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1. Introduction 
 
Increasing urbanization rates and growth of population in urban areas have brought complex 

problems to be solved in various fields such as urban planning, energy, health, safety, and 
transportation. Urban computing (UC) is the name of the process that involves collection, integration 
and analysis of heterogeneous urban data coming from various types of sensors in the city, with the 
purpose of tackling urban problems (Zheng et al., 2014). Within this framework, the first step of UC 
is to collect data through sensors like mobile phones, surveillance cameras, vehicles with sensors, or 
social media applications. The second step is to store, clean, and index the spatiotemporal data 
through different data management techniques by preparing it for data analytics. The third step is to 
apply different analysis approaches to solve urban tasks related to different problems.  

Machine learning methods are some of the most powerful analysis approaches for this 
purpose, because they can help model arbitrarily complex relationships between measurements and 
target variables, and they can adapt to dynamically changing environments, which is very important in 
UC, as cities are constantly in motion. Machine learning (ML) is a subfield of artificial intelligence 
(AI) that combines computer science and statistics with the objective of optimizing a performance 
criterion by learning models from data or from past experience  (Alpaydın, 2020). The capabilities of 
ML have sharply increased in the last decades due to increased abilities of computers to store and 
process large volumes of data, as well as due to theoretical advances.  

Especially in domains where human expertise is unable to crystallise the path between data 
sources and the performance measures, ML approaches offer new ways of model creation. In UC, data 
sources are rich and heterogenous. From a ML perspective, using heterogeneous sources of data as 
input to models is challenging, as most of the existing paradigms are designed to process one type of 
data. Additionally, urban data acquisition brings its own challenges. Urban data may come from 
sensors equipped by infrastructure elements, from public transportation systems, from satellites, from 
household surveys, governmental institutions, and even from people who act as sensors (called citizen 
science), either pro-actively supplying information by reporting issues, or by using mobile phones or 
applications whose data can be read to infer many things about the city and the way it is used by the 
people. These data sources have different bias and variance characteristics; each sensor comes with its 
own data gaps (e.g. mobile phone usage may exclude small kids, satellite coverage cannot include 
what goes on inside large buildings, public transport figures ignore other means of transport, etc.), and 
each data source is sampled at a different rate. These are all challenges in building unifying models.  

Apart from detecting patterns in urban usage, ML methods can be used for detecting outliers, 
such as anomalies in the daily life of the city. For example, mobile phone activity at a certain location 
can be monitored for automatically detecting unusual patterns (Gündoğdu et al., 2017). Combining 
ML with computer vision allows us to detect problems in urban settings visually, and to classify areas 
of the city in terms of safety, wealth, accessibility, etc. (Santani et al., 2015). Another important usage 
is in prediction of urban activity based on past data, such as predicting queues in gas stations, which 
can be used for improving waiting times across the city (Zheng et al., 2013). ML can also help with 
knowledge extraction, providing interpretable insights into data collected from urban sensing. 
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Furthermore, novel explainable ML approaches are providing more insightful models that help clarify 
their predictions to human analysts. 

The improvements in urban sensing technologies, increased pervasiveness of these 
technologies and better data management techniques all contribute to improving analysis. It is 
however important to understand what the different ML methods are, what they can offer, their 
strengths and weaknesses, as well as their applications to UC, to be able to effectively choose the 
most suitable method (or sometimes to decide not to use any ML method) for solving the relevant 
problems in the urban setting.  

In this chapter, we discuss the key techniques in ML and their use in various UC scenarios. 
Firstly, we introduce the main concepts and key techniques of ML, followed by relevant issues while 
designing any ML study. This is a rapidly growing area of research, and we will not attempt to cover 
all approaches, nor will we provide a mathematical exposition. However, we will point the reader 
towards resources for following up the main points of discussion in this chapter. 

