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Abstract Omnidirectional cameras cover more ground

than perspective cameras, at the expense of resolution.
Their comprehensive field of view makes omnidirectional

cameras appealing for security and ambient intelligence

applications. Person detection is usually a core part of

such applications. Conventional methods fail for omni-

directional images due to different image geometry and

formation. In this study, we propose a method for person

detection in omnidirectional images, which is based on

the Integral Channel Features approach. Features are ex-

tracted from various channels, such as LUV and gradient

magnitude, and classified using boosted decision trees.

Features are pixel sums inside annular sectors (doughnut

slice shapes) contained by the detection window. We

also propose a novel data structure called radial integral

image that allows to calculate sums inside annular sec-

tors efficiently. We have shown with experiments that

our method outperforms the previous state of the art

and uses significantly less computational resources.
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B. E. Demiröz, A.A. Salah, L. Akarun
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1 Introduction

We are entering an era where humans and intelligent

systems will co-exist in factory and office environments,

smart cities and roads, and home environments. Intelli-

gent systems need to detect humans in order to protect

them, serve them and communicate with them. Person

detection is a crucial step for surveillance, autonomous
vehicles and assisted living applications. Depending on

the application domain, detecting the body of a human

being is called human detection, pedestrian detection or

person detection. Many applications require the detec-

tion of multiple persons using video sensors, as well as

the tracking of detected persons, their re-identification

in different camera views, and at later times, the classi-

fication of their actions. The detection of persons in an

environment using minimal computational resources is

a challenging first step.

Many person detection studies use conventional per-

spective cameras. In that case, multiple cameras are

needed to cover the ground of interest [1]. Omnidirec-

tional cameras have a very wide field of view and might

reduce, if not eliminate, the need to use multiple per-

spective cameras. However, the use of omnidirectional

cameras for object detection has been limited. This is

partly because conventional camera approaches are not

directly applicable and need to be modified in a theo-

retically correct and practical manner to be used with

omnidirectional cameras. In this work, we propose a

method to perform person detection directly on images

obtained by omnidirectional cameras. Our method re-

quires minimal computational resources to achieve the

state of the art person detection performance.

Our contribution in this paper is twofold. First, we

introduce a novel integral image scheme for omnidirec-

tional images to speed up feature extraction. Integral
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Fig. 1: Person detection in an omnidirectional camera

setting, with the detection results of the proposed ap-

proach superimposed.

images have been extremely useful for speeding up detec-

tion problems, and were used in the rapid face detection

study proposed by Viola and Jones [37]. However, inte-

gral images work with rectangular bounding boxes, an

assumption which no longer holds in omnidirectional im-

ages. As Figure 1 illustrates, the bounding box around

the detected person is much narrower in its base. Our

proposed solution makes it possible to use integral im-

ages directly on omnidirectional camera images.

As a second contribution, we advance the state of the

art in omnidirectional camera based person detection.
Using the new integral image structure and the integral

channel features (ICF) approach [15], we outperform

recent omnidirectional camera person detection algo-

rithms [10]. We also compare our method to converting

the omnidirectional image to a panoramic image and
then applying the standard ICF method, and experimen-
tally show the superior performance of our approach.

This paper is structured as follows: In Section 2, a

brief overview of the feature extraction and person de-

tection methods using omnidirectional cameras is given.

In Section 3, our novel person detection scheme using

omnidirectional cameras is outlined, including our cam-

era model in Section 3.2, and a novel data structure,

namely the radial integral image, to rapidly extract fea-

ture vectors from omnidirectional images in Section 3.3.

In Section 4, the experiments we have conducted to
validate our approach are reported with comparisons to

the state of the art. Section 5 concludes the paper.

2 Related Work

2.1 Camera based person detection

In a classical work of object detection [11], Dalal and

Triggs extracted histogram of oriented gradient (HOG)

features from overlapping rectangular regions from the

detection window. They used these features with sup-

port vector machine (SVM) classifiers to perform human

detection. Consulting such gradient-based features is

a well established idea in person detection. Later, Zhu

et al. used integral image histograms to speed up the

feature extraction step in the HOG detector [41]. Felzen-

szwalb et al. developed a similar model with multiple

body parts, where the positions of these parts were in-

ferred as the latent variables of an SVM [19]. In [36]

authors used the covariance matrix of different image
features (i.e. covariance features) for pedestrian detec-

tion. Conventional classifiers do not perform well for

covariance matrices, because they do not form a vector

space. Instead they proposed a method to effectively do

classification with covariance features on a Riemannian

manifold.

