
ITMViz: Interactive Topic Modeling for Source
Code Analysis

Amir M. Saeidi, Jurriaan Hage, Ravi Khadka, Slinger Jansen
Department of Information and Computing Sciences, Utrecht University

{a.m.saeidi, j.hage, r.khadka, slinger.jansen}@uu.nl

Abstract—Topic modeling has seen a surge in use for software
comprehension. Although the models inferred from the source
code are a great source of knowledge, they fail to fully capture the
conceptual relationships between the topics. Here we investigate
the use of interactive topic modeling for source code analysis by
feeding-in information from the end-users, including developers
and architects, to refine the inferred topic models. We have
implemented a web-based toolkit called ITMViz to provide
support to interpret the topic models, and use the results to
cluster modules together. A medium-sized Java project is used
to evaluate our approach in understanding the software system.

I. INTRODUCTION

As software evolves, the structure of the system becomes
more complex and hence more difficult to understand. The
heterogeneity of programming languages and technologies
used in the application makes it even harder to develop tools
for deep analysis. These issues give rise to a necessity to
develop tools that can be easily extended to accommodate
for heterogeneous software systems and help get a high-
level overview of the underlying structure of the system.
Information retrieval techniques are one such method adopted
for source code analysis in order to identify the latent re-
lationships between software modules based on a common
use of vocabulary, and to derive a set of themes (topics) that
run through the corpus. These techniques have shown to give
results that are helpful in different phases of the maintenance
lifecycle [1], [2].

The topics discovered by topic modeling techniques do not
always make sense [3]. The problem stems from the under-
lying assumptions about the nature of relationship between
terms in the corpus, and whether such heuristics conform
with human judgements of what terms should constitue a
topic. The problem is exacerbated when dealing with a source
code corpus for program understanding [4]. For example, the
naming convention used in the corpus may be arbitrary and
contain noise1. Furthermore, the bag-of-words approach loses
all the structure of the source code, and hence the context of
data items that comes with it. To overcome the aforementioned
problems, there has been an effort to feed-in information by
a human expert about the orientation of topics to infer more
reasonable topics.

A common topic modeling approach used for source code
analysis is Latent Dirichlet Allocation (LDA) [5], which

1Terms used to implement a functionality (such as built-in or third-party
library functions) that do not reflect domain and application concepts

identifies the topics that permeate a corpus of text documents.
Standard LDA lacks the capability to encode such information,
so to help encode domain knowledge in the LDA framework,
Andrzjeweski et al. [6] propose to use Dirichlet tree priors
to incorporate such information. The domain knowledge is
encoded in terms of two primitives: 1) Must-Link constraints,
the set of words that should belong to the same topic, and
2) Cannot-Link constraints, pairs of words that should not
appear together in the same topic. Hu et al. [3] extends this
approach to fully capture the dynamic nature of interactive
accomodation of constraints in the LDA.

We adopt this approach [3] to build an interactive environ-
ment for source code analysis called ITMViz for interactive
topic modeling (ITM) as well as visualization, analysis and
interpretation of inferred topic models. There exist other LDA-
based tools such as TopicXP [7] and LDA Analyzer [8] for
exploring topics in the source code; the notable difference
with ITMViz is the element of user-supervision. The interactive
topic modeling allows users (e.g. architects and developers) to
iteratively refine the topics discovered by imposing constraints
on the terms. Our approach is evaluated using a medium-
sized Java open source project to 1) examine the alignment
of discovered topics by unconstrained LDA with that of the
inherent structure of the system, and 2) investigate whether
the introduction of constraints helps to better capture the high-
level structure of the system. In Section II, we outline the high-
level architecture of ITMViz, and discuss each component in
detail. We proceed by evaluating the toolkit in Section III. In
Section IV, we conclude and outline future work.