 
2. Key terms in machine learning 

 
One of the most important steps in ML is the abstraction of the problem, which is the link 

from sensing (or raw signals from the world) to the tasks designated to be solved with ML. In UC, 
multiple data sources can be tapped for feeding the ML algorithms, such as public infrastructure 
usage, camera feeds, social media data, mobile phone data, satellite images, etc. When we look at the 
raw signals, they will come in different sizes, resolutions, and frequency. The first step in the ML 
pipeline is to create meaningful features from these signals. In creating features, domain expertise 
may play a great role. Take for example, an application that monitors train crossings via camera to 
learn anomalous pedestrian behaviours to prevent suicides. In such an application, a machine learning 
based system is used to filter potentially suspicious situations, and a human operator will evaluate the 
filtered results. But the raw camera signal may be too coarse and high-dimensional to process directly 
with the ML model. If we can detect pedestrians near the tracks, and if we can encode their movement 
trajectories by the movement of a single point, we obtain a much sparser and more informative 
representation. This representation loses some information; if the clothing of the person is informative 
(e.g. wearing black as a possible indication of depressive mood), then the point representation will not 
encode this information. However, the dimensionality of the feature is much reduced, compared to 
the full video signal.  

The curse of dimensionality refers to the phenomenon that most ML approaches scale poorly 
with the dimensionality of the problem: they require an increasing amount of samples to learn the 
problem structure properly. This increase is super-linear, and modern deep learning approaches that 
have millions of free parameters need millions of samples to find proper values for these parameters. 
Subsequently, it is essential to find a good set of features. 

Two key approaches to obtaining features are feature extraction and feature selection. In 
feature extraction, the original signals are transformed into more informative or sparser feature sets. 
It is also possible to see multiple feature extraction steps in a modern ML pipeline. In feature 
selection, on the other hand, the original features are preserved, and a subset is selected for use. Since 
original features could be strongly correlated (e.g. adjacent pixels in a street camera image), adding 
one feature when the other is already included is not too informative. Feature selection approaches try 
to select features that are complementary, by reducing redundancy (see, for example, Peng et al., 
2005).  

Feature extraction methods come in all flavors. A signal processing approach, for example, is 
to use a theoretically complete basis (such as a wavelet, or a Fourier transform), which will encode 
the raw signal in a coarse-to-fine resolution, and then discard most of the finer parts to get a feature of 



desired dimensionality. But increasingly, we see that ML methods developed for one task to be used 
as feature extractors for another task. A good example is a deep neural network trained on a broad 
object recognition task, repurposed for a related but different task (Chatfield et al., 2014). One can 
conceptualize a (deep) neural network as a series of operations performed on an input feature vector 
(such as a camera image). These operations are multiplications with matrices computed during the 
training of the network, non-linear transformations, convolution operations to detect the presence of 
features, and pooling operations to provide some translation invariance to the detected features. When 
repurposed for a different task, the ML approach is treated as a black box that extracts good visual 
abstractions in order to do its job, and by peeling off the outer layer of the network, we can take some 
of its internal representations as sparse and powerful features for a different task. This approach falls 
under the rubric of transfer learning, and the more similar the tasks are, the more powerful the 
features will be. This approach is particularly useful if we have few samples to learn the original task 
properly, but many samples for learning the transferred ML system, or if the transferred system is 
already developed and trained elsewhere. It is possible to obtain many such trained models from 
online repositories like GitHub (https://github.com/), or Model Zoo (https://modelzoo.co/). 

Machine learning approaches can be classified into several broad categories, depending on the 
assumptions they make. A lot of UC tasks are either classification or regression problems. Given a set 
of classes and a set of input instances, in which each instance belongs to one or more classes, the goal 
of a classification model is to learn the boundaries that discriminate instances of each class from 
instances of all of other classes. In the training phase of the ML model, a family of models is 
explored for the task, and a training set of instances are used to find the most suitable model, as well 
as the best parameter values for the model. For example, suppose we want to classify gas stations in a 
city as “busy” or “idle”, based on camera images. This is a two-class classification problem where the 
training data will look like X = {It , rt}, with t = 1...N, where It are camera images, rt are the labels 
denoting busy or idle stations, and N stands for the total number of training images. If we are provided 
with the labels during training, this is called a supervised learning task. If, on the other hand, we are 
just provided the images, and we need to also discover how many classes we want to use in the 
classification task, this would be an unsupervised learning task, which is naturally harder. Typically, 
supervised learning tasks are concerned with finding discriminating boundaries, whereas unsupervised 
learning tasks are concerned with modeling the distributions of features, in tasks like clustering, 
which is finding groups and assigning data points to these groups, and density estimation, which is 
fitting a statistical distribution to the data. If the labels are drawn from a continuous set (e.g. a 
busyness index for the gas station that can take values between 0 and 1), then we deal with a 
regression problem. An example of a regression problem in UC is next location prediction for 
observed vehicles, which can be used for optimizing traffic flows and predicting traffic jams 
(Barlacchi, 2019).  

