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Part I: Conservation, Consistency, and Convergency
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§ 1 Linear and non-linear advection equations

We start with the continuity equation as the reference equation for advection:

∂ρ

∂t
+ ∇ · (ρv) = 0 ,

in 1-D
∂ρ

∂t
+

∂

∂x
(ρu) = 0 .

With u = const. (the advection velocity) we get the linear advection equation

∂ρ

∂t
+ u

∂ρ

∂x
= 0 .

Its solution is

ρ(x, t) = ρ0(x − ut) .
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Linear and non-linear advection equations (cont.)

The initial density profile is simply moved (advected) with velocity u.

0

ρ (x,t)

(x)ρ 

ρ is a “generalized density”.
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Linear and non-linear advection equations (cont.)

It is remarkable that Eulerian numerical schemes have generally difficulties to solve the

linear advection equation accurately. Some amount of diffusion is unavoidable.

From Oran & Boris (1987)
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Linear and non-linear advection equations (cont.)

We next consider the momentum equation

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) − ερ

∂2u

∂x2
= 0 ,

and assume p = 0:

u
∂ρ

∂t
+ ρ

∂u

∂t
+ u2 ∂ρ

∂x
+ ρ2u

∂u

∂x
− ερ

∂2u

∂x2
= 0 .

Using the continuity equation, the first term can be written as:

u
∂ρ

∂t
= −u

∂

∂x
(uρ) = −u2 ∂ρ

∂x
− uρ

∂u

∂x

⇒ ρ
∂u

∂t
+ ρu

∂u

∂x
− ρε

∂2u

∂x2
= 0 .

Division by ρ and reordering terms leads to:
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Linear and non-linear advection equations (cont.)

Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2

and the inviscid Burgers’ equation

ut + uux = 0
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Linear and non-linear advection equations (cont.)

Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2

and the inviscid Burgers’ equation

ut + uux = 0

(x,t)u

u(x,0)
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Linear and non-linear advection equations (cont.)

Solutions to the inviscid Burgers equation ut + uux = 0:

(x,0)

u

u

(x,t)

Solutions to the Burgers equation ut + uux = εuxx:

ε = 0.01

limiting solution
as 

ε = 0.005

ε → 0
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Linear and non-linear advection equations (cont.)

Consider the inviscid Burgers equation ut + uux = 0 with the initial data

u0 =

8

<

:

1 for x ≤ 0

0 for x > 0

u

x

0

and construct a straightforward discretization:

Un+1
j − Un

j

k
+ Un

j

„
Un

j − Un
j−1

h

«

= 0 ,

which is an ‘upwind” or “donor cell” scheme. How does this scheme handle the

discontinuity of the initial data ?
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Linear and non-linear advection equations (cont.)

First we rewrite the scheme in explicite form:

Un+1
j = Un

j − k

h
Un

j

`
Un

j − Un
j−1

´
.

Next we compute the first time step:

for x < 0 : U1
j = 1 − k

h
1 (1 − 1) = 1 ,

for x > 0 : U1
j = 0 − k

h
0 (0 − 0) = 0 ,

for Uj−1 = 1 and Uj = 0 : U1
j = 0 − k

h
0 (0 − 1) = 0 .
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Linear and non-linear advection equations (cont.)

First we rewrite the scheme in explicite form:

Un+1
j = Un

j − k

h
Un

j

`
Un

j − Un
j−1

´
.

Next we compute the first time step:

for x < 0 : U1
j = 1 − k

h
1 (1 − 1) = 1 ,

for x > 0 : U1
j = 0 − k

h
0 (0 − 0) = 0 ,

for Uj−1 = 1 and Uj = 0 : U1
j = 0 − k

h
0 (0 − 1) = 0 .

⇒ After one time step we recover the initial data again!

Whatever step size h and k we choose, the shock front stays at the same position.
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Linear and non-linear advection equations (cont.)

From R.J. LeVeque (1992)

True (solid curve) and computed (dotted curve)

solution to Burgers’ equation with adjacent initial

data and using the upwind scheme. Note that

the shock speed is wrong.

u0 =

8

<

:

1.2 for x ≤ 0

0.4 for x > 0
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§ 2 Conservative methods

Def.: A scheme is in conservation law form if it has the form

Un+1
j = Un

j −
k

h

[
F (Un

j−p, U
n
j−p+1, . . . , U

n
j+q)

−F (Un
j−p−1, U

n
j−p, . . . , U

n
j+q−1)

]
.

F is called the numerical flux function .
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Conservative methods (cont.)

A good way to obtain conservation law form ist to start discretization from the

conservative form of the PDE.

For eample in case of the inviscid Burgers equation:

quasi linear form : ut + uux = 0 ,

conservative form : ut +
(

1
2u2

)

x
= 0 .

Using the same upwind discretization as before but starting from the

conservative form of the PDE we obtain:

Un+1
j − Un

j

k
+

1

h

[
1

2
(Un

j )2 −
1

2
(Un

j−1)
2

]

= 0 .
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Conservative methods (cont.)

The explicit form is

Un+1
j = Un

j −
k

h

[
1

2
(Un

j )2 −
1

2
(Un

j−1)
2

]

= 0 ,

which is distinctly different from the difference equation that we had before:

Un+1
j = Un

j −
k

h
Un

j

(
Un

j − Un
j−1

)
.

The first equation has the form

Un+1
j = Un

j −
k

h

[
F (Un

j ) − F (Un
j−1)

]
,

hence, it is in conservation law form according to the definition. Applying it to

the same initial data as before produces the correct solution with the correct

shock speed.
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Conservative methods (cont.)

From R.J. LeVeque (1992)

True (solid curve) and computed (dotted curve)

solution to Burgers’ equation with adjacent initial

data and using the conservative upwind scheme.

Note that the shock speed is correct .

u0 =

8

<

:

1.2 for x ≤ 0

0.4 for x > 0
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§ 3 Conservation, Consistency, Convergence

Def.: Un
j : numerical solution at grid point j and time t = (n − 1)k (k = ∆t)

un
j : = u(xj , tn) exact solution at grid point j and time t = (n − 1)k

Hk : explicit numerical scheme using time steps k so that

Un+1 = Hk(Un)

Lk : local truncation error

Lk(xj , t) = 1
k

[u(xj , t + k) −Hk(u( . , t); xj)]

Then, a method is consistent if ‖Lk( . , t)‖ → 0 as k → 0,

where ‖v‖ :=
R ∞

−∞
|v(x)|dx, while k/h = const

toc ref



Conservation, Consistency, Convergence (cont.)

A scheme in conservation law form

Un+1
j = Un

j −
k

h

[
F (Un

j−p, U
n
j−p+1, . . . , U

n
j+q)

−F (Un
j−p−1, U

n
j−p, . . . , U

n
j+q−1)

]

is consistent with the conservative PDE

∂u

∂t
+

∂

∂x
(f(u))

if
F(u,u,. . . ,u) = f(u)

and there exists a K such that

|F (Uj−p, . . . , Uj+q) − f(u)| ≤ K max
−p≤i≤q

|Uj+1 − u| .
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Conservation, Consistency, Convergence (cont.)

For example Burgers’ equation and its conservative upwind scheme are

consistent:

F (Uj) =
1

2
(Uj)

2 ⇒ F (u) =
1

2
u2 = f

This scheme is conservative and consistent!
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Conservation, Consistency, Convergence (cont.)

Theorem of Lax and Wendroff (1960)

Consider a sequence of grids, indexed by l = 1, 2, . . . with mesh pa-

rameters kl, hl → 0 as l → ∞. Let Ul(x, t) denote the numerical

solution computed with a consistent and conservative method on the lth

grid. Suppose that Ul converges∗ to a function u as l → ∞.

Then u(x, t) is a weak solution of the conservation law .

∗ Convergence in the following sense:

Over every bounded set Ω = [a, b] × [0, T ]

Z T

0

Z b

a

|Ul(x, t) − u(x, t)|dx dt → 0 as l → ∞

and TV(U( . , t)) < R 0 ≤ t ≤ T, l = 1, 2, . . .

where TV(v) = sup
PN

j=1 |v(ξj) − v(ξj−1)|
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§ 4 Theorem of Godunov

Def.: If we have initial data that are monotone increasing or decreasing, e.g.,

U0
j ≥ U0

j+1 ∀j (monotonically decreasing) and the numerical scheme

produces solutions with

Un
j ≥ Un

j+1 ∀j and n, then the scheme is said to be monotone.

For example, the upwind scheme is a monotone scheme.

Theorem of Godunov (1959)

A linear, monotonicity preserving method is at most first order accurate.

A scheme H is linear if H(U + V) = H(U) + H(V).

(It has the general form Un+1
i =

kRX

k=−kL

bkUn
i+k , kL , kR ∈ N

+
)
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Part II: Riemann solvers
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§ 5 Three major advancements in the numerical treatment of the

hydrodynamic equations

Three major progresses in computational fluid dynamics of the past 50 years

include:

– the conservative formulation of the computational scheme in terms of finite

volumes,

– the technique of approximate Riemann-solvers for the computation of

numerical fluxes,

– the flux-limiter technique for maintaining stability and monotonicity of

higher-order accurate scheme.
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§ 6 Conservation laws – finite volumes

Consider the continuity equation:

ρt + ∇ · (ρu) = 0 . (1)

Integration over a finite volume, V , and time period, T , leads to the integral

form of this equation:

∫

V

ρ(T,x)dV −

∫

V

ρ(0,x)dV =

∫ T

0

∮

∂V

(ρu) · ndsdt (2)

Solutions to Eq. (2) are called weak solutions to the partial differential

equation, Eq. (1). Additionally to the solutions of Eq. (1), the set of solutions to

Eq. (2) encompasses discontinuous solutions, because no derivatives appear

in Eq. (2). Discontinuous solutions to the Euler equations represent shock

fronts of the real world.
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Conservation laws – finite volumes (cont.)