In [2], slanted integral images are used to approxi-

mate the Laplacian of Gaussian filter to detect key points

in the image. With the slanted integral images, the area

of a right trapezodial can be computed in constant time.

In a similar vein, [30] used rotated integral images to

extract Haar-like features from images. Although the

time complexity is constant, the space complexity of

both methods increase with each added rotation angle,

because a separate integral image needs to be computed

for that angle.

Performance is a major concern in person detectors,

as the applications typically require real-time compu-

tations. In [15], authors combined the idea of boosting

multiple simple features, as in the Viola-Jones detec-

tor [37] throughout multiple channels, including the

HOG channel. Their work, namely, Integral Channel
Features (ICF), has been very successful due to its

simplicity, low computational cost and detection perfor-

mance. ICF forms the backbone of our approach. To

deal with computational performance issues, Dollar et

al. proposed that feature responses can be used to ap-

proximate feature responses at nearby scales [14]. They

accelerated person detection by avoiding the building

of the full scale space. Following a similar line of work,

Benenson et al. investigated every component of a rigid

(i.e. not part based) detector and improved HOG+SVM

miss rate by more than 30%, through adjustment of
system components such as feature pooling and normal-

ization [7]. In addition to HOG, local binary patterns

(LBP) are also used for detection [35].

In [40], authors investigated the failure cases of top

performing pedestrian detectors (most of them being

from the ICF family) in detail, and suggested ways to

design and improve existing detectors. We refer the

readers to [17] for a comprehensive review of methods

on person detection using perspective cameras.
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Introduction of deep learning changed the scene

for object detection [21, 33, 27]. Although some of

the person detection approaches rely on deep neural

networks [31] until recently, convolutional neural net-

works (CNN) failed to catch up with ICF-based meth-

ods [39, 22]. In a recent work, Cao et al. used hand-

crafted feature channels (LUV, HOG, etc.) and features

from inner layers of a CNN to perform classification

with AdaBoost [9]. This can be considered a hybrid ap-

proach, as neural networks are not used in an end-to-end

fashion. It is possible to fuse CNN features with other
detectors, but this represents a trade-off between accu-

racy and speed. Furthermore, ICF-based methods are

still attractive due to computational advantage gained

by the simplicity of these features and good detection

performance.

2.2 Detection in omnidirectional cameras

Regarding object detection studies with omnidirectional

cameras, some previous approaches first transform the

omnidirectional image into a panoramic image, and

then apply conventional detection methods on this im-

age [25, 42, 38, 23]. However, this transformation intro-

duces extra parameters for tuning, and brings additional

computational effort. Panoramic transformation also dis-

torts objects. Therefore, objects in transformed images

differ from those in perspective cameras. Especially for

tall objects, this distortion results in a decreased detec-

tion performance [10].

Geyer and Daniilidis have shown that every central

projection system can be modeled as a projection to

a sphere, followed by a backprojection to the image

plane [20]. Based on this sphere model, researchers re-

cently proposed methods to compute features directly

on omnidirectional images. Puig and Guerrero proposed

using differential operators on the sphere to construct

a scale space for omnidirectional images [32]. Arıcan

and Frossard used the same idea to construct a fea-

ture detection and extraction method for catadioptric

omnidirectional cameras [6]. The features they used is

similar to Lowe’s popular scale invariant feature trans-

form (SIFT) [29]. Lourenço et al. proposed a similar

framework, called sRD-SIFT, for images with radial

lens distortions [28]. Their method corrects the gradi-

ent using lens distortion coefficient, provided that it is

available.

Tracking people with omnidirectional cameras is rel-

evant for both indoor and outdoor settings. Saito et

al. used template matching in a Bayesian framework

to detect and track multiple people in omnidirectional

cameras [34]. They generated different templates for

people standing at different distances from the camera.

Alahi et al. used omnidirectional cameras along with

perspective cameras for person detection in a basketball

game [3, 4]. They used a dictionary of binary human

silhouettes for each discrete location and inferred the

actual occupancies using binary foreground detection as

the input. They formulated the problem as a linear in-

verse problem, and added a constraint on the maximum

number of people to enforce the sparsity of the solution.