When we measure the performance of the ML model in a supervised classification task, we 
use a test set of instances which are not used during learning. This is how the ML algorithm is tested 
for checking whether it has “memorised” the training samples, in which case it will have poor 
generalization to novel samples. The most important pitfall in ML is to train multiple models on the 
same dataset and pick the best performing model to report the performance. This is called cherry 
picking, and it is not unlike doing a lot of statistical tests without adjusting significance levels for 
multiple tests. We expect to see performance reported on an independent test set, which is not used 
too frequently to query performance. If the test set is used in model selection, it actually becomes a 
part of the training set. Consequently, a proper test protocol is one of the first things one needs to 
check when looking at an ML paper critically. Many approaches use an additional validation set to 
fine tune the parameters of ML models, and cross-validation, where the training data is separated into 



multiple folds that serve as training and validation sets, alternatively. It is important to have the test 
set separated from the cross-validation set for an independent evaluation. 

The second important check in evaluating an ML approach is the quality of the labels. The 
error of an ML model is typically formulated with respect to some ground truth. Labeling data 
usually requires humans or a group of experts to annotate the data, and hence, it is costly, and 
depending on the application, sometimes subjective. However, we see more and more clever 
approaches in obtaining automatic labels. For example, in an application where the Government 
monitors the citizens' mood in a city using geo-tagged Tweets, the emojis in the Tweets could be used 
as providing sentiment ground truth for the text (Li et al., 2016). Then, an ML approach can be trained 
on the Tweets with such ground truth, and then used to predict the sentiments on the ones that do not 
have emojis. It is also possible to let one reliable modality supervise a less reliable one. If we have a 
few air quality measuring sensors deployed in the city, we can use the ground truth they provide to 
train a satellite image based, or a social media based system. Finally, citizen science allows the 
inhabitants of a city to provide labels and training samples, because the inhabitants are incentivized to 
do that if ultimately it helps the life in the city (Kobori et al., 2016). For example, they can share their 
location when using a map application which gives recommendations based on traffic, as the collected 
location information will improve ML based traffic predictions, and thus improve the service they are 
receiving.  

An important concern is the bias-variance dilemma for ML models. Bias refers to the 
tendency of a system to prefer certain outcomes over others, thus it explains how an ML model 
generalizes to new samples (Mitchell, 1980). Variance, on the other hand, is how much the models 
can change with changes in the training data. Complex models with many parameters will have less 
bias as they are flexible in fitting the training data, but more variance, when compared to simpler 
models. Ideally, the model complexity should be “just right” for a given problem. This is often easier 
said than done. Subsequently, there are many approaches for selecting the correct model complexity, 
and expert knowledge can also help a lot. In the context of UC, machine bias can be potentially very 
harmful, for example if the ML system is trained to prefer outcomes aligned with certain 
subpopulations in the city. It is not always straightforward to test these systems for bias. For example, 
we can test whether a system that works on data from individuals performs differently for male and 
females, for kids and adults, or for individuals from different ethnic backgrounds. But the bias may be 
more complex, and may only be detected by looking at intersections of groups. It can be rooted in 
unbalanced training data, but it can also arise from the algorithmic details (Mehrabi et al., 2019). 

 
3. Key methods in machine learning  

3.1. Classification 

There are many examples of supervised ML problems in UC. An example application of 
classification algorithms in UC is to infer different land usages of a region based on observed spatial 
interactions coming from various big data sources (Liu et al., 2016; Toole et al., 2012). Here, each 
point on the map of the city is assigned to one of a small set of classes, for example ‘residential’, 
‘commercial’, ‘industrial’, ‘park’, and ‘other’. Depending on the data source, ML techniques usable 
for this problem will show differences. In (Toole et al., 2012), aggregated mobile phone data is used 
as the input. This type of data can be obtained from telecommunication companies under strict 
privacy regulations, and can be very informative for mobility-related analysis (Salah et al., 2019). For 
each location, the phone usage of people in that area will increase and decrease during different hours 
of the day, and it is this dynamic that will be leveraged for the classification. Increased use during 
work hours will show that the spot is commercial or industrial, whereas increased use on the 



weekends and on particularly sunny days will suggest that it’s a park. Using the ground truth labels 
of a few locations will enable supervised approaches.  

