
JDQR

jdqr computes eigenpairs of a square matrix or operator.

Lambda = jdqr(A) returns the absolute largest eigenvalues of A in a k vector Lambda.
Here k = min(5,n) and n = size(A,1). jdqr(A) (without output argument) displays
the k eigenvalues.

[X,Jordan] = jdqr(A,B) returns the eigenvectors X and the Jordan structure Jordan:
A∗X = X∗Jordan. The diagonal of Jordan contains the eigenvalues: Lambda =
diag(Jordan). Jordan is an k by k matrix with the eigenvalues on the diagonal and
possibly non-zeros on the first upper diagonal elements. The other entries are zero.
The columns of X have norm 1.

[X,Jordan,Q,S] = jdqr(A)
If four or more output arguments are required then Q is n by k orthonormal, and S is k
by k upper triangular such that they form a partial generalized Schur decomposition:
A∗Q = Q∗S. Then Lambda = diag(S) and X = Q∗Y with Y the eigenvectors of the pair
S: S∗Y = Y∗Jordan (see also Options.Schur).

... = jdqr(A)

... = jdqr(’Afun’)

... = jdqr(’Afun’,n)
The first input argument is either a square matrix (which can be full or sparse, sym-
metric or nonsymmetric, real or complex), or a string containing the name of an M-
file which applies a linear operator to the columns of a given matrix. In the latter
case, the M-file, say Afun.m, must return the dimensionn of the problem with n =
Afun([],’dimension’) orn must be specified in the list of input arguments. For
example, jdqr(’fft’,...) is much faster than jdqr(F,...), where F is the explicit
FFT matrix.

The remaining input arguments are optional and can be given in practically any order:
... = jdqr(A,k,Sigma,Options,M)
... = jdqr(’Afun’,k,Sigma,Options,M),
where

k an integer, the number of desired eigenvalues.
Sigma a scalar shift or a two letter string.
Options a structure containing additional parameters.
M a string or a matrix that specifies the preconditioner.

If k is not specified, then k = min(n,5) eigenvalues are computed.

If Sigma is not specified, then the kth eigenvalues largest in magnitude are com-
puted. If Sigma is a real or complex scalar, then the kth eigenvalues nearest Sigma
are computed. If Sigma is row vector of size (1,m), then the jth eigenvalue nearest
to Sigma(1,min(m,j)) is computed for j = 1:k. Sigma is the “target” for the de-
sired eigenvalues. If Sigma is one of the following strings, then it specifies the desired
eigenvalues.

1

Sigma Specified eigenvalues

’LM’ Largest Magnitude
’SM’ Smallest Magnitude (same as Sigma = 0)
’LR’ Largest Real part
’SR’ Smallest Real part
’BE’ Both Ends. Computes k/2 eigenvalues from each end of the

spectrum (one more from the high end if k is odd.)

If ’TestSpace’ is ’Harmonic’ (see Options), then Sigma = 0 is the default, otherwise
Sigma = ’LM’ is the default.

The Options structure specifies certain parameters in the algorithm.

Field name Parameter Default

Options.Tol Convergence tolerance:
norm(r) <= tol/sqrt(k)

1e-8

Options.jmin Minimum dimension search subspace V k+5
Options.jmax Maximum dimension search subspace V jmin+5
Options.MaxIt Maximum number of iterations. 100
Options.v0 Starting space ones+0.1∗rand
Options.Schur Gives schur decomposition

If ’yes’, then X and Jordan are not computed
and [Q,S,history] is the list of output argu-
ments.

’no’

Options.TestSpace Defines the test subspace W
’Standard’: W = V
’Harmonic’: W = A∗V-sigma∗V

’standard’

Options.Disp If Disp=1 or Disp=’yes’, then, the input pa-
rameters, the residual size at each step, and the
eigenvalues at detection are displayed, and the
convergence history is plotted.
If Disp=2 then, in addition, approximate eigen-
values are plotted at each step.

’no’

Options.LSolver Linear solver ’GMRES’
Options.LS Tol Residual reduction linear solver 1,0.7,0.7̂2,...
Options.LS MaxIt Maximum number it. linear solver 5
Options.LS ell ell for BiCGstab(ell) 4
Options.Precond Preconditioner(see below). identity.