Consider the mass conservation in a one-dimensional tube:

2

��
��
��
��
��
��

vρm

A

∆x

vρ 1

m(t + ∆t) = m(t) + 〈ρv〉1A∆t − 〈ρv〉2A∆t (3)

〈ρ〉(t + ∆t) = 〈ρ〉(t) − ∆t

∆x
(〈ρv〉2 − 〈ρv〉1) (4)

Eq. (4) has the form of a conservative finite volume scheme.

in the limit of ∆x → 0 and ∆t → 0
∂ρ

∂t
=

∂(ρv)

∂x
But Eq. (3) is identical to the integral form Eq. (2):

Z

V

ρ(T,x)dV −
Z

V

ρ(0,x)dV =

Z T

0

I

∂V

(ρu) · n ds dt
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Conservation laws – finite volumes (cont.)

The conservative, finite volume formulation has three highly desirable properties:

– Conserved quantities (mass, momentum, energy) remain accurately conserved

– Discontinuous solutions are include by solving the integral form of the partial

differential equation

– It fulfills one of two requirements of the theorem of Lax and Wendroff (1960) that

says:

The approximate solution that is computed with a consistent and conservative

scheme converges to a weak solution of the conservation law.
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Conservation laws – finite volumes (cont.)

Euler’s equation in one dimension is given by

qt + f(q)x = 0 , q
n+1
i = q

n
i +

∆t

∆x
[fi−1/2 − fi+1/2] ,

where

q =

0

B
B
@

ρ

ρu

E

1

C
C
A

f(q) =

0

B
B
@

ρu

ρu2 + p

u(E + p)

1

C
C
A

In 3-D we have

qt + f(q)x + g(q)y + h(q)z = 0 ,

with

q =

0

B

B

B

B

B

B

B

@

ρ

ρu

ρv

ρw

E

1

C

C

C

C

C

C

C

A

f(q) =

0

B

B

B

B

B

B

B

@

ρu

ρu2 + p

ρuv

ρuw

u(E + p)

1

C

C

C

C

C

C

C

A

· · ·
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§ 7 Riemann solvers

A conservative finite volume scheme is an exact representation of the integral

form of the partial differential equation of the conservation law. The problem

consists in computing the correct flux function f(q), i.e., 〈ρv〉 in the case of

the continuity equation.

It turns out that these fluxes can be computed exactly .
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Riemann solvers (cont.)

Idea of S.K. Godunov (1959): Piecewise constant reconstruction with

discontinuities at cell interfaces

q

x

q

x

q

x xi i+1

��
��
��

��
��
��
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��
��
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��
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Riemann solvers (cont.)

The shock-tube problem

p

x

x

x

v

ρ

t 0

ρ
r

vl vr= = 0

p
l

p
r

ρ
l
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Riemann solvers (cont.)

The shock-tube problem

p

x

x

x

v

ρ

t 0

ρ
r

vl vr= = 0

p
l

p
r

ρ
l

p

ρ

x

x

x

v

t 1

ρ

l

p

p

v

*

vr

l

*

r

v

l

l
ρ*

ρ*
r ρ

r

p

toc ref



Riemann solvers (cont.)

The shock-tube problem

p

x

x

x

v

ρ

t 0

ρ
r

vl vr= = 0

p
l

p
r

ρ
l

p

ρ

x

x

x

v

t 1

ρ

l

p

p

v

*

vr

l

*

r

v

l

l
ρ*

ρ*
r ρ

r

p

∆

∆

q
l

t

t

0

0 x

q

x

r

q*
l q*

r
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Riemann solvers (cont.)

The shock-tube problem

p

x

x

x

v

ρ

t 0

ρ
r

vl vr= = 0

p
l

p
r

ρ
l

p

ρ

x

x

x

v

t 1

ρ

l

p

p

v

*

vr

l

*

r

v

l

l
ρ*

ρ*
r ρ

r

p

∆

∆

q
l

t

t

0

0 x

q

x

r

q*
l q*

r

q0

q  = q
0 r

q  = q
0

q  = q
0

q  = q
0 lrfl

**q  = q
0 r
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§ 7.1 The Riemann solver of Harten, Lax, and van Leer (HLL)

Consider the system of one-dimensional conservation laws

qt + f(q)x = 0 , q(x, 0) =

(

ql if x < 0 ,

qr if x > 0 .

srlx

u

x

u−a u+a= =rs

T T
0

r

ls

ls

T
q*

l

l
q q

r

q*
r

t

x

The integral form in the control volume [xl, xr] × [0, T ] is given by:
Z xr

xl

q(x, T )dx =

Z xr

xl

q(x, 0)dx +

Z T

0

f(q(xl, t))dt −
Z T

0

f(q(xr, t))dt
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The HLL solver (cont.)

Z xr

xl

q(x, T ) dx =

Z xr

xl

q(x, 0) dx +

Z T

0
f(q(xl, t)) dt −

Z T

0
f(q(xr, t)) dt

= xrqr − xlql + T (fl − fr) , fl = f(ql) , fr = f(qr)

Z xr

xl

q(x, T ) dx =

Z Tsl

xl

q(x, T ) dx +

Z Tsr

Tsl

q(x, T ) dx +

Z xr

Tsr

q(x, T ) dx

=

Z Tsr

Tsl

q(x, T ) dx + (Tsl − xl)ql + (xr − Tsr)qr

1

T (sr − sl)

Z Tsr

Tsl

q(x, T ) dx := q
hll =

srqr − slql + fl − fr

sr − sl
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The HLL solver (cont.)

srlx

u

x

u−a u+a= =rs

T T
0

r

ls

ls

T
q*

l

l
q q

r

q*
r

t

x

Applying the integral form to the control volume

[xl, 0] × [0, T ] we obtain:

Z 0

Tsl

q(x, T )dx = −Tslql + T (fl − f0l) ,

where f0l is the flux f(q) along the t-axis. Hence,

f0l = fl − slql −
1

T

Z 0

Tsl

q(x, T )dx .

Doing the same for the control volume [0, xr] × [0, T ] leads to

f0r = fr − srqr − 1

T

Z Tsr

0
q(x, T )dx .

It follows that

f0l = f0r .
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The HLL solver (cont.)

Harten, Lax, and van Leer put forward the following approximation:

ls rs

x

q

l

hll

q q
r

t

q̃(x, t) =

8

>><

>>:

ql if x
t
≤ sl ,

qhll if sl ≤ x
t
≤ sr ,

qr if x
t
≥ sr .

f
hll = fl + sl(q

hll − ql) or

f
hll = fr + sr(q

hll − qr)

⇒ f
hll =

srfl − slfr + slsr(qr − ql)

sr − sl
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The HLL solver (cont.)

The corresponding intercell flux for the approximate Godunov method is then

given by:

fhll
i+1/2 =







fl if 0 ≤ sl ,

srfl − slfr + slsr(qr − ql)

sr − sl
if sl ≤ 0 ≤ sr ,

fr if 0 ≥ sr

that can be used in the explicit conservative formula

qn+1
i = qn

i +
∆t

∆x
[fi−1/2 − fi+1/2] .
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§ 7.2 Wave-speed estimates

In order to completely determine the numerical fluxes in the HLL Riemann solver we

need estimates for the wave speeds sl and sr , and, for the HLLC solver, s∗.

Given a positive speed s+, a simple choice would consist in

sl = −s+ , sr = s+ .

It is interesting to note that if we set s+ equal to the maximal speed according to the

CFL-condition, i.e.,

s+ =
∆x

∆t
,

we obtain Lax-Friederichs numerical flux

fi+1/2 =
1

2
(fl − fr) −

1

2

∆x

∆t
(qr − ql) ,

which brings us back to a classical scheme.
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Wave-speed estimates (cont.)

More ingenious choices are motivated by a “Roe average” of the left and right states,

e.g.,

sl = ũ − ã , sr = ũ + ã ,

where

ũ =

√
ρlul +

√
ρrur√

ρl +
√

ρr
, ã =

»

(γ − 1)(H̃ − 1

2
ũ2)

– 1
2

,

with the enthalpy H = (E + p)/ρ approximated as

H̃ =

√
ρlHl +

√
ρrHr√

ρl +
√

ρr
.
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Wave-speed estimates (cont.)

In a different approach we first suppose to have estimates for p∗ and u∗ for the

pressure and velocity in the Star Region. Then we compute the following wave speeds:

sl = ul − alrl , s∗ = u∗ , sr = ur + arrr ,

where

rk =

8

><

>:

1 if p∗ ≤ pk rarefaction head
»

1 +
γ + 1

2γ
(
p∗

pk
− 1)

– 1
2

if p∗ > pk shock

p∗ and u∗ can be found from a linearization of the Riemann problem yielding

p∗ =
1

2
(pl + pr) −

1

2
(ur − ul)ρ̄ā , u∗ =

1

2
(ul + ur) −

1

2

(pr − pl)

ρ̄ā
,

where

ρ̄ =
1

2
(ρl + ρr) , ā =

1

2
(al + ar) .
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§ 7.3 The Riemann solver of Roe

Consider again the Riemann problem

qt + f(q)x = 0 ,

q(x, 0) =

8

<

:

ql if x < 0 ,

qr if x > 0 ,

where for the x-split three-dimensional Euler equation

q =

0

B

B

B

B

B

B

B

@

ρ

ρu

ρv

ρw

E

1

C

C

C

C

C

C

C

A

, f(q) =

0

B

B

B

B

B

B

B

@

ρu

ρu2 + p

ρuv

ρuw

u(E + p)

1

C

C

C

C

C

C

C

A

.
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The Roe solver (cont.)

Using the chain rule, the conservation law

qt + f(q)x = 0

may be written as

qt + A(q)qx = 0 , A(q) =
∂f

∂q
.

Roe’s approach consists in replacing the Jacobian matrix A(q) by a constant Jacobian

Ã = Ã(ql,qr)

resulting in the Riemann problem for the linear system

qt + Ãqx = 0 ,

q(x, 0) =

8

<

:

ql if x < 0 ,

qr if x > 0 ,

which can be solved exactly.
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The Roe solver (cont.)