Two-class problems are the simplest classification problems, where the aim is to find a 
discriminating boundary (also called a discriminant) between the classes in some feature space. 
Linear discriminant analysis (LDA) is a classic method that tries to find a linear discriminant, which 
maximizes the variance between the two classes it separates, and minimizes the variance within each 
class. The support vector machine (SVM) is also a supervised learning algorithm used for 
essentially finding a discriminating boundary between classes. While LDA works by projecting the 
data on a subspace, SVM views this as an optimization problem, and tries to find the optimal 
hyperplane that separates each class (Cortes and Vapnik, 1995). The data points belonging to the two 
classes may not be separable by a line in the original feature space. SVM uses a kernel to project the 
points to a higher dimensional space where they become linearly separable. The distance from the 
discriminating boundary to the closest samples of the two classes is called the margin, and SVM tries 
to maximize the margin. The larger the distance between the projected classes, the more difficult it 
will be to make a mistake in classification. SVM is a popular method in a number of UC tasks such as 
urban logistic forecasting (Gao and Feng, 2009), road traffic prediction (Saldana-Perez et al., 2019), 
and the classification of satellite images based on different urban objects they include (Giriraja et al., 
2014).  

3.2. Artificial Neural Networks 

Artificial neural networks (ANN) (McCulloch and Pitts, 1943) are cognitively inspired 
models and they have a lot of applications in ML. The multilayer perceptron (MLP), is a non-
parametric estimator that is used for classification and regression. The term non-parametric in this 
context refers to the fact that these models do not have distributional assumptions about the input. 

In its most basic form, a simple set of equations govern the computation in the MLP. If x 
denotes the d-dimensional input (typically enhanced with one fixed dimension called “bias term” 
which always has the value of 1, used for shifting the fit on the data) the output y of the MLP is 
computed as: 

𝑧	 = 𝛿(𝑤 '𝑥), 
𝑦 = 𝑣 '𝑧.  
Here, w is a (h x d)-dimensional matrix of coefficients, which projects the d-dimensional 

input to a h-dimensional feature space (called the hidden layer, as this is an internal representation), 
𝛿denotes a non-linear activation function that increases the representation power of this projection 
(typically sigmoid, tangent hyperbolic, or rectified linear functions are used), and v is a second set of 
coefficients that project the intermediate z values (i.e. hidden unit outputs) to the output feature space. 
In a regression problem, this setup can be used to define a regression function as f(x) = y. In a 
classification problem, typically a one-hot encoding is used, where for C classes, a C-dimensional 
vector is the output, and the class membership is indicated by setting the correct class or classes to 1, 
and the rest to 0. For example, in a three-class problem, the desired 3-dimensional outputs will be 100, 
010, and 001, denoting membership of each of the three classes. The output of the MLP will be 
interpreted by looking at which of these class codes is the closest to the actual output. The first part of 
the model (expressed by z) is a perceptron (Rosenblatt, 1961), and the second part is what makes the 
model multi-layer.  

The addition of more layers to such a feed-forward model results in a deep neural network. 
These models have layers with different processing capabilities. The most important of these are 
convolution layers, where a small, local portion of the input (or an intermediate representation) is 
multiplied with a small matrix of coefficients, which acts like a localized feature detector. The 



convolution layer seeks for these features over the entire input. The pooling layers collect values in a 
small neighbourhood and perform a selection, for example by recording the maximum value. This 
type of layer provides location invariance; if a feature is detected in different parts of the input, the 
pooling layer is used to propagate a fixed representation for the presence of this feature. This is 
obviously very valuable in image-based problems, where the input is the entire image, and features 
(imagine detecting people or cars) can be at different locations of the image. Convolutional neural 
networks (CNN) are a type of deep neural network models that contain such convolution and pooling 
layers. 

The training of MLP models, i.e. the setting of the weight matrices w and v for a given 
problem, is performed by formulating the error of the model on the training set, and by finding the 
weight values that minimize this error. For this, the true output values are required for each input, 
which makes MLP a supervised approach. Since the formulation cannot be analytically solved, neural 
network approaches are typically trained with iterative procedures, such as backpropagation 
(Rumelhart et al., 1986). In deep neural networks (also called deep learning, DL), backpropagation is 
not effective, and stochastic gradient descent is typically used. In both approaches, the gradient in 
question is the gradient of the error term, and we try to move the model along the gradient that 
reduces the said error. 