In [12], authors used the same basketball game data to

generate ground occupancy maps by backprojecting the

foreground maps to ground plane. In [13], authors used,
silhouette based approach similar to [4], along with a

Hierarchical Hidden Markov Model to track a person in

a room and detect falls.

Features can be tailored for omnidirectional images.

Cinaroglu and Bastanlar took the traditional HOG ap-
proach and modified the features according to the Rie-

mannian metric on the sphere camera model [10]. In

that way, object detection was done directly on the
omnidirectional image. They also proposed rotating an-

nular sectors (doughnut slice shapes) to improve the

performance over rotating rectangular windows. Their

approach is computationally expensive, since the trans-

formation of HOG features is done separately for each

sliding-rotating window. In this study, we propose a

faster and more accurate approach.

In [26], a circular grid scheme was proposed instead

of a rectangular grid to calculate HOG responses over

annular sectors. In this way, cyclic shifts of the final de-
scriptor represent image rotations, which helps achieve

some rotation invariance, especially if no assumption

can be made regarding the object’s orientation. How-

ever, in omnidirectional images, standing humans are

typically aligned with lines diverging from the image

center. Incorporating full rotation invariance in such
scenarios would reduce the discriminative power.

To our knowledge, the method we propose in this

paper is the first to compute the integral image for

omnidirectional images and therefore, it is the first to

apply the state of the art ICF method [17] for object

detection with omnidirectional cameras. We describe

our approach in the next section.

3 Methodology

3.1 Integral Channel Features method

This subsection briefly describes the integral channel

features method [15], followed by a description of the

proposed radial integral channel features (RICF).

The integral channel features (ICF) method first com-

putes multiple channels from a single input image. These
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feature vector

... ...

Fig. 2: Visualization of the radial integral channel fea-

tures. Top: First, the input image is transformed into

various channels (LUV, gradient magnitude etc). Then,

radial integral images are formed. Bottom: Lastly, for

a given annular sector shaped window, the sum inside

the annular sectors (corresponding to a channel) is cal-

culated. Features are shown on the original image for
clarity.

include individual color channels (e.g. RGB, LUV), gra-

dient magnitude, HOG, and the difference of Gaussian

filtered image. Then, summarizing features are extracted

from each of these channels. These are pixel sums over

rectangular regions on the channels, which can be com-

puted rapidly using integral images. Finally, boosting is

used for classification. Using shallow decision trees as
weak classifiers also serves as for feature selection.

ICF is not directly applicable to omnidirectional im-

ages, because the rectangular feature extraction scheme

and the sliding window approach are designed for per-

spective images, and fail for the omnidirectional image
geometry. The irregular distribution of pixels in the

omnidirectional image makes it impossible to apply the

efficient recursive approaches used for rectangular ar-

eas [18]. Our proposed method replaces the sliding win-
dow with a rotating annular sector (ring/doughnut slice

shape) as in [10], and rectangular regions with annular

sectors. To calculate pixel sums inside annular sectors

rapidly, we propose a novel structure, radial integral im-

age (Section 3.3). The idea is similar to the conventional

integral image, but instead of querying points in the

Cartesian coordinate system, polar coordinates are used.

See Figure 2 for the illustration of the radial integral

channel features method.

3.2 Camera Model

In this work, we use the sphere camera model [20], ac-

cording to which all central catadioptric (mirror+lens)

systems can be modeled as projection to a sphere, fol-

Image
plane

O

pworld

psphere

pimage

f



Fig. 3: In the spherical camera model, a point is pro-

jected onto the unit sphere first, then projected onto
the image plane. For cameras using parabolic mirrors,

ξ = 1.

lowed by a secondary projection from the sphere surface
to the image plane via a projection point.

The projection point, which acts as the camera center

of a virtual camera inside the sphere, is located on the

diameter that is perpendicular to the image plane and ξ

units away from the center of the sphere (Fig 3). We can

assume that the sphere is a unit sphere and by changing

the position of the image plane, we can scale the image.

Let the z axis be perpendicular and pointing towards

the image plane; f be the distance of the image plane
to the projection point; (X,Y, Z) be the coordinates of

an arbitrary 3D point in the world, denoted by pworld;

(x, y, z) be the coordinates of psphere, which is the pro-

jection of pworld on the sphere and (xim, yim) be the

projection of psphere on the image. A graphical depiction

is shown in Figure 3. Then, r =
√
x2 + y2 + z2 and the

projection from world coordinates to image coordinates

can be expressed as:

(xim, yim) =

(
fx

ξ + z
,
fy

ξ + z

)
For cameras using parabolic mirrors, ξ = 1. In other

words, the projection point is located on the sphere. This

is a typical situation and also known as stereographic

projection. We use a dataset collected with a parabolic

mirror and use this model in the rest of the paper.