Once the matrix Ã(ql,qr), its eigenvalues λ̃i(ql,qr), and corresponding right

eigenvectors k̃(i)(ql,qr) are available, the difference between right and left state can

be expanded in terms of the eigenvectors:

∆q = qr − ql =
mX

i=1

α̃ik̃
(i) ,

from which one finds the wave strengths α̃i(ql,qr) .

L

ρ

w
v R

R

ρL R
**

ρ

p

u

RpL

u

w
v L

L w
v

ρ

R

R

L

L

R

Rw
v L

t

x

** up

qi+1/2(0) = ql +
X

λ̃i≤0

α̃ik̃
(i)

, or

qi+1/2(0) = qr −
X

λ̃i≥0

α̃ik̃
(i)

,

fi+1/2 = fl +
X

λ̃i≤0

α̃iλ̃ik̃
(i) , or

fi+1/2 = fr −
X

λ̃i≥0

α̃iλ̃ik̃
(i) .
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The Roe solver (cont.)

The x-direction Jacobian matrix for the Euler equations, A(q), is

A =

2

6
6
6
6
6
6
6
6
4

0 1 0 0 0

γ̂H − u2 − a2 (3 − γ)u −γ̂v −γ̂w γ̂

−uv v u 0 0

−uw w 0 u 0

1
2
u[(γ − 3)H − a2] H − γ̂u2 −γ̂uv −γ̂uw γu

3

7
7
7
7
7
7
7
7
5

,

where γ̂ = γ − 1 and a =
p

γp/ρ. The eigenvalues are

λ1 = u − a , λ2 = λ3 = λ4 = u , λ5 = u + a .
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The Roe solver (cont.)

The corresponding right eigenvalues are

k(1) =

2

6

6

6

6

6

6

6

4

1

u − a

v

w

H − ua

3

7

7

7

7

7

7

7

5

, k(2) =

2

6

6

6

6

6

6

6

4

1

u

v

w

1
2
V 2

3

7

7

7

7

7

7

7

5

, k(3) =

2

6

6

6

6

6

6

6

4

0

0

1

0

v

3

7

7

7

7

7

7

7

5

,

k(4) =

2

6

6

6

6

6

6

6

4

0

0

0

1

w

3

7

7

7

7

7

7

7

5

, k(5) =

2

6

6

6

6

6

6

6

4

1

u + a

v

w

H + ua

3

7

7

7

7

7

7

7

5

,

where H =
E + p

ρ
, E =

1

2
ρV 2 + ρe , V 2 = u2 + v2 + w2 .
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The Roe solver (cont.)

Roe requires the constant Jacobian matrix Ã = Ã(ql,qr) to satisfy the algebraic

properties of the Jacobian A(q), i.e.,

λ̃i = λ̃i(ql,qr) ∈ R ∀i ,

Ã(q,q) = A(q) ,

f(qr) − f(ql) = Ã(qr − ql) .

These conditions may be fullfilled with the following “Roe averagged” quantities to be

used in the formulae for λi and k(i) shown on the brevious pages:

ũ =

√
ρlul +

√
ρrur√

ρl +
√

ρr
,

ṽ =

√
ρlvl +

√
ρrvr√

ρl +
√

ρr
,

w̃ =

√
ρlwl +

√
ρrwr√

ρl +
√

ρr
,

H̃ =

√
ρlHl +

√
ρrHr√

ρl +
√

ρr
,

ã = (γ − 1)[H̃ − 1

2
Ṽ 2]

1
2 ,

Ṽ 2 = ũ2 + ṽ2 + w̃2 .
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§ 8 Higher order accurate methods

Piece-wise linear , local reconstruction (variable extrapolation method) as part of the

MUSCL scheme (Monotone Upstream-centred Scheme for Conservation Laws)

u  (x)

i+1u     (x)

iuL

iuR

i−1u    (x)

i

qi(x) = q
n
i +

x − xi

∆x
∆i x ∈ [0, ∆x] ,

q
L
i = q

n
i − 1

2
∆i ,

q
R
i = q

n
i +

1

2
∆i ,

leads to the Generalized Riemann Problem

qt + f(q)x = 0 ,

q(x, 0) =

8

<

:

qi(x) if x < 0 ,

qi+1(x) if x > 0 .
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TVD methods (cont.)

b) t

x

a)

i

i+1/2

u  (x)

i+1u     (x)

Initial data (a) and solution structure (b) of the gen-

eralized Riemann problem.

In the MUSCL-Hancock method intermediate

boundary extrapolated values q̃R
i and q̃L

i+1 are

obtained by

q̄
L
i = q

L
i +

1

2

∆t

∆x
[f(qL

i ) − f(qR
i )] ,

q̄
R
i = q

R
i +

1

2

∆t

∆x
[f(qL

i ) − f(qR
i )] ,

which then form the piece-wise constant data for the conventional Riemann problem

qt + f(q)x = 0 ,

q(x, 0) =

8

<

:

q̄R
i if x < 0 ,

q̄L
i+1 if x > 0 .
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TVD methods (cont.)

An important property of the general scalar conservation law

ut + f(u)x = 0 (5)

is monotonicity :

If two initial data functions v0(x) and u0(x) for Eq. (5) satisfy v0(x) ≥ u0(x) ∀x,

then the corresponding solutions v(x, t) and u(x, t) satisfy v(x, t) ≥ u(x, t) t > 0.

Correspondingly, a monotone scheme has the following property:

if vn
i ≥ un

i ∀i then vn+1
i ≥ un+1

i ∀i .

The Theorem of Godunov states that: There are no monotone, linear schemes for the

solution of Eq. (5) of second or higher order of accuracy .

(A linear scheme has generally the form

qn+1
i =

kRX

k=−kL

bkqn
i+k , kL , kR ∈ N

+)
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TVD methods (cont.)

In order to circumvent Godunov’s theorem, higher order non-linear schemes were

invented. One way of doing so consists in finding a slope limiter ξi such that

∆̄i = ξi∆i ,

∆i =
1

2
(1 + ω)(qn

i − q
n
i−1) +

1

2
(1 + ω)(qn

i+1 − q
n
i ) , ω ∈ [−1, 1] .

ξi depends in a non-linear way on the ratio r, where

r =
qn

i
− qn

i−1

qn

i+1 − qn

i

r

r
2

1

0 1 2

ξ(  )
TVD region for slope limiters. For negative r the

TVD region is the single line ξ = 0, for positive

r the TVD region corresponds to the pink region.

SUPERBEE, van Leer, MINMOD, etc type of slope

limiters are a subset of this region.

toc ref



§ 9 The positivity problem with HLL when applied to MHD

The HLL-scheme is a positive scheme when applied to the system of the Euler

equations. This means that density and pressure remain positive under all

circumstances.

It remains positive when applied to the system of one-dimensional MHD

equations as long as the longitudinal magnetic field component is continuous,

i.e., constant. The transversal components may have discontinuities.

The HLL-middle state can become non-positive if there is a jump in the normal

component of the magnetic field across the cell interface.
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The positivity problem with HLL when applied to MHD (cont.)

In planar MHD the solenoidality condition reduces to

∂Bx

∂x
= 0 ,

since By and Bz are constant in the transversal directions y and z. Hence,

Bx(x) = const. However, in multiple dimensions, this need not be the case

any more.
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The positivity problem with HLL when applied to MHD (cont.)

However, many multidimensional codes work with dimensional operator

splitting, where numerical updates are computed separately for each

dimensional direction. Each “directional sweep” is treated as a purely

one-dimensional problem.

The problem with directional splitting in multi-dimensional MHD is that the

one-dimensional sweeps “see” at cell boundaries discontinuities in the

longitudinal component of the magnetic field.
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The positivity problem with HLL when applied to MHD (cont.)

Remedy proposed by Janhunen (2000): Discontinuities in the normal

component of the magnetic field in planar MHD lead to the violation of the

solenoidality condition, hence, they signify magnetic monopoles. Since we

cannot avoid theses discontinuities we modify the MHD equations in a way that

they include magnetic monopoles.
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The positivity problem with HLL when applied to MHD (cont.)

The MHD-equations can be derived without using the condition ∇ · B = 0 at

first. Powell (1994) derived the following set of equations:

∂ρ

∂t
+ ∇ · (ρv) = 0

∂(ρv)

∂t
+ ∇ ·

[

ρvv + (p +
B2

2µ0
)I −

1

µ0
BB

]

= −B(∇ · B)

∂B

∂t
+ ∇ · (vB −Bv) = −v(∇ · B)

∂E

∂t
+ ∇ ·

[

(E + p +
B2

2µ0
)v −

1

µ0
(v · B)B

]

= −(v · B)(∇ · B)

Powell used this system in order to avoid the accumulation of numerical

discretization errors in ∇ · B.
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The positivity problem with HLL when applied to MHD (cont.)

Janhunen argues that Powell’s monopols were ghost particles with no

interaction with the electromagnetic field. The “correct way” to derive monopole

MHD would include a force on magnetic monopoles in a similar way as electric

charges experience a force in a electric field. He uses a generalization of the

Lorentz force and so obtains:

∂ρ

∂t
+ ∇ · (ρv) = 0

∂(ρv)

∂t
+ ∇ ·

[

ρvv + (p +
B2

2µ0
)I −

1

µ0
BB

]

= 0

∂B

∂t
+ ∇ · (vB −Bv) = −v(∇ · B)

∂E

∂t
+ ∇ ·

[

(E + p +
B2

2µ0
)v −

1

µ0
(v ·B)B

]

= 0

The linearized system has an eigenstructure similar to Powell’s equations.
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The positivity problem with HLL when applied to MHD (cont.)