II. ITMVIZ TOOLSET

The ITMViz toolkit2 is a web-based application developed
as part of the Gelato toolset [9] for facilitating program
comprehension and transformation of legacy software systems.
The infrastructure of the application is developed using the
Shiny package3 in R combined with the D3 visualization
library4. For performance reasons, the collapsed Gibbs sam-
pling for posterior inference is implemented in C++. The
architecture of ITMViz consists of three components: 1) Data
Preprocessing, 2) Interactive Topic Modeling and 3) Visu-
alization and Interpretation. Figure 1 depicts the interactive
topic modeling process for source code analysis. Initially, the

2The screencast is available here: http://youtu.be/Is4ywW5oiUI
3http://shiny.rstudio.com/
4http://d3js.org/



source code corpus is scanned to build a bag-of-words. The
resulting bag-of-words is fed into the topic modeler to build
the posterior distribution of terms over topics. The output
can be visualized to provide a global view of topics as well
as how source code units are related through the discovered
topics. After inspecting the results, the user may engage in
refining the topics by providing constraints as well as tuning
the parameters. This refinement is repeated until satisfactory
results are obtained.

A. Data Preprocessing

The topic models’ vision of the source code corpus is
a ‘bag-of-words’, representing the set of source code units
and their term occurrences. Constructing the bag-of-words
involves applying a preprocessor to extract vocabulary terms
from comments, identifier names and literals in the source
code, followed by breaking up composite terms built using a
standard way such as CamelCase convention. It proceeds by
eliminating common terms that occur in a natural language
(for instance, “the” and “is”), as well as keywords and reserved
words of the programming language (such as “extends” and
“implements” in Java). The resulting set of terms is normalized
by applying a stemmer to emit a common radix. Each resulting
document-term pair is normalized by the term frequency-
inverse document frequency weighing mechanism to measure
how prevalent terms are throughout the corpus and those terms
that are lower than a user-defined threshold are eliminated
from the produced bag-of-words5.

B. Interactive Topic Modeling

Topic modeling discovers a set of distributions over terms
for each topic and the association of topics with each docu-
ment, performed through a posterior inference. Each topic is
a multinomial distribution over terms, explaining how terms
are associated with each topic. A standard procedure used for
inferring the posterior distributions in LDA is collapsed Gibbs
sampling [10].

To perform the posterior inference, LDA contains serveral
hyper-parameters that needs to be set: 1) tc representing the
number of topics in the corpus, and 2) α and β specifying
Dirichlet priors about the uniformity and sparsity of topics
over documents. The collapsed Gibbs sampler also has to be
configured with a number of parameters including the number
of burn-in iterations, the number of samples, and the sampling
interval. These parameters have a significant impact on the
resulting topic model in LDA and are subject of studies [11],
[12] to help researchers configure LDA when used in the
context of source code analysis. Interactive topic modeling has
another parameter η which can be used to control the strength
of domain knowledge on the inferred topic models, allowing
for overriding the user-specified constraints if the underlying
data strongly suggests otherwise. Albeit there is no rule of
thumb to determine what the good choices for the parameters

5One such example is the set of terms specific to the copyright and
disclaimer notices in Java source files

are, the visualization provides an effective approach to inspect
the results and re-adjust the parameteres, if deemed necessary.

The feedback from a human expert is encoded via a set
of ‘Must-Link’ and ‘Cannot-Link’ constraints. A Must-Link
constraint is a set of terms whose probability should be
correlated in a topic. Must-link contraints are transitive and
are propagated to obtain the maximal set of words that should
appear together. On the other hand, Cannot-Link constraints
define pairs of terms whose probability should be uncorrelated
across the topics. Before producing the Dirichlet tree priors,
the constraints are checked to ensure no conflicts exist; oth-
erwise the user is notified of the existence of conflicts and
can revise the constraints. Enforcing constraints on the topic
modeling changes the dynamics of how source code units are
related to each other.

C. Visualization and Interpretation

The visualization consists of two parts, one for the global
view of topics and topic-term relationships, and one to give
a perspective on document-topic relationships and prevalent
topics in each document. The visualization facilities in ITMViz
are borrowed from LDAviz [13] which allows for a deep
inspection of the latent relationships between terms and each
individual topic.

III. EMPIRICAL CASE STUDY

We have performed topic analysis on a Java open source
project called jEdit6, a text editor for programming. The
system consists of 538 classes. We have studied the docu-
mentation of jEdit to recover the high-level architecture of
the system and the functionalities it provides. This domain
knowledge is translated into a set of constraints which are
iteratively imposed on the LDA.
The jEdit system provides the following set of functionalities:

• GUI components comprising of text editor, menu, mes-
saging, layout

• Text editing features including syntax highlighting, inden-
tation and tabbing, commenting out code, abbreviations
and folding the code

• Working with files
• Input/output for data transfer
• Add-on plugins
• Options for customizing the jEdit environment
• BeanShell module for writing macros and startup scripts

We will use the aforementioned functionalities to extract
meaningful topics by guiding the ITM.