Deep neural networks , as well as MLP, can be used for both supervised and unsupervised 
learning. In the latter, since we lack labels, the input itself, or its transposed version is used as the 
output. In order to ensure that the input is not simply copied to the output, these self-supervised 
approaches keep the dimensionality of the intermediate representations lower than the original 
dimensionality of the problem. This way, the model is forced to generate good latent representations 
for the problem. These low dimensional features are supposed to adequately represent the variance in 
the high-dimensional, original problem. In UC, DL is successfully applied to mining spatio-temporal 
features from multiple data sources for modelling regions of interest (Jiang et al., 2018), for 
identifying communities (Ferreira et al., 2020), as well as to learn feature representation from multiple 
big data sources (Liu et al., 2020).  

 
3.3. Pattern discovery and clustering 
Unsupervised learning methods are employed to find regularities, groupings and patterns in 

the input data. Common tasks include reducing dimensionality and clustering, which are effective to 
discover new insights from data. Principal component analysis (PCA) and factor analysis (FA) are 
the most frequently used approaches in dimensionality reduction and feature extraction. These 
methods make different assumptions, but each one is at its core a projection of the data to a different 
subspace, where the patterns will become more distinct. PCA selects the projection that maximizes 
the variance of the data, and by discarding low-variance dimensions, dimensionality is reduced 
(Jollife and Cadima, 2016). FA assumes that high-dimensional input variables are generated from a 
low-dimensional, latent space (Everett, 2013), and produces similar results with PCA. In UC, 
unsupervised learning is used in problems such as learning an embedding space for regions (Jenkins et 
al., 2019), location recommendation (Yang et al., 2018) or inferring whether people in a city are 
visiting or locals by their visitation patterns (Huang et al., 2017).  

An important application of unsupervised ML approaches is density estimation. If we 
assume that the distribution from which the samples are drawn is known up to a number of 
parameters, we can apply parametric methods in ML, and try to find the best values of these 
parameters from the training set. Conversely, if assuming that the sample comes from a single known 
distribution yields large errors, a category of more flexible approaches can be useful. 

Non-parametric ML approaches do not assume a model over the input space, but try to map 
the input data to the target values based on similarity. Another name for non-parametric approaches is 



instance-based learning, because for each test instance they compare it to previous memorized 
training instances and interpolate an output value as a result. As an example, decision trees (Quinlan, 
1986; Quinlan, 1990) are non-parametric models used in supervised learning tasks like classification 
and regression. They use a divide and conquer strategy to divide the input space into regions of 
decisions, through which each training instance is mapped to a label in classification, or to a 
numerical value in regression. The results of such models are usually highly interpretable, because the 
model looks at a number of features one by one in order to produce its decision. For a specific output, 
we can trace these decisions in the model to see how the output was generated. 

There are also semiparametric approaches, which assume that there are different groups, or 
clusters in the data with known distribution models. The models include commonly used unsupervised 
learning algorithms mentioned above, which are also popular in UC problems like discovering the 
function of the urban land, segmenting the districts based on land use, or identifying the community 
structures (Frias-Martinez and Frias-Martinez, 2014; Yuan et al., 2012, Ferreira et al., 2020). The goal 
in semiparametric approaches is to learn the group densities and their proportions, given the sample 
and the number of assumed clusters. A mixture model describes the input density as a mixture of 
probability distributions, where each data point comes from one of these distributions, and there is a 
mixing probability to determine the relative weight of each of the mixture components. The most 
frequently used of such models is a mixture of Gaussians, where each component has a Gaussian 
distribution, specified by a mean vector and a covariance matrix.  

An important problem in unsupervised density estimation is to find the parameters of 
components, as well as assigning which sample belongs to which component. Expectation 
Maximization (EM) algorithms (Dempster et al., 1977; Redner and Walker, 1984) solve these 
problems jointly. Clustering problems are an important class of problems in UC, where the input is 
assigned to one of several clusters of data points that are similar to each other in some sense. For 
example, the population in the city can be clustered (or grouped) according to their income, and 
depending on the resolution of the analysis, different numbers of clusters can be used. The popular k-
means clustering algorithm starts by picking up k samples from the data, and computes distances of 
all points to these k samples. Each sample is assigned to these k centers (also called “means”), and 
then the center locations are updated by re-computing the mean value of all assigned data points. This 
procedure is repeated until convergence, and the data will be represented by k clusters.  

This algorithm is in fact a special case of the EM algorithm used for fitting a Gaussian 
mixture model to data, but it uses a Euclidean distance between points, and treats all dimensions 
equally, as opposed to using a Mahalanobis distance, which will pay attention to the variances and 
covariances to compute distances between points in the input space.  