Janhunen correspondingly includes a source term in the HLL-solver for the
induction equation:

shll
B =

Z T

0

1

L

Z srT

slT
s(x, t) dx dt

≈
Z T

0

1

L

Z srT

slT
(−vhll ∂Bx

∂x
) dxdt

=

Z T

0

1

L

Z srt

slt
(−vhll ∂Bx

∂x
) dx dt

=
1

sr − sl

Z T

0
(−vhll)∆Bx

dt

T

= −vhll∆Bx

sr − sl

where L = (sr − sl)T and ∆Bx = Bx r − Bx l. The only approximation

involved is v ≈ vhll.
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The positivity problem with HLL when applied to MHD (cont.)

Notice, that the “Janhunen trick” is used only for computing cell centered

magnetic field components, which in turn are only used for computing

numerical fluxes. The magnetic field proper of the solution is defined at cell

boundaries and updated with a constrained transport (CT) scheme, which

strictly maintains ∇ · B.
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The positivity problem with HLL when applied to MHD (cont.)

Even when using the Janhunen source term we have encountered instances of

negative pressure when βplasma ≪ 1. In these cases the total energy is

completely dominated by the magnetic energy, so that the internal energy may

become negative when computing it by subtraction of the magnetic from the

total energy.

We therefore use a hybrid scheme in the MHD-module of the CO5BOLD code.

In regions with βplasma ≪ 1 we use the equation for internal energy instead

of the total energy equation. We thereby violate strict energy conservation. In

all other regions the total energy equation is used. The switch from total to

internal energy equation can be specified as a parameter. A typical value

would be βswitch = 10−3.
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Part III: Concrete implementations
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§ 10 Computer Codes

In the following is a non-exhaustive, arbitrarily selected list of codes that may or may not
be suitable for serving your needs. Details are without guarantee.

acronym VAC

name Versatile Advection Code PENCIL NIRWANA

web page http://www.phys.uu.nl/˜toth/ http://www.nordita.org/software/pencil-code/ http://nirvana-code.aip.de/

principal author Gábor Tóth Wolfgang Dobler Udo Ziegler

language dimension independent notation,
(convertible to FORTRAN via VAC
Preprocessor)

FORTRAN C

MHD yes yes yes

radiative transfer no yes no

parallelization HPF, MPI, OpenMP MPI MPI

grid structured grid; adaptive/AMR Cartesian; adaptive/static Cartesina, cylidrical, spherical; adap-
tive/AMR

comments: The code features a variety of
numerical methods for the advection
step including TVD schemes and
Riemann solvers. There is a version
with automatic adaptive mesh
refinement, AMR.

Code uses a higher order
fnite-difference scheme. Primarily
designed to deal with weakly
compressible turbulent flows.

Godunov-type central scheme,
piecewise linear TVD reconstruction,
flux-CT scheme, dual energy formalism
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Computer Codes (cont.)

acronym CO5BOLD MURaM ANTARES

name Conservative Code for the
Computation of Compressible
Convection in a Box of L Dimensions

MPS/University of Chicago Radiative
MHD

A Numerical Tool for Astrophysical
REsearch

web page http://www.astro.uu.se/˜bf/co5bold main.html http://www.mps.mpg.de/projects/
solar-mhd/muram site/code.html

http://arxiv.org/abs/0905.0177

principal author Bernd Freytag Alexander Vögler H.J. Muthsam

language FORTRAN ? FORTRAN

MHD yes yes yes

radiative transfer yes/non-grey yes/non-grey yes/non-grey

parallelization OpenMP MPI MPI; OpenMP

grid Cartesian; adaptive/static Cartesian; adaptive/static Cartesian, spherical; AMR/static

comments: Riemann solver based code; realistic
EOS and opacities; chemical reaction
network; dynamic hydrogen ionization

Fourth-order accurate, explicit finite
differences TVD scheme; realistic EOS
and opacities

Features various high-resolution
schemes

acronym CLAWPACK

name Conservation Law Package A-MAZE ZEUS-MP/2

web page http://www.amath.washington.edu/ claw/ http://www.astro.phys.ethz.ch/staff/
folini/private/research/a maze/a maze.html

http://lca.ucsd.edu/portal/codes/zeusmp2

principal author Randall J. LeVeque Rolf Walder Stone & Norman

language FORTRAN FORTRAN FORTRAN

MHD yes yes yes

radiative transfer no yes no

parallelization MPI MPI MPI

grid adaptive/AMR Cartesian; adaptive/AMR Cartesian, spherical;
cylindricalAMR/static

comments: Features various solvers incl. Riemann
solvers; solves problems on curved
manifolds

Riemann solver based scheme; NLTE
radiative transfer for moving media
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Computer Codes (cont.)

acronym

name FLASH

web page http://flash.uchicago.edu/website/home/

principal author Alliances Center for Astrophysical
Thermonuclear Flashes

language FORTRAN

MHD yes

radiative transfer no

parallelization MPI

grid Cartesian, spherical, cylindrical polar;
AMR

comments: HD: split PPM, unsplit
MUSCL-Hancock; MHD: split 8-wave
solver, unsplit staggered mesh; split
relativistic hydro solver; reactive gas
dynamics
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Computer Codes (cont.): example CO5BOLD code

CO5BOLD stands for COnservative COde for the COmputation of COmpressible

COnvection in a BOx of L Dimensions with L=2,3.

CO5BOLD is designed for simulating hydrodynamics and radiative transfer in the outer

and inner layers of stars. Additionally, it can treat magnetohydrodynamics,

non-equilibrium chemical reaction networks, dynamic hydrogen ionization, and dust

formation in stellar atmospheres.
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Application examples of CO5BOLD (Courtesy Sven Wedemeyer-Böhm)
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Computer Codes (cont.): example CO5BOLD code

Simulation of solar granulation with

CO5BOLD. 400 × 400 × 165 grid cells,

11.2 × 11.2 Mm, Mean contrast at

λ ≈ 620 nm is 16.65%.

Courtesy M. Steffen, AIP

Simulation of a red supergiant with

CO5BOLD. 2353 grid cells,

mstar = 12m⊙, Teff = 3436 K,

Rstar = 875R⊙

Courtesy Bernd Freytag
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Computer Codes (cont.): example CO5BOLD code

Two-dimensional radiation-hydrodynamic simulation of surface convection including the

chromospheric layer. The dimensions of the computational domain are: Width,

5600 km; Height above the surface of τ = 1, 1700 km; Depth below this surface level:

1400 km.

S. Wedemeyer et al. 2004, A&A 414, 1121
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Computer Codes (cont.): example CO5BOLD code

CO5BOLD works with

- Cartesian (non-equidistant) grids,

- realistic equation of state,

- non-local, multidimensional radiation transport,

- realistic opacities, opacity binning

- various boundary conditions

CO5BOLD is programmed with

- FORTRAN 90,

- OpenMP directives,

The manual for CO5BOLD can be found under

http://www.astro.uu.se/˜bf/co5bold main.html

Just type CO5BOLD in Google.
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§ 11 Equations and boundary conditions

The three-dimensional computational domain encompasses the integral layers from the

upper convection zone to the middle chromosphere.

With 1203 grid cells, the spatial resolution in the horizontal direction is 40 km, while in the vertical direction it is

20 km throughout the photosphere and chromosphere increasing to 50 km through the convection-zone layer.
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Equations and boundary conditions (cont.)

The ideal MHD-equations can be written in conservative form as:

∂U

∂t
+ ∇ · F = S ,

where the vector of conserved variables U , the source term S due to gravity and

radiation, and the flux tensor F are

U = (ρ, ρv, B, E) , S = (0, ρg, 0, ρg · v + qrad) ,

F =

0

B
B
B
B
B
B
B
@

ρv

ρvv +
“

p + B·B
8π

”

I − BB
4π

vB − Bv
“

E + p + B·B
8π

”

v − 1

4π (v · B) B

1

C
C
C
C
C
C
C
A

.

The tensor product of two vectors a and b is the tensor ab = C with elements cmn = ambn.
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Equations and boundary conditions (cont.)

The total energy E is given by

E = ρǫ + ρ
v · v

2
+

B · B
8π

,

where ǫ is the thermal energy per unit mass. The additional solenoidality constraint,

∇ · B = 0,

must also be fulfilled. The MHD equations must be closed by an equation of state which

gives the gas pressure as a function of the density and the thermal energy per unit mass

p = p(ρ, ǫ) ,

usually available to the program in tabulated form. The radiative source term is given by

qrad = 4πρ

Z

κν(Jν − Bν)dν ,

Jν(r) =
1

4π

I

Iν(r, n)dΩ , I(r, n) = I0e
−τ0 +

Z τ0

0

“σ

π
T 4(τ)

”

e−τdτ
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Equations and boundary conditions (cont.)

Typical boundary conditions for the thermal variables and velocities

∂vx,y,z

∂z
= 0 ( or vz = 0 ) ; lim

t→∞
ǫ = ǫ0

periodic

periodic

∂vx,y

∂z
= 0 ;

∫

ρvz dσ = 0 ; outflow: ∂s
∂z

= 0

inflow: s = s0

x

z
y

Periodic lateral boundary conditions in all variables. Open bottom boundary in the

sense that the fluid can freely flow in and out of the computational domain under the

condition of vanishing total mass flux.

Reflecting (closed) top boundary or open (transmitting) top boundary.

toc ref



Equations and boundary conditions (cont.)

Boundary conditions for the magnetic field:

Bx,y = 0 ; ∂Bz
∂z

= 0

periodic

periodic

Bx,y = 0 ; ∂Bz
∂z

= 0

z

x

y

∂Bx,y,z

∂z
= 0

periodic
periodic

outflow: ∂Bx,y,z

∂z
= 0

inflow: By = Bz = 0, Bx = const.

z

x

y

toc ref



§ 12 Radiation transfer

The radiative source term is given by

qrad = −∇ · F rad = 4πρ

Z

κν(Jν − Bν)dν ,

Jν(r) =
1

4π

I

Iν(r, n)dΩ , I(r, n) = I0e
−τ0 +

Z τ0

0

“σ

π
T 4(τ)

”

e−τdτ

κν : opacity per unit mass [cm2g−1]

τ : optical distance to r

r

0

τ =
   κ

ρdss

0

0I

s
τ
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Radiation transfer (cont.)