3.3 Radial Integral Image

An annulus is a region bounded by two concentric circles.

Annular sector (a.k.a. circular ring sector or doughnut

slice shape) is a cut from the annulus, which is bordered

by two straight lines from its center.
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Annular sector features are very similar to the rectan-

gular features used in integral channel features (ICF) [15].

An annular sector feature is the sum of the pixels inside

that annular sector. Instead of using Cartesian coordi-

nates to obtain sums inside rectangular regions, it uses

polar coordinates to obtain sums inside circular sectors.

Annular sector features can be calculated rapidly using

the proposed radial integral image.

Radial integral image, Ĩ, is defined as:

Ĩ(p) =
∑

q:θq≤θp,rq≤rp

I(q)

where I is the input image, p and q are pixels, θp and

rp are angular and radial coordinates of pixel p.
According to this definition, we can calculate the

sum inside an annular sector (θmin, θmax, rmin, rmax) as:

S(θmin, θmax, rmin, rmax) = Ĩ(pθmax,rmax
) − Ĩ(pθmax,rmin

)

− Ĩ(pθmin,rmax
) + Ĩ(pθmin,rmin

)

where pθ,r is the pixel that has the polar coordinates

(θ, r). See Figure 4a for an illustration. Once the radial

integral image is computed, calculating each sum has

O(1) complexity (four look-ups and three operations).

Since a given (θ, r) usually corresponds to fractional

pixel coordinates in the actual image plane, we have

used bilinear interpolation to calculate the pixel values

in the integral image. We have observed that using

interpolation instead of rounding the coordinates is a

crucial part of the sum calculation. Rounding leads to

inclusion of unwanted pixel values in the sum, whereas

interpolation provides a value much closer to the true

sum inside the given range.

If the annular sector crosses the θ = 0 angle, the sum

can not be calculated directly, but it can be decomposed

into two sums (Figure 4b):

S(θmin, θmax, rmin, rmax) = S(θmin, 2π, rmin, rmax)

+ S(0, θmax, rmin, rmax)

This requires looking up pixel values corresponding to

θ = 2π, which can be achieved by storing an extra row

for θ = 2π in addition to the radial integral image.

When n denotes the number of pixels in the image,

a näıve algorithm to compute the radial integral image

has O(n2) complexity, because for each pixel, θ and r

should be compared with a subset of pixels in the image

(on average half of the pixels). In the following section,

we adapt a way to compute the radial integral image in

O(n log n) time.

3.3.1 Fast computation of the radial integral image

Like rectangular integral image, computation of radial in-

tegral image is a domination problem. In this application,

𝑟min

𝑟max

𝑝𝑎

𝑝𝑏𝑝𝑑

𝑝𝑐

𝑆 = 𝑝𝑐 − 𝑝𝑏 − 𝑝𝑑 + 𝑝𝑎

𝑆

(a)

𝑆 = 𝑆1 + 𝑆2
= 𝑆𝜃𝑚𝑖𝑛:2𝜋 + 𝑆0:𝜃𝑚𝑎𝑥

𝜃 = 2𝜋 row𝑆2

𝑆1

(b)

Fig. 4: (a) Illustration of rapid computation of the sum

inside an annular region using radial integral image. Four

look-ups and three operations are sufficient to calculate

the sum. (b) If an annular sector query crosses θ = 2π

angle, it can be broken up into two annular sectors. In

this case, an extra column is needed to look-up values

that correspond to θ = 2π.

the question is to find which other pixels are dominated,

given a pixel and the non-rectangular image structure.

We adopt a multidimensional divide-and-conquer ap-
proach [8] to solve this 2D domination problem. In this

approach, at each recursive step, the problem of input

size n is converted to two sub-problems of input size

n/2, plus a merge step that is solved in linear time. Let

T (n) denote the complexity of calculating the radial

integral image, the corresponding recurrence becomes

T (n) = 2T (n/2) +O(n)

which is solved in O(n log n) time.