For instance,
Options = struct(’Tol’,1.0e-8,’LSolver’,’BiCGstab’,’LS ell’,4,’Precond’,M);

changes the convergence tolerance to 1.0e-8, takes BiCGstab as linear solver, and
takes M as preconditioner (for ways of defining M, see below).
There are a few other Options that can be specified. They are listed below .

[X,Jordan,history] = jdqr(A,...)
[X,Jordan,Q,S,history] = jdqr(A,...)
returns also the convergence history.
history is an array of 3 columns: history(i,1) is the residual norm at step j =
history(i,2), history(i,3) is the cumulative number of multiplications by A at
step j. If a search for a new eigenvalue is started at step J then j = history(i,2) =
history(i+1,2), history(i,1) is the norm of the ”old” residual, and history(i+1,1)
is the norm of the ”new” one. history is empty if the required number of eigenvalues
are detected in the initialization phase.

2

jdqr without input arguments returns the options and its defaults.

Preconditioning in jdqr

The action ‘M inverse’ of the preconditioner M (an approximation of A-lambda∗I) on an
n-vector v can be defined in the Options

Options.Precond
Options.L Precond (same as Options.Precond)
Options.U Precond
Options.P Precond

and also in the argument list:
... = jdqr(...,k,sigma,M,options)
... = jdqr(...,k,sigma,L,U,options)
... = jdqr(...,k,sigma,’M’,options)
... = jdqr(...,k,sigma,’L’,’U’,options)

If no preconditioner has been specified (or is []), then M\v = v (M is the identity).
If Precond is an n by n matrix, say, K, then

M\v = K\v.
If Precond is an N by 2∗N matrix, say, K, then

M\v = U\L\v, where K = [L,U], and L and U are n by n matrices.
If Precond is a string, say, ’Mi’, then

if Mi(v,’L’) and Mi(v,’U’) return n-vectors
M\v = Mi(Mi(v,’L’),’U’)

otherwise
M\v = Mi(v) or M\v = Mi(v,’preconditioner’).

Note that Precond and A can be the same string.
If L Precond and U Precond are strings, say, ’Li’ and ’Ui’, respectively, then

M\v = Ui(Li(v)).
If (P precond,) L Precond, and U precond are n by n matrices, say, (P,) L, and U,
respectively, then

M\v = U\L\(P∗v) (i.e., P∗M = L∗U).

The way the preconditioner is used can be specified in the Options, see below.

Way of using a preconditioner

The way the preconditioner is used can be specified in the Options.
Options.Type Precond (default ’left’)

The preconditioner can be used as explicit left preconditioner (’left’), as explicit right
preconditioner (’right’), or implicitly (’impl’).

In this subsection,
• an MV (matrix vector multiplication) is an operation by A,
• a PS (preconditioner solve) is a solution of the system Mt = v, where M is the
preconditioner (i.e., the computation of M\v),

3

Explicit versus implicit. If explicit preconditioning is used, then there is an ad-
ditional PS needed each time the correction equation is solved. The total number
of PSs that jdqr will take is equal to the total number of MVs plus the number of
Jacobi-Davidson steps (the number of outer iterations).
With implicit preconditioning the number of PSs reduces to the number of MVs plus
the number of detected eigenvalues. However, implicit preconditioning requires more
memory. For BiCGstab(ell), 2∗ell additional n-vectors have to be stored. If GMRES is
requested as linear solver, then FGMRES is used, requiring storage of an additional m
n-vectors. Here m is the maximum number of steps that GMRES needs to achieve the
required residual reduction.
Implicit preconditioning in CG does not lead to additional memory requirements and
jdqr uses implicit preconditioning whenever CG is selected as linear solver.
Implicit precondioning in MINRES and in SYMMLQ does not reduce the PSs. More-
over, it requires storage of one additional n-vector. However, with implicit precondi-
tioning, there is no need specify the factors L and L’ of the preconditioner M (M = LL∗).
Therefore, jdqr uses implicit preconditioning also if MINRES or SYMMLQ is selected
as linear solver.
The methods CG, MINRES and SYMMLQ require a positive definite preconditioner.
By storing the preconditioned vectors of the search subspace the number of PSs can be
reduced even further. Then the number of PSs will be equal to the number of MVs.
However, this strategy has not been implemented in jdqr.
There may be a slight deviation in the count of PSs and MVs if jdqr detects more than
one eigenpair at the same iteration step.