The (magneto-)hydrodynamics step (advection step) is done independently of the

radiative transfer step by operator splitting. The radiative transfer step consists of an

energy update step.

Radiative transfer scheme:

• Formal solution of the one-dimensional radiation transfer equation for ‘long rays’.

Typically 6 angles in altitude (θ direction) and 4 angles in azimuth (ϕ direction)

• Realistic (tabulated) opacities

• Grey (one representative frequency point) or frequency dependent treatment with

multi-group method (typically 5 opacity bands)

• Strict LTE (no scattering, radiation pressure ignored). ⇒ All rays are independent

of each other lending itself to good parallelization
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Radiation transfer (cont.)

1. Interpolation from HD grid to RT ray system

−

I

HD grid RT ray systemI

+

HD grid: ρ, e
EOS
→ p, T → source function S, opacity ρκ

→ interpolation (linear) → RT Rays system: S, ρκ

(no velocity needed)
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Radiation transfer (cont.)

2. Solution of transfer equation along rays

Ray system: ρκ → τ , S(τ)

∂2yν

∂τ2
ν

= yν −
∂2Sν

∂τ2
ν

; yν =
1

2
(I+

ν + I−ν )
︸ ︷︷ ︸

uν

−Sν

Solution using the Fautrier scheme

Boundary conditions:

Top(τ > 0): incident intensity according to T (τ = 0) = Tsurf

Bottom: (u − S) = 0 or specified flux ∂u/∂τ = f(Teff)

⇒ (u − S) along ray at each depth point
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Radiation transfer (cont.)

3. Back-interpolation from RT ray system to HD grid

−

I

HD grid RT ray systemI

+

RT Ray system: ρκ(u − S) → flux conservative back-interpoation

→ HD grid: ρκ(u − S)
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Radiation transfer (cont.)

4. Angle and frequency integration on HD grid

z

θ

n=2

x

Lobatto or Gauss quadrature formula for

θ-integration

1 vertical and n inclined rays

y

x

ϕ Simple ϕ-integration

φ = 0◦, 90◦, 180◦, 270◦ (fixed for 3-D)

toc ref



Radiation transfer (cont.)

5. Energy update

Summation over θ, ϕ, and frequency:

Qrad = 4π

∫ ∞

0

ρκν(Jν − Sν)dν =

Nbin∑

k=1

Nϕ∑

j=1

wϕ,j

Nθ∑

i=1

wθ,i q(θi, ϕj , bk)

where q(θi, ϕj , bk) = ρκ(u − S)(θi, ϕj , bk).

Energy update:

e(t + ∆t) = e(t) + ∆t
Qrad

ρ

Radiative flux:
∫ z1

z0

〈Qrad(x, y, z)〉x,ydz = 〈Frad(x, y, z1)〉x,y − 〈Frad(x, y, z0)〉x,y

toc ref



Radiation transfer (cont.)

MSrad3D control parameters

Parameter Description Example

opta file name of opacity table g2vb.opta

n radband gray or multi group RT (1,2,3,4) 2

c radhtautop opacity scale height at upper bndr 60.0E+05

c tsurf Tsurf = c tsurf Teff 0.73

n radthickpoint number of layers with diffusion RT 48

n radtheta number of θ angles (0. . . 4) 2

n radphi number of ϕ angles (0. . . 6 in 2-D) 2

n radsubray number of rays per ∆x of DS-grid 1

n radtaurefine number of RT levels per ∆z of HD grid 3

radraybase quadrature method for θ-integration lobatto

bottom bound lower bnd condition for RT inoutflow
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Radiation transfer (cont.)

MSrad3D controlparameter c radhtautop and c tsurf

τ = 0

−
1

T1

S00 .

I
+

0

upper boundary of  physical domain, index 1
1τ = τ  > 0

T =                Tc_tsurf

1τ  = c_radhtautop 1 1. ρ  κ  ; 

eff →

→ S1

I

I−1 = S0{(1 − f)/τ1 − f} + S1{1 − (1 − f)/τ1} , f = e−τ1

I+
0 = I+

1 e−τ1 + S1{(1 − f)/τ1 − f} + S0{1 − (1 − f)/τ1}
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Radiation transfer (cont.)

MSrad3D controlparameter n radthickpoints
z

x

RT ray
system

RT diffusion
approximation

n_radthickpoints = 3
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Radiation transfer (cont.)

MSrad3D controlparameter c radsubray

x

z
n_radsubray = 3

1 32
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Radiation transfer (cont.)

MSrad3D controlparameter n radhtaurefine

z

x

n_radtaurefine = =3
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Radiation transfer (cont.)

MSrad3D controlparameter bottom bound The radiation transfer equation is

solved using a modified Fautrier scheme.

∂2yν

∂τ2
ν

= yν −
∂2Sν

∂τ2
ν

; yν =
1

2
(I+

ν + I−ν )
︸ ︷︷ ︸

uν

−Sν

Boundary conditions:

bottom bound = inoutflow ⇒ yν = (yν − Sν) = 0 (∇Frad = 0)

else ⇒ ∂uν/∂τ = (3/4)Frad/πwν cos(θ)
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§ 12.1 Multi-group radiation transfer Nordlund, 1982; Ludwig, 1992

qrad = −∇ · F rad = 4πρ

Z

κλ(Jλ − Bλ) dλ ,

Z

κλ(Jλ − Bλ) dλ =
X

j

κλj (Jλj − Bλj ) wλj

=
X

i

X

j(i)

κλj (Jλj − Bλj ) wλj

=
X

i

X

j(i)

κλj (Λλj(Bλj ) − Bλj ) wλj

≈
X

i

κi(Λi − 1)(
X

j(i)

Bλj wλj )

.
=

X

i

κi(Λi − 1)(Bi wi)
.
=

X

i

κi(Ji − Bi)wi
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Multi-group radiation transfer (cont.)

Strategy for opacity binning:

- concentrate on radiative transfer in vertical direction,

- group together frequencies with as similar a τν(s)-relationship as

possible, so that Λλj(i)
is very similar ∀j of a given bin i,

- choose clever averaging procedure for κν , (Rosseland averages for

τi > 1, Planck averages for τi < 1).
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Multi-group radiation transfer (cont.)

The art of opacity binning: Constructing the bands (H.-G. Ludwig, Paris Obs.)
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Multi-group radiation transfer (cont.)

Testing the OBM. Integrated radiative flux
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Multi-group radiation transfer (cont.)

Intensity maps for different opacity bins

Notice that bin 3 to 5 show “inverse granulation” as their opacities represent

medium to strong line cores.
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Multi-group radiation transfer (cont.)

Mean enthalpy flux, kinetic energy flux, and radiative energy flux as a function

of height
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Multi-group radiation transfer (cont.)

Radiative cooling (bright) and heating (dark), Qrad

Note that there is slight radiative heating in the low photosphere due to the

“line blanketing”.
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§ 13 Chemical reaction network

For certain applications, e.g., the effect of CO in the solar atmosphere, an optional

module for the treatment of a network of chemical reactions was added to the

CO5BOLD code. For further details see Wedemeyer-Böhm et al. (2005), A&A 438,

1043 and Wedemeyer-Böhm & Steffen (2007), A&A 462, L31.

The operator splitting method is used in order to account for the time evolution of

chemical species. In a first step the chemical species are advected together with all the

other hydrodynamic quantities:

∂ni

∂t
+ ∇ · (niv) = 0 ,

where ni is the number density of a chemical species and v the velocity of the

hydrodynamical flow.
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Chemical reaction network (cont.)

In a second step (between the hydro step and the radiation-transfer step), the change in

number density due to chemical reactions is accounted for:
„

∂ni

∂t

«

chem

= −ni

X

j

k2,ij nj

+
X

j

X

l

k2,jl njnl

−nj

X

j

X

l

k3,ijl njnl

+
X

j

X

l

X

m

k3,jlm njnlnm ,

where ni is the number densities of species i, which decreases or increases due to

two-body reactions with rates k2,ij and k2,jl, respectively. Three-body reactions are

analogously accounted for by the third and fourth term with rates k3,ijl and k3,jlm. It

results in a (stiff!) system of of ordinary differential equations.
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Chemical reaction network (cont.)

The rates have the basic form

k = α T β
300 e−γ/T ,

where T300 = T/300K. For catalytic reactions the number density of a representative

metal nM enters: The rates have the basic form

k = nMα T β
300 e−γ/T .

The coefficients α, β, and γ are compiled in tables, e.g., in Wedemeyer-Böhm et

al. (2005), A&A 438, 1043
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Chemical reaction network (cont.)

Chemical reaction network:

7 chemical species, H, H2, C,

O, CO, CH, OH, plus a repre-

sentative metal M

27 chemical reactions
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Chemical reaction network (cont.)

Radiative cooling via CO lines:

- Two opacity bands:

1.) continuum band with Rosseland mean opacity κR without infrared.

2.) infrared band at 4.7µm with Rosseland mean opacity plus CO line opacity,

κR + κCO .

- CO opacity calculated from (time dependent) CO number density.

Application examples:

- movie of CO number density in two-dimensional hydrodynamic solar convection.

- animation of “CO clouds” from a three-dimensional simulation.
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§ 14 Non-equilibrium Hydrogen ionization in CO 5BOLD

The assumption of strict LTE and the “grey” approximation may be tenable

when studying the dynamics of magnetic fields in the chromosphere – it is

certainly not adequate for quantitative spectroscopy.

CO5BOLD uses an approximative treatment of the time dependent hydrogen

ionization along the lines of E. Sollum (Oslo). See Leenaarts &

Wedemeyer-Böhm (2006) A&A 460, 301 for the details.
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Non-equilibrium Hydrogen ionization in CO5BOLD (cont.)

Under the condition of the solar chromosphere the assumption of LTE (local

thermodynamic equilibrium) is not valid. Even the assumption of statistical

equilibrium in the rate equations is not valid. Kneer (1980) showed that the

relaxation timescale for the ionization of hydrogen varies from 100 s to 1000 s

in the middle to upper chromosphere.