The mixture models cluster the data by assuming that they are coming from known 
distribution models. Another way of clustering the data is without making such assumptions is 
hierarchical clustering. Here, the entire dataset will be broken down into groups hierarchically, by 
looking at distances between data points. It is also possible to start from points and proceed with 
grouping. The agglomerative clustering algorithm starts from many groups that contain only one  
training instance and proceeds by joining the closest groups until there is one group left. The desired 
solution is selected from an intermediate cluster assignment.  

3.4. Bayesian approaches 
When treating observations probabilistically, we may have some prior information that helps 

structure our uncertainty in the observation process. Bayesian approaches aim modeling our state of 
knowledge, where prior knowledge is suitably modified by empirical evidence, which arrives in the 
form of observations. In a city, we may for example know where the residential, work, and 
entertainment areas are, but a city is always changing, and new observations can modify our prior 
knowledge. Bayesian approaches are especially useful in modeling dynamic systems.  



At the heart of these approaches, we find the Bayes rule: 

, 
in which a set of observations X is related to a model represented by a set of parameters 𝛩. 𝑝(𝛩)and 
𝑝(𝑋)are the prior probability of the model and the observations, respectively, whereas 𝑝(𝑋|𝛩)is the 
conditional probability of observing X under these parameters (called the model likelihood), and 
𝑝(𝛩|𝑋) is the conditional probability of a certain set of parameters, given the observations (called the 
posterior). Using this formulation leads to many ML approaches that use evidence to train and fine-
tune model parameters, and such models typically give probabilistic outputs, which can be interpreted 
as a confidence in the model outcomes. Model search is performed by maximum likelihood 
estimation and maximum a-posteriori estimation, which practically seek the best alignment of the 
data distribution and the distribution posited by the model. 

There are many probabilistic approaches in ML (Ghahramani, 2015). The naive Bayes 
classifier is one of the simplest methods, where the features of the input are assumed to be mutually 
independent, given the class model. The maximum a-posteriori (MAP) decision rule classifies an 
input into the most probable class by just multiplying the conditional probabilities for each feature. 
Graphical models (Koller and Friedman, 2009) are a large class of Bayesian approaches including 
Bayesian networks, Markov networks, random fields, and more. Of these approaches, Markov 
models are particularly suitable for modeling temporal dynamics. In a Markov model, the data are 
assumed to come from a system with discrete states, and each state is assumed to have a different 
distribution for generating observations (Rabiner, 1989). The first order Markov assumption is that 
each state contains all the necessary historical information for making inference; if we know the 
current state, past observations do not add anything to our prediction capability. In hidden Markov 
models (HMM), the state is not known, but estimated along with observation distributions per state, 
as well as state transition probabilities. HMM are used in UC for several problems, such as identifying 
different types of road segments based on traffic information (Zheng et al., 2014). 

 
3.5. Measuring the performance of ML approaches 
The "training" of ML approaches, as well as their evaluation, is guided by several 

performance measures. Choosing the appropriate measure is important, as these measures highlight 
different aspects. For example, classification accuracy denotes the percentage of correct 
classification for an ML model, and is used for supervised classification tasks. For regression tasks, 
on the other hand, mean squared error can be used to denote the average distance from the true 
(expected) regression value. These can be reported separately on training, validation, and test sets. If 
cross-validation is used, it is typical to report the mean and standard deviation of a measure to 
illustrate how much it fluctuates across folds. For C classes, a CxC  confusion matrix shows the 
labels assigned by the classifier vs. the true label, and thus shows which classes get confused with 
which other classes. This is useful to get some more insight. If multiple ML approaches are going to 
be compared on a specific problem, looking at the differences will not say much, and statistical testing 
should be used on these measures to select the best classifier (Alpaydın, 1999).  

