 〈B〉

)
+ ∇× 〈v′ × B′〉 − ∇ ×

(
η̃∇× 〈B〉

)
.

• IF we assume
〈v′ × B′〉 ≈ α 〈B〉 − β ∇× 〈B〉 + . . . ,

THEN there is field amplification through α and decay through η̃ + β from

∂〈B〉
∂t

= ∇×
(
〈v〉 × 〈B〉

)
+ ∇× (α 〈B〉) −∇×

[
(η̃ + β)∇× 〈B〉

]
,

since η̃ + β ≈ β ≈ v′l ≫ η̃, using length/time scale for convective granulation.
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Improving by computational MHD:

• Since kinematic dynamo problem ignores back reaction on the flow,

– need for full 3D magnetoconvection models in rotating boxes,

– would allow for quantification of correlation coefficients α.

• Hence, ingredients flux tube dynamo simulations :

– can store and amplify magnetic fields stably in overshoot region below the
convection zone (tachocline),

– will reach field strengths of order 105 G, forming toroidal flux tube,

– becomes unstable to long-wavelength undular deformation (Parker instability),

– rises without strong deformation through convection zone,

– consistent with Joy’s laws (tilt dependence on latitude of active regions due to
Coriolis effects), observed asymmetries p − f spots, bipole orientation w.r.t.
equator,

– expands and gets shredded just prior to photospheric emergence.
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Sunspots

• Dark umbra, at typical 3700 K, with near
vertical field.

• Filamentary penumbra, intercombed
dark/bright, with inclined fields.

• Subsurface structure: ‘spaghetti’ (um-
bral dots).

• Sampling sunspot with height:

Dutch Open Telescope movie
(dotmovie.mpeg)

⇒ Need sunspot (local) seismology
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Active region seismology

• Interaction of p-modes with sunspots:

– decompose in in- & outgoing waves,

– sunspots absorb up to 50 % of the
impingent acoustic power!

• Candidate linear MHD processes:

– driving frequencies in Alfvén contin-
uum range causing local resonant ab-
sorption (dissipation),

• True 2D stratification:
mode conversion (magflux.mpeg)
to downward propagating s-modes at
β ≈ 1 layers.

Cally and Bogdan, ApJL 486, L67 (1997). http://www.hao.ucar.edu/
(modelling interaction of p-modes with sunspots)

http://www.hao.ucar.edu/
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Corona: eclipse images

• At solar max: coronal helmet streamers.

• 3D structure can be ‘predicted’ from MHD
models.
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Corona: coronagraph

• Monitoring Coronal Mass Ejections (CMEs):

– 1012 kg ejected, few 100–1000 km/s,

– Solar Maximum Mission (1980–1989).
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Coronal dynamics

• SOHO Extreme UV imaging Telescope (EIT).

– visualizes solar cycle variations of coronal structure:

• Solar flares (1024 J ‘explosions’):

– reconnection, particle accelerations, associated CME.

• EIT identified flare-associated waves (EITrndif.mov)

– circularly propagate away from flare site, enhanced transient coronal emission.
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• MHD model for EIT waves and related chromospheric waves:

– CME-induced due to rising flux ropes, Chen et al. 572, L99 (2002);

– Overarching shock front: ‘legs’ produce chromospheric Moreton waves;

– EIT waves mark site of successive opening of covering field lines.
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Planetary magnetic fields by themselves:
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Magnetic dipole

• Dipole magnetic field: B(r) = (µ0/(4πr3)) (3m · er er − m) .

– Earth: mE = 8.1 × 1022 A m2 .
m

S

N

• Table B.8 for values of solar system planets:

– sizeable fields for Earth and giant planets (Jupiter, Saturn, Uranus, Neptune),

– interesting orientation w.r.t. planetary rotation axis (preferred alignment?).

00

140

30

9.6 0

26.7 0

00

EarthMercury Jupiter Saturn Uranus

23.50

11.7 0

600980
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Jovian system

• Jupiter has largest magnetosphere in solar system:

– magnetosphere extends 150 to 200 Jupiter radii,

– magnetopause (boundary static Jovian plasma/solar wind) at ∼ 65RJ,

– equatorial B tenfold of Earth’s,

– liquid metallic hydrogen in inner mantle drives dynamo,

– 16 moons (Io, Ganymede, Europa, Callisto, . . . ).

• NASA Galileo mission (1989–1999) arrived at Jupiter in 1995.

http://home.freeuk.com/catherine-uk/
(Galileo mission to Jupiter, pictures of Jovian system
with ‘Io plasma torus’ and Ganymede on next page)

http://home.freeuk.com/catherine-uk/
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http://antwrp.gsfc.nasa.gov/apod/ap990920.html(Io)

• Io: strong tidal forces (eccentric orbit) induce volcanic activity,

– injects plasma into torus about Jupiter,

– drives auroral displays on Jupiter poles.

• Ganymede: dynamo in iron core (?),

– B of 10 % Earth,

– magnetosphere in Jovian magnetosphere.

http://antwrp.gsfc.nasa.gov/apod/ap990920.html
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Solar wind by itself:
�




�

	Solar wind: Parker model

• Coronal plasma at 106 K, density drops for increasing r.