In order to compute the time dependent hydrogen ionization in a

three-dimensional environnment, simplifications are needed. We employ the

method of fixed radiative rates. We solve the time-dependent rate equations

∂ni

∂t
+ ∇ · (niv) =

nl∑

j 6=i

njPji − ni

nl∑

j 6=i

Pij

Pij = Cij + Rij .
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Non-equilibrium Hydrogen ionization in CO5BOLD (cont.)

In the method of fixed radiative rates we assume that the radiation field in each

transition, both, bound-bound and bound-free, can be described by a formal

radiation temperature:

Jν =
2hν3

c2

1

ehν/kTrad − 1

Thus, we obtain the fixed radiative rates for bound-bound transitions

Rlu = BluJν0
=

4π2e2

hν0mec
flu

2hν3
0

c2

1

ehν0/kTrad − 1

Rul = Aul + BulJν0
=

gl

gu
ehν0/kTradRlu
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Non-equilibrium Hydrogen ionization in CO5BOLD (cont.)

The hydrogen bound-free excitations have a Kramer’s absorption cross section:

σic(ν) = α0

“ν0

ν

”3

, ν > ν0 ,

where α0 is the absorption cross-section at the edge frequency ν0. In this case the

radiative rate coefficients are

Ric = 4π

Z ∞

ν0

σic(ν)

hν
Jνdν =

8π

c2
α0ν

3
0

Z ∞

ν0

1

ν

1

ehν/kTrad − 1
dν

=
8π

c2
α0ν

3
0

∞X

n=1

E1

»

n
hν0

kTrad

–

, E1 being the first exponential integral

Rci = 4π

»
ni

nc

–

LTE

Z ∞

ν0

σic(ν)

hν

„
2hν3

c2
+ Jν

«

e−hν/kTedν

=
8π

c2
α0ν

3
0

»
ni

nc

–

LTE

∞X

n=1

E1

»„

n
Te

Trad
+ 1

«
hν0

kTe

–

.
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Non-equilibrium Hydrogen ionization in CO5BOLD (cont.)

Effect of dynamic H-ionization in the upper part of a 2-D simulation. Left column: LTE

ionization degree and electron density. Right column: Corresponding time-dependent

NLTE quantities. Bottom left: Gas temperature, which is the same for the LTE and the

time-dependent case. Leenaarts & Wedemeyer-Böhm 2006
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Part IV: Aspects of computational astrophysics
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§ 15 Role of computer simulations

How can astrophysicists

- inform about the first milliseconds of a core collapse supernova,

- know about the past million years of dynamical evolution of a present day galaxy,

- know about the structure formation of the early universe,

- talk about the state of the plasma of stellar interiors as if they had it examined in the

laboratory?

Answer: With the help of computational astrophysics!
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Role of computer simulations (cont.)

The antenna nebula NGC 4038/4039 evolved from a

collision of two similarly sized spiral nebulae. Left:

Observed present state. Right: Present state

from a computer simulation of the complete collision

(www.ifa.hawaii.edu/ b̃arnes).

Four instants in the formation of a

neutron star in the course of a su-

pernova explosion. From the top

right panel counterclockwise 3 mil-

liseconds apart in a radial region from

R = 15 km to R = 155 km

(www.MPA-Garching.MPG.de).
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Role of computer simulations (cont.)

Historical Perspective:

- 1950’s and 1960’s: Stellar evolution calculations (Martin Schwarzshild in the U.S. and

Rudolph Kippenhahn in Göttingen, Germany). At that time computers were viewed

as tools for the numerical integration rather than as a tool for experimentation.

- 1960’s: N-body stellar dynamics simulations (e.g. tidal interaction of galaxies) and

hydrodynamical systems (e.g. core collapse supernovae). Notion of computational

astrophysics as experimental astronomy .

These simulations are generally motivated by the question “What happens if?” more

so than “What is the solution to these equations?”.

Computational astrophysics is the experimentation with astrophysical objects in a virtual

(numerical) laboratory, comparable to the manipulation with real probes in classical

physics experiments.
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Role of computer simulations (cont.)

Role of Computational astrophysics:

Observational
Astronomy

Theoretical
Astrophysics

Computational
Astrophysics

postdiction
prediction

observations

hypothesis

validation
realization

formulation

Adapted from M. Norman (1997)
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Role of computer simulations (cont.)

Interaction theory ↔ computational astrophysics

- Theory provides the mathematical formulation for the simulation.

- Analytical properties of the solution can be incorporated into the numerical algorithm

(e.g., conservation laws, Rankine-Hugoniot relations, etc.).

- Analytical solutions provide test problems for validation.

- Complex simulation results can post facto be reduced to analytical toy models, which

nonetheless capture the essential physics (to become enshrined in astronomy

textbooks).

- Simulations provide realizations of the theoretical formulation. They may hint at

missing ‘physics’ in the formulation and build physical intuition regarding the

phenomena embodied in the governing equations.

- Numerical experiments aim at revealing the essential physics of an astrophysical

process.

toc ref



Role of computer simulations (cont.)

Interaction observation ↔ computational astrophysics

- Observations provide the final validation of the simulation.

- Postdiction of available observational data in the early phase.

- Prediction of observational data with more mature simulations.

For the comparison of simulation results with observations it is essential that observable

quantities, for short observables, are computed, i.e., synthesized from the simulation

data. Results from such “numerical” or “virtual observations” are sometimes called

“synthetic data” .

The generation of synthetic observables from the simulation data is often as time

consuming as the simulation itelf.
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Role of computer simulations (cont.)

Progress in computational astrophysics:

spatio−temporal
resolution

physical
complexity

dimensionality

low−res

high−res

multi−physics

mono−physics

1−D

2−D

3−D

4−D

Adapted from M. Norman (1997)
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Part V: MHD simulations: Case studies
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§ 16 Case study I: Magnetic fields of the quiet Sun
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Case study I: Magnetic fields of the quiet Sun (cont.)

Continuum at 395 nm with the VTT

and KAOS at Tenerife

The filigree, Dunn & Zirker, 1973.

Facular points, Mehltretter, 1973.

G-band bright points,Muller, 1985.

Ribbon bands, Flowers etc.,

Berger et al. 2004.
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Case study I: Magnetic fields of the quiet Sun (cont.)

Hinode (Solar-B) launched on 22 September 2006. The Solar Optical Telescope (SOT) has an

aperture of 50 cm featuring an image stabilization system consisting of a piezo-driven tip-tilt mirror.

The Spectral-polarimeter (SP) generates Stokes IQUV spectral images.

http://solar-b.nao.ac.jp
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Case study I: Magnetic fields of the quiet Sun (cont.)

Continuum intensity at 630 nm over a field of view of 302′′ × 162′′. From Lites et.

al. 2008, ApJ 672, 1237
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Case study I: Magnetic fields of the quiet Sun (cont.)

Apparent vertical magnetic flux density, BL
app, of the quiet Sun over a field of view of

302′′ × 162′′. The grey scale saturates at ±50 Mx cm−2. 2048 steps to 5 s.

〈|BL
app|〉 = 11.7 Mx cm−2. From Lites et. al. 2008, ApJ 672, 1237
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Case study I: Magnetic fields of the quiet Sun (cont.)

Apparent horizontal magnetic flux density, BT
app, of the quiet Sun over a field of view of

302′′ × 162′′. The grey scale saturates at ±200 Mx cm−2. 2048 steps to 5 s.

〈BT
app〉 = 60.0 Mx cm−2. From Lites et. al. 08
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Case study I: Magnetic fields of the quiet Sun (cont.)

Deep mode Stokes spectra with an integration time of 67.2 s and a rms polarization in

the continuum of 3 × 10−4. From a 2-hour time series Lites et al. obtain mean

apparent longitudinal and transversal field strengths of 〈BL
app〉 = 11.0 Mx cm−2 and

〈BT
app〉 = 55.3 Mx cm−2. From Lites et al. 08
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Case study I: Magnetic fields of the quiet Sun (cont.)

Red and green: contours

of BL
app = 24 Mx cm−2,

respectively positive and

negative. Yellow : contours

of BL
app = 100 Mx cm−2.

Blue contours correspond

to BT
app = 122 Mx cm−2.

Horizontal flux preferentially

occurs at locations between

lanes and granule centers.

From Lites et. al. 08

toc ref



Case study I: Magnetic fields of the quiet Sun (cont.)

A predominance of horizontally directed magnetic fields in the quiet Sun was also

reported by Orozco Suárez et al. 07 from HINODE measurements and by Harvey et

al. 07 from center-to-limb measurements with GONG and SOLIS.

Probability density of the magnetic field in-

clination in the inter-network. From Orozco

Suárez et al. 07 .

Ishikawa et. al. 08 detected transient horizontal magnetic fields in plage regions with

SOT/HINODE

Previously, Meunier et al. 1998 and Martinez Pillet et al. 97 reported observations of

weak and strong horizontal field in quiet Sun regions.
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Case study I: Magnetic fields of the quiet Sun (cont.)

Questions:

- Do simulations of the surface layers of the Sun intrinsically produce

horizontal magnetic fields ?

- If yes, how do they originate ?

- How does the polarimetric signal from simulations compare to

measurements ?

Schüssler & Vögler 2008, A&A 481, L5-L8

Steiner, Rezaei, Schaffenberger, and Wedemeyer-Böhm 2008, ApJ 680,

L85-L88

Grossmann-Doerth et al. 1998 noted: “we find in all simulations also strong

horizontal fields above convective upflows”
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§ 17 Numerical simulation of near surface magnetoconvection

1.4 Mm

1.4 Mm

4.8 Mm

τ = 1

4.8 Mm2.
8 

M
m

computational domain

surface

convection zone

convection zone base

τ = 1

Typical size of a three-dimensional computational box (left) on scale with the convection

zone boundaries (right)
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Numerical simulation of near surface magnetoconvection (cont.)