A. Data Preprocessing

The jEdit project is implemented in Java and the natural
language used to write comments, literals and identifier names
is English. The naming convention used, as promoted for good
programming in Java, is CamelCase, which we use to break up
the composite terms. The total number of words in the bag-of-
words is over 2500. To eliminate prevalent terms throughout

6http://www.jedit.org/



Fig. 1. Interactive Topic Modeling Architecture Overview

the corpus, we impose a minimum threshold of 20 on the tf-idf
score of words, reducing the total number of words by more
than a half to about 1100 words.

B. Interactive Topic Modeling

We have chosen the following configuration to instantiate
the ITM framework: tc = 15, α = 0.5, β = 0.1, and
η = 10000. The number of burn-in iterations is set to 10,
and the number of samples to 200. We run the LDA before
estimating the topics from the final sample. Once the topic
model is produced, the visualized results are assessed to
determine further steps.

C. Visualization and Interpretation

The Visualization and Interpretation facility in ITMViz con-
sists of two components: 1) Topic Visualization & Analysis:
used for inspection of term-topic relationship in the source
code as well as analysis of individual topics followed by
associating domain concepts to a topic (labelling), and 2)
Clustering: used to investigate the association between the
topics and documents throughout the system.

1) Topic Visualization & Analysis: Figure 2 depicts the
global view of term-topic relationship of the jEdit system
on the left, while on the right the term barcharts show the
ranking of the terms. The size of each topic is proportional
to the relative prevalence of the topics throughout the corpus
[13]. The default technique for mapping the topics into two
dimensions is Principal Component Analysis; other techniques
are also implemented. The ranking of terms is based on the
measurement proposed in [13] where a term is ranked based
on its relevance to a topic. It is possible to adjust the ranking
of the terms to allow users to examine the usefulness of
terms in the interpretation of topics. Furthermore, there is an
option to cluster the topics together based on their scaled two-
dimensional locations using the k-means clustering algorithm.

The most prevalent topic in jEdit is Topic 1, which com-
prises of terms including ‘eval’, ‘interpret’, ‘bean’ and ‘shell‘
corresponding to the BeanShell module for writing macros
and scripts in jEdit. On the other hand, the least prevalent
topic consists of terms such as ‘comment’, ‘parser’, ‘identifi’
and ‘literal’ which can be interpreted as syntax highlighting
in jEdit. Once a decision is made about the meaning of a

topic, it can be labelled to reflect its conceptual meaning. This
is made possible through ‘Topic Analysis’ where topics are
individually inspected and labelled. Labelling topics makes it
possible to examine the corpus to see where in the system
some concepts are prevalent.

Fig. 2. The term-topic relationship of jEdit system

2) Clustering: The clustering facility provides a global
perspective of topic-document relationship which then can
be used to perform clustering of source code units. Figure
3 depicts the features that clustering provides to analyze
the source modules across the system. Similar to ‘Topic
Visualization’, the right panel reveals the most dominant topics
in a document while the left panel gives the global overview
of the relationship between the source code units based on the
established topic-document relationship. Other features match
those offered for visualization of topics. The size of the circle
is proportional to the number of occurring terms in a source
code unit relative to all term occurrences in the corpus.

D. Constraints
We encode the domain knowledge in terms of a set of

constraints to manipulate the co-ocurrence of terms across
topics. To bring together terms that should belong to the same
topic, we introduce Must-Link constraints between them. On
the other hand, Cannot-Link constraints are accumulated to
pull apart terms across topics that should not come together.
Overlapping topics can be split by imposing Cannot-Link
constraints while similar topics can be merged by introduc-
ing Must-Link constraints on the terms. For instance, after



Fig. 3. The topic-document relationship of jEdit system

insepction of results generated from the unconstrained LDA,
the terms ‘plugin’ and ‘textarea’ are uncorrelated by imposing
a Cannot-Link between them. We also brought together terms
associated with the editing features of text area under one topic
by introducing Must-Link constraints between them.