– Pressure gradient drives continuous outflow.

– Predicted by Parker in 1958, later observed by satellites.

• Model with hydrodynamic equations, spherical symmetry:

– Look for stationary solutions ∂/∂t = 0 ;

– Assume isothermal corona (fixed temperature T ), include gravity:

d

dr
(r2ρv) = 0 ⇒ r2ρv = const ,

ρv
dv

dr
+ v2

th

dρ

dr
+ GM⊙

ρ

r2
= 0 .

– uses constant isothermal sound speed p/ρ ≡ v2
th.
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• Scale v̄ ≡ v/vth (Mach number) and r̄ ≡ r/R⊙ to get

F (v̄, r̄) ≡ 1
2
v̄2 − ln v̄ − 2 ln (

r̄

r̄c
) − 2

r̄c

r̄
+ 3

2
= C , r̄c ≡ 1

2

GM⊙
R⊙v2

th

.

– Implicit relation determining v̄(r̄) ,

– unique solution with transonic acceleration:
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Solar wind modeling

• Generalization to 1.5D magnetized wind
possible analytically:

– appropriate for equatorial plane includ-
ing rotation.

• More advanced models solve for numer-
ical MHD steady-state:

– MHD: 3 Mach numbers, critical transi-
tions as hourglass curves,

– Axisymmetric magnetized wind with a
‘wind’ and a ‘dead’ zone.

[simulation by Keppens & Goedbloed,

Ap. J. 530, 1036 (2000) , using VAC]

www.rijnh.nl/n3/n2/f1234.htm

http://www.rijnh.nl/n3/n2/f1234.htm
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Interaction of solar wind and planetary magnetic field yield s:
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Magnetosphere

• Large-scale magnetic structure with

– bow shock due to impinging supersonic solar wind (day-side),

– magnetopause (contact discontinuity) and inner magnetosphere,

– night-side stretched into magnetotail with equatorial current sheet.

• Size estimate from mag-
netic pressure∼ (R/r)6

dipole field versus ram
pressure (1

2
ρv2)sw wind:

∼ 10 RE for Earth,

∼ 60 RJ for Jupiter.
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Space weather modeling

• Modern shock-capturing MHD simulations:

– trigger (flux emergence, cancellation, shearing) + evolution of CMEs,

– Mikic et al., SAIC San Diego: CME by flux cancellation (Mikic-flx2d.anim.qt)

• Compute impact effect on Earth’s magnetosphere faster than real time

– computing challenge (few days), significant range of scales

– Gombosi, Toth et al., Univ. of Michigan:
Centre for Space Environment movie (Toth-CSEM2004-Zoom.mov)

• Space weather affects all planets! Near-alignment of Earth, Jupiter, Saturn (2000)

⇒ Series of CMEs (seen by SOHO) leading to interplanetary shock (overtaking
and merging shocks), detected as auroral storms on Earth (Polar orbiter), observed
in Jovian radio activity as measured by Cassini (fly-by on its way to Saturn), seen by
Hubble as auroral activity on Saturn.

⇒ MHD model (using VAC code) used to simulate time evolution.
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• First observation of CME event traced all the way from Sun to S aturn,
Prangé et al., Nature, 432(4), 78 (2004). Right: comparison with VAC simulations,

with input from WIND spacecraft.

Sun (SOHO)
LASCO & EIT

Earth (POLAR)
aurora image

Jupiter (Casini)
radio signal

Saturn (HST)
aurora image
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Perspective

• Space missions produce(d) numerous observations

– SOHO (1995): solar phenomena from core to beyond the Earth’s orbit.

– Cluster satellites (1996, 2000): 3D spatial structure of Earth’s magnetosphere.

– Ulysses (1990) in situ investigations of inner heliosphere.

– Solar Orbiter (2012–2017) highest resolution and images of Sun’s polar regions.

• Observed dynamics demonstrates:

– Validity of magnetic flux conservation and dynamics of magnetic flux tubes.

– Observed magnetic flux tubes occur in large numbers.

• Many unsolved problems remain:

– quantitative theory of solar dynamo,

– theory of coronal heating,

– prediction of solar flares,

– theory of solar wind generation, heating, interaction with magnetospheres,

– prediction of space weather.
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Challenging the MHD model

• there are large populations of accelerated particles in the solar atmosphere

• in the corona and the solar wind electrons and ions behave differently

• the photospheric plasma is

– strongly collisional

– very weakly ionized ni0/nn0 ∼ 10−4

– ions (and electrons!) are both un-magnetized

– intrinsically multi-component

• NLFFF algorithms can model test fields but deliver less consistent, less acceptable
fields when applied on actual observations (cf. Schrijver, SPD Boulder 2009)

⇒ big problems: it can be shown that the assumptions in the models are not consistent
with the observations!

⇒ 3D, time accurate ’MHD+’ models are needed (multi-fluid , kinetic,. . . )