Different initial states and boundary conditions for the magnetic field

v10

z
y

x

Initial homogeneous, vertical, unipolar

B-field of 10 G.

Bx,y = 0; ∂Bz/∂z = 0

h20

B=0
z

y

x

Fluid that enters the simulation domain

from below carries horizontal magnetic

field of Bx = 20 G.

∂Bx,y,z∂z = 0
→ more
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Numerical simulation of near surface magnetoconvection (cont.)

Vertical cross sections through 3-D simulation domain

v10

1000 2000 3000 4000
x [km]

-1000

-500

0

500

1000

z 
[k

m
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
g 

|B
| (

G
)

Colors indicate 0 ≤ log |B| ≤ 3.0

h20

Colors indicate 0.5 ≤ log |B| ≤ 2.5
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Numerical simulation of near surface magnetoconvection (cont.)

Horizontally and temporally averaged absolute vertical and horizontal magnetic flux

density as a function of height for both runs.

〈Bhor〉 = 〈
q

B2
x + B2

y 〉

run v10:
〈Bhor〉/〈|Bver|〉(500 km) = 2.5

run h20:
〈Bhor〉/〈|Bver|〉(420 km) = 5.6
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Numerical simulation of near surface magnetoconvection (cont.)

〈Bhor〉 (———-) and 〈Bver〉 (– – – – – ) as a func-

tion of height z for run h20 (heavy) and run v10 (thin).

From Steiner et al. 2008

〈Bx〉 (− ·− · − · −), 〈By〉 (. . . . . .), and

〈Bver〉 (- - - - -) as a function of log τ630 nm .

From Schüssler & Vögler 2008
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Numerical simulation of near surface magnetoconvection (cont.)

Vertical section through computational domain...

... shows horizontal sheets of enhanced magnetic field strength in the upper

photosphere — the seething magnetic field . → T movie

toc ref



Numerical simulation of near surface magnetoconvection (cont.)

Snapshot of Bhor, Bver, and the continuum intensity at 630 nm from run h20 in the

horizontal section of 〈τ500 nm〉 = 1.

Bhor

area fraction with

Bhor > 5 mT = 17%

Bver

area fraction with

Bver > 5 mT = 2.2%

I630 nm

vz(〈τ500 nm〉=1)

Movie
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§ 18 Polarimetry

• We synthesized the Stokes profiles of both 630 nm Fe I spectral lines observed by

the Hinode SP with a spectral sampling of 2 pm.

• We then compute

Vtot =

R λ0

λb
V (λ)dλ −

R λr

λ0
V (λ)dλ

Ic
,

and

Qtot =

R
Q(λ)Qmask(λ)dλ

Ic
,

• We subject these quantities to exactly the same calibration procedure for

conversion to apparent flux density as was done with the real data by Lites et al. 08.
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Polarimetry (cont.)

From the two simulation runs, we synthesized the Stokes profiles of both 630 nm Fe I

spectral lines observed by the Hinode SP. Profiles were computed with the radiative

transfer code SIR along vertical lines of sight ( disk center) with a spectral sampling of

2 pm.

I630 nm Vtot 630 nm
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Polarimetry (cont.)

Synthetic continuum intensity ant 630 nm and Vtot from a simulation with box size

9.6 × 9.6 Mm, corresponding to 13′′ × 13′′.

I630 nm Vtot 630 nm
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Polarimetry (cont.)

Calibration curve from Lites et

al. 07 derived from a Milne-

Eddington atmosphere with

a homogeneous horizontal

magnetic field for Qtot and a

magnetic field inclined by 45◦

for Vtot.
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Polarimetry (cont.)

Lites et al. (2007) found from the deep mode series

〈BT
app〉

〈BL
app〉

=
55.3 Mx cm−2

11.0 Mx cm−2
≈ 5 .

From the synthesized Stokes profiles and application of the SOT-PSF we find

〈BT
app〉

〈BL
app〉

=

8

<

:

10.4 G/6.6 G = 1.6 for run v10

21.5 G/5.0 G = 4.3 for run h20
.

without the PSF we got

〈BT
app〉

〈BL
app〉

=

8

<

:

11.5 G/7.5 G = 1.5 for run v10

24.8 G/8.8 G = 2.8 for run h20
.

toc ref



Polarimetry (cont.)

The vertical field component is more subject to apparent flux cancellation than the

horizontal component, because ....

Bhor Bver

..... the vertical field component has smaller scales and higher intermittency than the

horizontal component.

toc ref



Polarimetry (cont.)

Probability density functions of the magnetic field inclination from observations of

Orozco Suárez et al. (2007) and simulations

Solid and dashed PDFs represent all pixels in the

FOV and the IN regions, respectively. Dot-dashed

curve shows PDFs from magnetoconvection simula-

tions with a mean flux density of 10 Mx cm−2 from

Vögler et al. (2005).

PDF of inclination angle for simulation runs h20 and

v10 of Steiner et al. (2008).
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Polarimetry (cont.)

Center-to-limb variation

Vertical field dominates in the low photosphere

Horizontal field dominates in the upper photosphere

Horizontal field dominates throughout the photo-

sphere
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§ 19 Horizontal magnetic fields: Discussion

The horizontal field can be considered a consequence of the flux expulsion process

(Weiss, 1966; Galloway & Weiss, 1981): in the same way as magnetic flux is expelled

from the granular interior to the intergranular lanes, it also gets pushed to the middle

and upper photosphere by overshooting convection, where it tends to form a layer of

horizontal field.

From Galloway & Weiss, 1981
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Horizontal magnetic fields: Discussion (cont.)
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Flux expulsion in a close-up from a MHD simulation by Schaffenberger et al. (2005)
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Horizontal magnetic fields: Discussion (cont.)

The dominance of the horizontal field “results from the intermittent nature of the dynamo

field with polarity mixing on small scales in the surface layers”.

From Schüssler & Vögler 2008
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Horizontal magnetic fields: Discussion (cont.)

Detached horizontal field as a consequence of magnetic reconnection
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§ 20 Horizontal magnetic fields: Poynting flux

Equation for the total energy:

∂e

∂t
+ ∇

h

(h +
1

2
v2)ρv + S

i

− g · v = 0 ,

where

e = ρǫ +
1

2
ρv2 +

B2

2µ
, h = ǫ +

p

ρ
,

and

S =
1

4π
(B × (v × B))

Magnetic energy equation:

∂
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„
B2

8π

«

= −∇ · (E × B)
| {z }

Poynting flux

−u · (j × B)
| {z }

Lorentz work

−Qres
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Horizontal magnetic fields: Poynting flux (cont.)

Vertically directed Poynting flux, 〈Sz〉, 〈Bhor〉, and 〈|Bz|〉 as a function of time and

height in the atmosphere. S =
1

4π
(B × (v × B))
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From Steiner, Rezaei, Schaffenberger, & Wedemeyer-Böhm, 2008, ApJ 680, L85-L88

The surface of optical depth unity is a separatrix for the vertically directed Poynting flux.

toc ref



Horizontal magnetic fields: Poynting flux (cont.)

Vertically directed Poynting flux, 〈Sz〉, as a function of height in the atmosphere.

The temporal average of 〈Sz〉 is maximal 7.4 × 102 Wm−2 (at 200 km) and minimal

−5.2 × 104 Wm−2 (at −800 km). For comparison: the chromospheric radiative

energy loss is about 4.3 × 103 Wm−2.
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Horizontal magnetic fields: Poynting flux (cont.)

Logarithmic current den-

sity, log |j|, in a vertical

cross section (top panel)

and in four horizontal cross

sections in a depth of

1180 km below, and at

heights of 90 km, 610 km,

and 1310 km above the

average height of optical

depth unity from left to

right, respectively. The ar-

rows in the top panel in-

dicate the magnetic field

strength and direction.

From Schaffenberger, Wedemeyer-Böhm, Steiner, and Freytag, 2006, ASP Conf. Ser., Vol. 354, p. 345
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Horizontal magnetic fields: Poynting flux (cont.)

Top: Logarithm of the magnetic field strength. Bottom: Logarithm of the current density.

From Abbett, ApJ 665, 1469 (2007)
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Horizontal magnetic fields: Poynting flux (cont.)

Top: Vertical cross sections of |B| and the velocity vector projected onto the plane.

Bottom: Horizontal cross sections at z = 0 , showing Bh (gray scale) and Bz

(contours), and the magnetic vectors projected onto the plane.

From Isobe et al., ApJ 679, L57-L60 (2008)
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§ 21 Case study II: Structure of internetwork magnetic elements

Apparent vertical magnetic flux density BL
app of the quiet Sun over a field of view of

302′′ × 162′′ observed from the Hinode space observatory. The grey scale saturates

at ±50 Mx cm−2. 2048 steps to 5 s.
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Case study II: Structure of internetwork magnetic elements (cont.)

Stokes-V profiles across a magnetic element of the internetwork from the Hinode data.

A

Ar

b
a

ar

b

V

λ

zcv

δA :=
Ab − Ar

Ab + Ar

sign(δA) = −sign(
d|B|
dτ

· dv(τ)

dτ
)

Solanki & Pahlke, 1988; Sanchez Almeida

et al., 1989
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Case study II: Structure of internetwork magnetic elements (cont.)
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Columns a-c: observational data obtained with the spectro-polarimeter of Hinode/SOT. Columns d

and f : synthetic data from the 3-D MHD simulation. Columns e and g: same as d and f but after

application of the SOT-PSF to the synthetic intensity maps. Distance between tick marks is 0.5′′.

From Rezaei, Steiner, Wedemeyer-Böhm et al. 2007, A&A 476, L33
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Case study II: Structure of internetwork magnetic elements (cont.)
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Variation in δA across magnetic elements from the Hinode data (top row) and the

simulation (bottom row).
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Case study II: Structure of internetwork magnetic elements (cont.)
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⇒ δA > 0

Vertical cross section through the sim-

ulation box. Colour displays the

logarithmic magnetic field strength,

arrows the velocity field, black contours

the electric current density normal to

the plane. The white vertical lines

indicate ranges of either positive or

negative area asymmetry, δA.
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§22 Case study III: Wave propagation in a magnetically structured atmosphere

Time sequence of a two-dimensional simulation of magnetoconvection starting with an

initial homogeneous vertical magnetic field of 100 G.