E. Results & Discussion

To compare the quality of topic models produced from
unconstrained LDA and those produced from ITM, we make
the comparison based on the inferred topic-document rela-
tionship. We decompose the source code units at different
stages of interaction and measure the authoritativeness of the
produced clusters. The reference decomposition is produced
from the package structure of jEdit. During each iteration, new
constraints are introduced or removed, based on the results
produced from the previous iteration. This process is repeated
until the results align with our expectation. The clustering
algorithm used here is k-means with the number of clusters
correpsonding to the number of packages in the system, i.e.,
35 clusters. Figure 4 shows the MoJo similarity measurement
obtained for jEdit after 10 iterations. The MoJoSim achieved

Fig. 4. The MoJoSim measurement for jEdit after 10 iterations

from unconstrained LDA is around 45%. We have injected do-
main knowledge stepwise into ITM over 10 iterations resulting
in a final MoJoSim of around 55%.

IV. CONCLUSION AND FUTURE WORK

We have discussed ITMViz, an interactive topic modeling
environment that enables users to supervise the topic modeling
by enforcing constraints on the set of words in the corpus. The
visualization feature of the toolkit allows for deep inspection
and analysis of the discovered topic models to help users
refine the results further. We present the results from the
evaluation of a medium-sized Java open source project by
manipulating results based on the domain knowledge extracted
from the documentation of the system, and show that indeed
this approach helps emit more meaningful topic models. We
would like to apply our tooling to legacy systems in the
industrial domain to see if supervision of topic modeling by
a domain expert can help with the understanding of these
systems.

REFERENCES

[1] S. Grant, J. Cordy, and D. Skillicorn, “Using topic models to support
software maintenance,” in Software Maintenance and Reengineering
(CSMR), 2012 16th European Conference on, March 2012, pp. 403–
408.

[2] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. d. Lucia,
“Improving software modularization via automated analysis of latent
topics and dependencies,” ACM Trans. Softw. Eng. Methodol., vol. 23,
no. 1, pp. 4:1–4:33, Feb. 2014.

[3] Y. Hu, J. Boyd-Graber, B. Satinoff, and A. Smith, “Interactive topic
modeling,” Machine Learning, vol. 95, no. 3, pp. 423–469, 2014.

[4] A. Hindle, C. Bird, T. Zimmermann, and N. Nagappan, “Relating
requirements to implementation via topic analysis: Do topics extracted
from requirements make sense to managers and developers?” in Software
Maintenance (ICSM), 2012 28th IEEE International Conference on, Sept
2012, pp. 243–252.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[6] D. Andrzejewski, X. Zhu, and M. Craven, “Incorporating domain knowl-
edge into topic modeling via Dirichlet forest priors,” in Proceedings of
the 26th Annual International Conference on Machine Learning, ser.
ICML ’09. New York, NY, USA: ACM, 2009, pp. 25–32.

[7] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk, “TopicXP: Exploring
topics in source code using latent Dirichlet allocation,” in Software
Maintenance (ICSM), 2010 IEEE International Conference on, Sept
2010, pp. 1–6.

[8] C. Zou and D. Hou, “LDA analyzer: A tool for exploring topic
models,” in Software Maintenance and Evolution (ICSME), 2014 IEEE
International Conference on, Sept 2014, pp. 593–596.

[9] A. Saeidi, J. Hage, R. Khadka, and S. Jansen, “Gelato: GEneric
LAnguage TOols for model-driven analysis of legacy software systems,”
in 20th Working Conference on Reverse Engineering (WCRE), Oct 2013,
pp. 481–482.

[10] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings
of the National Academy of Sciences, vol. 101, no. suppl 1, pp. 5228–
5235, 2004.

[11] D. Binkley, D. Heinz, D. Lawrie, and J. Overfelt, “Understanding LDA
in source code analysis,” in Proceedings of the 22Nd International
Conference on Program Comprehension, ser. ICPC 2014. New York,
NY, USA: ACM, 2014, pp. 26–36.

[12] S. Grant and J. Cordy, “Examining the relationship between topic
model similarity and software maintenance,” in Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software
Evolution Week - IEEE Conference on, Feb 2014, pp. 303–307.

[13] C. Sievert and K. Shirley, “LDAvis: A method for visualizing and inter-
preting topics,” in Proceedings of the Workshop on Interactive Language
Learning, Visualization, and Interfaces. Baltimore, Maryland, USA:
Association for Computational Linguistics, June 2014, pp. 63–70.