When the data are distributed to classes in an uneven way (also called data imbalance), then 
the dominant class will play a greater role in error measures. For example, in a security-cam based 
anomaly detection application, most footage will be labeled 'normal', and only very few moments are 
designated as 'anomaly'. If anomalous footage is 0.1% of all the footage, an ML system that always 
predicts 'normal' will have an accuracy of 99.9%. In order to deal with data imbalance, error is 
investigated in greater detail, and we distinguish between false positives (e.g. normal segment 
classified as anomaly), false negatives (e.g. anomaly classified as normal), true positives (e.g. 



anomaly labeled as anomaly) and true negatives (e.g. normal labeled as normal). Then, precision is 
calculated as true positives over all positives, and for the example of anomaly detection, it is high if 
most of our anomaly labels are indeed anomalies. Recall is calculated by true positives over all 
samples which are actually positives (i.e. true positives plus false negatives), and shows the 
proportion of anomalies we were able to capture. The F1 score is computed as 2 34567879:∗<56=>>

34567879:?<56=>>
, and 

balances these measures. For imbalanced classification problems, F1 score is typically reported. 
 

4. Further considerations in the design of ML approaches 
 
The complexity of ML algorithms depends on the number of free parameters, as well as on 

the complexity of operations performed by the algorithm. Complex models need more training 
samples to train, otherwise overfitting will reduce generalization power of these models. In selecting 
an appropriate ML approach, we pay attention to the amount of data at hand, its feature 
dimensionality (which can be reduced with feature selection or extraction), as well as the nature of the 
data (e.g. spatial, temporal, spatiotemporal). For unbalanced problems, where we have a lot of 
samples from one class, but very few samples from another (e.g. accident and anomaly detection 
problems), statistical techniques are used to create richer samples for training. Cross-validation and 
bootstrapping are methods of dividing our dataset into training and validation sets to replicate the 
analysis in different samples. In K-fold cross validation, the data are divided into K equal sets, and 
each one of the parts are designated as the validation set once, while the rest is used in training. As a 
result we have a K different combination for validation and training sets. Bootstrapping, on the other 
hand, draws new samples with replacement for cross-validation.  

To increase the predictive accuracy of ML models we can combine multiple learners; an 
approach called ensemble learning. Ensemble methods can be used for classification or regression, 
with parametric or non-parametric approach. The more diverse the base-learners are (i.e. making 
errors on different input samples), the higher the chance of getting a better result by ensemble 
learning. Bagging is an ensemble learning type that uses different training sets by randomly drawing 
different samples (Breiman, 1996). Boosting, on the other hand, sequentially trains the base-learners 
and in each step it emphasizes the training instances that were previously misclassified (Schapire, 
1990). Boosting creates more complementarities between the base-learners to achieve higher accuracy 
but it also has a tendency of overfitting the data. The combination of multiple base-learners can be 
done parallely, like in voting and stacking (Wolpert, 1992), or serially, like in cascading.  

The no-free-lunch theorem tells us that finding one single algorithm that can outperform 
other learners in any dataset is not an achievable goal (Wolpert and Macready, 1997). Though, by 
following certain steps we can still design ML processes so that we choose the learner that performs 
best on a validation set. While making inference from data with ML approaches, we often face factors 
that we can control, such as the algorithm itself, and method-specific hyperparameters, and factors 
that we cannot control, such as the noise in the data. It is common to test a range of values for the 
controllable factors, but cherry picking should be avoided lest the generalization power drops. 
However, other important aspects like cost of computation, and interpretability of the result should 
also be taken into consideration while comparing different machine learning models.  

Most ML methods are not designed to show causal relationships in the data. The idea in 
traditional statistics is that the associations within the data cannot be interpreted from a causal lens, 
unless they are produced within an experimental setting. “Correlation is not causation” is a famous 
maxim in statistics, but as Judea Pearl (Pearl, 2020) puts nicely, statistics does not tell us what 
causation is. Without a model at hand to explain the process that generates the data, the data itself will 
not give us any causal relationship, but interpretability and explainability may be very important in 



UC, as the predictions could have policy implications. Typical examples are criminal behavior 
prediction (Loyola-Gonzalez, 2019) or traffic congestion mitigation  (Sun et al., 2019). 

 
 

5. A brief word of conclusion 
We have covered a very broad and rapidly progressing area in a very condensed form. The 

ML approaches we have discussed each have many variants and extensions. The most important 
concepts, however, are established and are strongly linked to long standing research in statistics, 
probability, and optimization theory. Clearly, ML-based prediction and analysis is a valuable tool for 
UC researchers, and the combination is receiving attention (Barlacchi, 2019), yet there are pitfalls of 
reductionism. Abstractions of ML can reduce people to numbers, and prediction rates and accuracies 
can create the illusion of understanding the dynamics of life in a city, but every person is unique and 
has a story, and algorithms should not be instruments to hide this fact. 
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