We apply this approach to our case as follows: Along

with each pixel value, we store radius r (distance from
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image center) and angle θ. Note that, domination is

computed in 2D (r, θ) space but pixels do not have a

grid structure in (r, θ) space (Figure 5a). We say that

the point p dominates q if all the coordinates (r and

θ) of p are greater than or equal to the corresponding

coordinates of q. At each step, the set of all the pixels

is divided into two subsets A and B using the median

radius value (Figure 5b). This means that the radius

of every pixel in B is greater than the radius of every

pixel in A and no pixel in A is dominating a pixel in B.

The algorithm is recursively called for A and B. These
are the two half-size sub-problems.

Upon completion of each recursive step, we are at a

point that every pixel in A gives the desired sum, and

every pixel in B gives the sum of the dominated pixels

in B (Figure 5c). Pixels in B might be dominating some

pixels in A, thus values in set B need to be updated.

This update is the merge step of the divide-and-conquer

approach. Here, we assume that pixels were sorted by θ

in a pre-processing step. In this sorted list of n points

(moving along vertical axis, Figure 5d), the algorithm
keeps track of the sum of values in A so far. Each time a

point in B is observed, the current sum is added to that

point. Therefore, the time spent for the merge operation

is O(n).

When the number of pixels in the set is less than a

particular value, we stop the recursion and switch to a

näıve implementation. This strategy avoids the recur-

sion overhead for small sets and increases CPU cache

utilization. We observed that the critical set size is 16

for our hardware architecture. We also make the imple-

mentation of the radial integral image open source1.

3.3.2 Gradient correction

It has been shown that modifying gradient magnitudes

according to the Riemannian metric on the sphere im-

proves human detection performance using omnidirec-

tional cameras [10]. For cameras with parabolic mirror,

the gradient magnitude channels are updated with:

|∇S2I| = (4 + x2 + y2)

4
|∇R2I|

where |∇S2I| and |∇R2I| are the gradient magnitudes on

the sphere and the image, respectively. We observe that

at the center of the omnidirectional image, (x,y)=(0,0),

gradients are the same. As we move from the center to

the periphery of the omnidirectional image, gradients

on the sphere are the magnified versions of the gradients

on the image.

1 The code is publicly available at https://github.com/

barisdemiroz/radial_integral_image

𝑓 + 𝑒 + 𝑎 + 𝑏

𝑑 + 𝑎 + 𝑏 + 𝑐

𝑐 + 𝑏

𝑏

𝑎

𝑟

𝜃

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑟

𝜃 𝑨 𝑩

𝑟

𝜃 𝑨 𝑩

𝑎

𝑏

𝑐 + 𝑏

𝑑

𝑒

𝑓 + 𝑒

𝑟

𝜃 𝑨 𝑩

𝑒

(a) (b)

(c) (d)

Fig. 5: Steps of computing the radial integral image. (a)

Polar coordinates and values of the pixel are given as

the input. (b) Pixels are split from the median radius to

form two equally sized sets, A and B. (c) The algorithm

is recursively called for each set. (d) Pixels are iterated

according to increasing angle value and two sets are

merged by updating the values in B.

4 Experimental setup

In our experiments, we followed a setting that is very

similar to the one described in the original ICF pa-

per [15]. For each input image, we extracted 10 channels

in total: LUV for color, gradient magnitude and gra-

dient histogram for 6 equally spaced orientations. We

generated 20 000 random features and trained an Ad-

aBoost classifier with 1024 decision trees with a depth

of two. This gives a good balance between classification

accuracy and computational load.

We present three sets of experiments: For the first

experiment, we have generated artificial omnidirectional

images using the images in the INRIA dataset [11].

We report false positive per window versus miss rate

for this experiment and show the validity of our ap-

proach. The second experiment was conducted on real

omnidirectional images and compares a state of the art

approach with the proposed method, illustrating the

improvement in accuracy and speed. Lastly, we compare

the performance of our method against transforming

omnidirectional images to panoramic images and using

a conventional person detection method and show that

https://github.com/barisdemiroz/radial_integral_image
https://github.com/barisdemiroz/radial_integral_image
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working directly on omnidirectional images is a better

approach.