Right versus left. If explicit right preconditioning is used, then the size of the resid-
ual is available in the inner loop, that is, the size of the residual of the iterative solver for
the correction equation. With explicit left preconditioning, only ‘preconditioned’ resid-
uals are available. However, right preconditioning, as well as implicit preconditioning,
requires slightly more projections in GMRES and BiCGstab(ell).

Additional Options

Options.Pairs (default ’no’)
If ’yes’, then jdqr searches for the complex conjugate eigenpair whenever an eigen-
pair has been detected. If A and B are real matrices, or the operators correspond to
real matrices, then (λ̄, x̄) is an eigenpair if (λ, x) is one. Since the eigenpairs are not
computed in full accuracy and since a generalized Schur decomposition is computed
instead of eigenpairs, the conjugate of an approximate eigenpair may not have the re-
quired precision and jdqr may take additional iterations to obtain the conjugate pair
in the desired accuracy.

Options.FixShift (default ’no’)
If Options.FixShift is scalar and Sigma(1,:) is a scalar, then jdqr takes Sigma as
shift in the correction equation until the norm of the residual times Options.FixShift
is less than 1. From then on, the shift is taken equal to the present approximate
eigenvalue.
If Options.FixShift = ’yes’ then Options.FixShift= 1.0e+3.
If Options.FixShift = ’no’ is the same as Options.FixShift = 0.

4

Options.Track (default ’1e-4’)
If the wanted eigenvalue is relatively far from the target, then the algorithm may
select approximate eigenvalues that are accidentally close to the target instead of the
approximate eigenvalue that is close to the wanted eigenvalue. To avoid this type
of misselection, the target can be moved to an approximate eigenvalue that is close
to the wanted eigenvalue. The size of the norm of the residual is used to measure
the quality of the approximate eigenvalue. If norm(r)<= Options.track, then the
associated approximate eigenvalue is used as target in the next iteration step.

Options.AvoidStag (default ’no’)
In some situations, the algorithm stagnates because the computed expansion vector for
the search subspace belongs to the search subspace or is close to it. With ’yes’, jdqr
tries to remedy this type of stagnation. In the correction equation in the next iteration
step, jdqr projects then on the complete search subspace rather than on the current
eigenvector approximation.

Options.LS Tol (default [1,0.7,0.72,...])
LS Tol sets the residual reduction for the linear solver of the correction equation.
If LS Tol is a positive real then the correction equation is solved with a residual reduc-
tion of LS Tol in each Jacobi-Davidson step.
If LS Tol is a row [a1, a2, . . . , ap] of positive reals then the correction equation at the
ith Jacobi-Davidson step is solved with a residual reduction of ai provided that i ≤ p.
If i = p+ j, then the residual reduction at the ith Jacobi-Davidson step is ap ∗ bj where
b = ap/ap−1.
i is reset to 0 when a Schur vector is detected.
The required residual reduction is not obtained if the maximum number LS MaxIt of
iteration steps of the linear solver is reached before.
The default for LS Tol is [1,0.7] if a preconditioner is used (then ai = 0.7i−1). In
the other case, the default is [0.7,0.49] (then ai = 0.7i).

Accuracy

Options.Tol (default 1.0e-8)
jdqr accepts an approximate Schur vector q with associated eigenvalue lambda if the
2-norm of the residual r is less than Options.Tol. Then we have that

norm(A*Q-Q*S,’fro’) < Tol

How accurate the approximations of the eigenvectors and the invariant subspaces are,
depends on the conditioning of these quantities.
The residual that jdqr computes is given by r = (I-Q*Q’)*(A*q-theta*B*q).

5