Left: Temperature, Right: Absolute magnetic field strength. A magnetic flux sheet has

formed at x ≈ 4 200 km.
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Case study III: Wave propagation in a magnetically structured atmosphere (cont.)

The sequence from t = 1200 s to t = 1450 s is repeated with a plane parallel,

oscillatory velocity perturbation at the bottom boundary with an amplitude of 50 m/s and

a frequency of 20 mHz. When subtracting the velocity field of the two sequences, the

perturbation becomes visible.

Left: Magnetic field strength. Right: Subtractive velocity field 116 s after starting the

perturbation.
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Case study III: Wave propagation in a magnetically structured atmosphere (cont.)

Residual velocity amplitude due to an oscillatory velocity perturbation along the bottom

vz(t) = v0 sin(2π(t − t0)ν)

with an amplitude of v0 = 50 m/s and a frequency of ν0 = 20 mHz from t = 1200 s

to t = 1450 s. Note the fast magnetic wave that gets refracted.

Left: Logarithmic magnetic field strength 1368 s after starting with an initial

homogeneous vertical field of 100 G. Right: Logarithm of thermal to magnetic energy

density (plasma-β) together with the conour of β = 1.
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Case study III: Wave propagation in a magnetically structured atmosphere (cont.)

Wave travel time vs. canopy height.

Wave travel time across the layer from z = 200 km to z = 420 km as a function of

horizontal distance (thick solid curve). Superposed is the contour of β = 1 (magnetic

and thermal equipartition), for which the height is indicated in the right hand side

ordinate (dash-dotted curve). Note that the travel time markedly decreases where the

low β region intrudes this layer. From Steiner, Vigeesh, Krieger et al. 2007
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Case study III: Wave propagation in a magnetically structured atmosphere (cont.)

Finsterle et al. 2004, ApJ 613, L185 suggest to determine the three-dimensional

topography of the β = 1-surface by measuring the travel time of high frequency waves

between lines formed below and above this surface. They use a MOTH-MDI combined

data set of 17.8 h duration

Helioseismic mapping of the magnetic canopy in the solar chromosphere
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Case study III: Wave propagation in a magnetically structured atmosphere (cont.)

Maps of travel time for 7 mHz

waves between the formation

layers of (a) Ni and Na, (b)

K and Na, and (c) Ni and

K. (d) the contemporaneous

MDI magnetogram. β ≈ 1

contours at 200 km (white),

420 km (black-white), and

800 km (black) above τc=1.

From Finsterle et al. 2004, ApJ 613, L185
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Case study III: Wave propagation in a magnetically structured atmosphere (cont.)

Time instant of a spherical, fast acoustic

wave, initiated by a local pressure per-

turbation in the convection zone. When

the wave encounters the low beta mag-

netic flux concentration in the photo-

sphere it partially converts into a fast

magnetic mode, which shows the typi-

cal “faning out” already encountered in

the 2-D simulation. Colors show ab-

solute velocity perturbation. Courtesy

Christian Nutto, KIS.
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Case study III: Wave propagation in a magnetically structured atmosphere (cont.)

2 kG uniform magnetic field inclined at

±30◦ to the vertical. The incoming

5 mHz rays have lower turning points

at z = −5 Mm. The horizontal grey

line indicates where the sound and

Alfvén speeds coincide. The fractional

energy remaining in each resulting ray

is indicated in grey scales. The dots on

the ray paths indicate 1 min group travel

time intervals. The thin black curve

represents the acoustic ray that would

be there in the absence of magnetic

field. From Cally (2007) AN 328, 286

Movie top panel

Movie bottom panel
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Case study III: Wave propagation in a magnetically structured atmosphere (cont.)

2 kG uniform vertical magnetic field. Here, the 5 mHz frequency is not sufficient to

overcome the atmospheric acoustic cutoff ( 5.2 mHz), and the upgoing slow ray reflects

back downward. From Cally (2007) AN 328, 286
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Case study III: Wave propagation in a magnetically structured atmosphere (cont.)

Transversal, impulsive excitation at the footpoint of a magnetic flux sheet.

vx = v0 sin(2πt/P ), P = 24 s, v0 = 750 ms−1

v‖ after 40 s v⊥ after 40 s δT after 40 s
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§ 22 Case study IV: The restless chromosphere

Simulations show a fast changing pattern of enhanced temperatures in the

chromosphere, termed the the fluctosphere, or clapotisphere. It is distinctly different

from the pattern of inverse granulation in the middle photosphere, and the granulation

itself.

T (z = −200km) T (z = +200km) T (z = +1000km)
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Case study IV: The restless chromosphere (cont.)

Filtergrams in the infrared line Ca II 854 nm

simulation

simulation

+ PSF

observation

Courtesy, S. Wede-

meyer-Böhm

Wöger et al. 2006

observed in

0.3 Å filtergrams

centred at the Ca II

K2v peak a

short-lived pattern

with a typical

spatial scale of

1.95” and a mean

evolution time scale

of 53 s.
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Case study IV: The restless chromosphere (cont.)

Intensity image at λ = 1 mm of the “fluctosphere” at different spatial resolutions:

a) 0.06” (size of computational grid cells), b) 0.3”, c) 0.6”, d) 0.9”.

From Wedemeyer-Böhm et al., A&A 471, 977 (2007)
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Case study IV: The restless chromosphere (cont.)
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Snapshot of a vertical section showing log |B| (color coded) and velocity vectors projected on the

vertical plane (white arrows). The b/w dashed curve shows optical depth unity and the dot-dashed

and solid black contours β = 1 and 100, respectively. movie with β = 1 surface

Schaffenberger, Wedemeyer-Böhm, Steiner & Freytag, 2005, in Chromospheric and Coronal Magnetic Fields,

Innes, Lagg, Solanki, & Danesy (eds.), ESA Publication SP-596
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Case study IV: The restless chromosphere (cont.)
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Two instances of shock induced magnetic field compression. Absolute magnetic flux

density (colors) with velocity field (arrows), Mach = 1-contour (dashed) and

β = 1-contour (white solid).
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Schüssler, M., & Vögler, A.: 2008, Strong horizontal photospheric magnetic field in a surface

dynamo simulation, A&A 481, L5-L8

Solanki, S.K. and Pahlke, K.D.: 1988, A&A 201, 143

Steiner, O., Rezaei, R., Schaffenberger, W., and Wedemeyer-Böhm: 2005, The Horizontal
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Wedemeyer-Böhm, S.: 2008, Point spread functions for the Solar Optical Telescope onboard

Hinode, A&A 487, 399-412
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Part VI: Future directions
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§ 24 Simulations at large scales and high resolution

Big: Efforts are underway to increase the simulation box so as to

accommodate a supergranulation cell. Recently, Stein et al. carried out a

simulation of 48 × 48 × 20 Mm using 5003 grid cells. With this simulation

they hope to find out more about the origin of supergranulation and to carry out

helioseismological experiments.

Courtesy,

R.F. Stein
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Simulations at large scales and high resolution (cont.)

Bigger: Numerical simulation of a pair of sunspots: Intensity map.

Movie of Bz . Rempel, M., Schüssler, M., Cameron, R.H., and Knölker, M. (2009)
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Simulations at large scales and high resolution (cont.)

These simulations suggest a uni-

fied physical explanation for umbral

dots and the penumbrae in terms of

magneto-convection in a magnetic field

with varying inclination. A consistent

physical picture of all observational

characteristics of sunspots and their

surroundings is emerging.

(A) Bz , (B) inclination angle of B, (C)

radial outflow velocity (red outflow), (D)

vertical velocity.
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Simulations at large scales and high resolution (cont.)

Biggest: Global simulation of the solar convection zone.

(a,c) Volume renderings of BΦ and

Br . Red tones indicate prograde

fields, and blue tones denote

retrograde fields. (b) Selected

subvolume of B in the equatorial

plane. Typical field strengths are about

1000 G for Br and 3000 G for BΦ .

(d) Potential field extrapolation of the

radial magnetic field.

Movie: Radial magnetic field in a

rotating convective spherical shell.

Dark tones for the negative polarity and

bright tones for the positive polarity.

Movie: Radial convective velocity.

Blue/black tones for downfows and

red/yellow tones for upflows.

Brun, Miesch & Toomre (2004)
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Simulations at large scales and high resolution (cont.)

“Holistic simulation” encompassing the solar atmosphere from the top layers of the

convection zone up into the corona. The formation of jets such as dynamic fibrils,

mottles, and spicules in the solar chromosphere are in the focus of such simulations.

Hansteen, Carlsson & Gudiksen (2007)

Courtesy,

M. Carlsson
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Simulations at large scales and high resolution (cont.)

Observed (top row) and synthetic (bottom row) Ca II 854.2 nm images at different

positions in the line. Left: at ∆λ = −0.87 Å; middle: close to the line core; right: in

the line core at ∆λ = 0 Å.

toc ref



.



References

Braun, D.C., Birch, A.C., Benson, D., Stein, R.F., and Nordlund, Å.: 2007, Helioseismic Holography
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Boundary conditions for the magnetic field for run v10 and h20

v10

Bx,y = 0 ; ∂Bz
∂z

= 0

periodic

periodic

Bx,y = 0 ; ∂Bz
∂z

= 0

z

x

y

h20

∂Bx,y,z

∂z
= 0

periodic
periodic

outflow: ∂Bx,y,z

∂z
= 0

inflow: By = Bz = 0, Bx = const.

z

x

y

Bx = 20 G

→ backto § 17.
HH
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Growth of magnetic energy in the computational box of run h20 and

mean absolute vertical magnetic field strength at a fixed geometrical height

corresponding to the mean optical depth unity, 〈|Bz|〉(〈τ500 nm〉 = 1).

→ backto § 17.