4.1 Evaluation on the INRIA Person Dataset

The first set of experiments are intended as a valida-

tion of the method using artificially generated omni-

directional images. For this purpose, we have created

a virtual camera, placed images such that the persons

feet are on the ground plane, and projected the INRIA

images onto the omnidirectional camera’s image plane

(Figure 6). For each image, we have applied a random

rotation to the camera around the vertical axis. We have

trained our classifier with all of the 2416 positive sam-

ples and 5000 random windows from negative samples

from the INRIA training set.

INRIA sample

Omnidirectional 
Camera

Fig. 6: Left: Each sample in the INRIA dataset is placed

on the ground plane and a virtual omnidirectional image

is formed (camera is shown as a sphere since we used

the sphere camera model). Right: Some examples of the

resulting images.

Using these artificial omnidirectional images, we have

trained a boosted classifier utilizing features extracted

using radial integral images2. Training the final Ad-

aBoost classifier only takes approximately 2 minutes on

our hardware, thanks to early pruning of underachieving

features [5]. For performance, we have used a custom ra-

dial integral image implementation that processes a part

of the full omnidirectional image (which corresponds to

the projected INRIA image). Feature extraction, train-

ing and classification require minimal resources. All of

the experiments are run on a PC with an Intel i7 CPU

and 4GB RAM.

We plot false positive per window (fppw) versus miss

rate (Figure 7) and we observe 85.3% detection rate at

the reference point of 10−4 fppw. Considering that the

detection rate for perspective cameras is around 90%

[15], this result shows that our approach is plausible for

2 The code is publicly available at https://github.com/

barisdemiroz/adaboost_cpp

10-5 10-4 10-3 10-2 10-1

false positive per window

0.001

0.005

0.01 

0.02 

0.05 

0.1  

0.2  

0.5  

m
is

s 
ra

te

original
-20%
-15%
-10%
+10%
+20%
+30%

Fig. 7: The performance of the proposed method (RICF)

on the INRIA dataset, where each window is trans-

formed into an omnidirectional image. The performance

decreases rapidly as the test images gets further away

from the camera. Best viewed in color.

Fig. 8: Top left: An example image synthesized from

the INRIA dataset. Top two rows: Channels generated

from the image. 6 gradient orientations (starting from

zero degrees), gradient magnitude and L, U, V channels

respectively. Bottom two rows: Visualization of learned

features from the training data. Each feature region

is painted and averaged for visualization. Images cor-

respond to the aforementioned channels in the same
order.

semi-synthetic omnidirectional images. In Figure 7, we

have also plotted the performance of the same classifier

by changing the distance of the INRIA samples to the

camera by -20%, -15%, -10%, +10%, +20% and +30%.

We have trained a single classifier and run on the dif-

ferent samples without scaling the detection window or

the test image. The performance decreases rapidly as

the samples are placed away from the distance it was

trained on. This is due to the image of the INRIA sam-

ples being significantly different at different distances

and the classifier trained for a particular distance can-

https://github.com/barisdemiroz/adaboost_cpp
https://github.com/barisdemiroz/adaboost_cpp
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not be applied directly to the human shapes at different

distances. For detection in real omnidirectional images,

we run the detector at multiple scales to detect people

at different distances (see Figure 1 and 10). In the next

section (Section 4.2) we report the performance on real

omnidirectional images. The visualization of the chan-

nels and selected features after boosting can be seen

in Figure 8. Note that for related gradient orientations,

features are clustered around shoulders. For the gradi-

ent magnitude and color channels, most of the learned

features are from regions covered by the human body.

The false positive per window criterion is better

suited for evaluating a binary classifier. On the other

hand, for evaluating an end-to-end detection system,

using false positive per image (fppi) is a better criterion,

because in such a setting ideally all possible windows

are considered, resulting potentially in much more false

positives than the per-window approach [16]. Besides,

not all detectors work on a per-window basis. Using
fppi allows us to compare results of different type of

detectors. However, in this section we used fppw because

we generate human centered omnidirectional images

which leaves the rest of the image unrealistic, if not

empty. We report experiments using the false positive

per image (fppi) criterion in Section 4.2, which uses real

omnidirectional images.

4.2 Evaluation on the IYTE omnidirectional image

dataset

For the second experiment we have compared our method

with Cinaroglu and Bastanlar’s recent approach, which

is the state of the art in omnidirectional person detec-

tion [10]. We trained a detector using artificial omnidi-

rectional images using the INRIA dataset as described

in the previous section. For testing, we used the same

dataset3 with [10]. This dataset contains images taken

with a real omnidirectional camera (Figure 9) and hu-

mans are manually annotated for each segmented person
as annular sectors. While testing, we use a scale step

of 1.04 and window step size of 6 pixels. Note that for

rotating annular sectors, the window step size corre-

sponds to varying angle step size for different radii. We

have also experimented with different step sizes. We

have observed that increasing step size affects the per-

formance only slightly because, in IYTE dataset the

humans are large and the detection windows are always

dense enough on multiple scales to capture humans. In

Figure 1 an example result of our RICF method can be

seen. In Figure 10 example instances can be seen where

our RICF method fails.

3 IYTE dataset - available at http://cvrg.iyte.edu.tr

Fig. 9: Three samples from the IYTE dataset.

In [10], precision-recall curves are reported for their

OmniHOG method. To keep the comparison fair, we
report our results using the same metrics, namely pre-

cision and recall. We have selected a similar ratio of

the negative samples as well. We also provide a false

positive per image vs. miss rate plot, which is better

suited for the person detection task.

The precision-recall curve shows that we have sur-

passed the detection performance of OmniHOG (Fig-

ure 11a). We have also obtained 11.59% log-average

miss rate on the IYTE dataset where the miss rate at

fppi = 1 is 4.5% (Figure 11b). In [17] it is reported that

10% missrate at fppi=1 is the best result for the datasets

evaluated. Although our dataset is different and not as

challenging as some of those datasets, our results show

that using semi-synthetic omnidirectional images is a

viable way to train person detectors for omnidirectional

cameras.

Also note that, our method RICF is much faster than

OmniHOG, since in OmniHOG, the transformation of

HOG features is done separately for each sliding-rotating

window. For a given input image, OmniHOG takes about

17 milliseconds per window, where our lightly optimized

OmniIntegral implementation takes 1.6 milliseconds per

window on a similar hardware. In other words, our

method is more than 10 times faster than the previous

state of the art.

4.3 Evaluation on panoramic images

Lastly, we compare the performance of our method

against transforming the omnidirectional image to a

panoramic image and using a conventional integral im-

age sliding window approach [15]. We chose to compare
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Fig. 10: Example instances where our RICF method fails.

Top: False negative example. Bottom: False positive

example.

our method against this baseline approach, because this

is usually the most straightforward way to work with
omnidirectional images [25, 42, 38, 23].

We have used spherical projection to convert omnidi-

rectional images to panoramic images. Spherical projec-
tion provides equi-angular representation in the vertical

direction of panoramic images and it was shown to pro-

vide better performance over cylindrical projection [24].

We also set the image height so that it preserves the

2:1 aspect ratio for humans. By doing this, we actually

gave the panoramic method an advantage. Nonetheless,

our proposed radial integral channel features method

outperformed the panoramic method (Figure 11a). We

conclude that working directly on omnidirectional im-

ages instead of transforming them into panoramic images

has clear benefits for person detection. Besides, since the

omnidirectional integral image is computed only once

for the input image, the computational complexity of

detection on the omnidirectional image is not higher

than converting to a panoramic image and applying the

standard perspective camera method.
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Fig. 11: Comparison of our method with [10]. Best

viewed in color. (a) Working directly on omnidirectional

images outperforms transforming image to panoramic

and using conventional method (Pano ICF). Omni HOG
and Pano HOG results are taken from [10], higher pre-

cision values are better. (b) Miss rate vs. false positive

per image plot of our method and Omni HOG method,

where lower values are better.

5 Conclusions

In this paper, we have presented a novel method, called

radial integral channel features (RICF), to detect people

in images acquired by omnidirectional cameras. We have

presented a new data structure called radial integral im-

age to speed up feature extraction in omnidirectional

images. RICF beats the current state of the art for per-

son detection in omnidirectional cameras and demands

less computational resources.

Our experiments illustrate that working directly on

native omnidirectional images is better than convert-

ing them to panoramic images, followed by applying
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traditional approaches. The distortions caused by such

rectification are problematic. If efficient native versions

of useful algorithms are introduced, omnidirectional

cameras will be more accessible to system developers.

Efficient omnidirectional image processing for detect-

ing humans has great potential for many applications,

including indoor scenarios such as smart environments

and mobile robot based applications, as well as outdoor

scenarios, such as pedestrian detection. We believe ad-

vances such as proposed in this paper will result in more

widespread use of omnidirectional cameras.
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