WISB356, Utrecht, 9 oktober 2012
 Scientific Computing

Gerard Sleijpen Rob Bisseling

Universiteit Utrecht

Department of Mathematics Alessandro Sbrizzi
http://www.staff.science.uu.nl/~sleij101/

Preconditioneren

van

iteratieve methoden

$\|$
Gerard Sleijpen

Universiteit Utrecht Department of Mathematics
http://www.staff.science.uu.nl/~sleij101/

Program

- Flexible GCR
- Preconditioning
- D-ILU
- Incomplete LU-decomposition
- Why preconditioning?
- Costs
- How to include a preconditioner
- Savings

The costs of GCR and of Gaussian elimination are comparable for our equations

$$
\mathbf{A x}=\mathbf{b}
$$

from 2 dimensional advection-diffusion.
(For problems from $3 \mathrm{~d}, \mathrm{GCR}$ is the clear winner).

An additional action is required to make iterative methods more efficient.

Program

- Flexible GCR
- Preconditioning
- D-ILU
- Incomplete LU-decomposition
- Why preconditioning?
- Costs
- How to include a preconditioner
- Savings

GCR

$$
\begin{aligned}
& \text { Choose tol }>0, \mathbf{x}, k_{\max }, \\
& \text { Compute } \mathbf{r}=\mathbf{b}-\mathbf{A x} \\
& \text { For } k=0,1,2, \ldots, k_{\max } \\
& \text { Stop if }\|\mathbf{r}\|_{2} \leq t o l\|\mathbf{b}\|_{2} \\
& \mathbf{u}_{k}=\mathbf{r} \\
& \mathbf{c}_{k}=\mathbf{A} \mathbf{u}_{k} \\
& \text { For } j=0,1,2, \ldots, k-1 \\
& \beta \leftarrow \mathbf{c}_{j}^{*} \mathbf{c}_{k} / \sigma_{j} \\
& \mathbf{u}_{k}=\mathbf{u}_{k}-\beta \mathbf{u}_{j} \\
& \mathbf{c}_{k}=\mathbf{c}_{k}-\beta \mathbf{c}_{j} \\
& \text { end for } \\
& \sigma_{k}=\mathbf{c}_{k}^{*} \mathbf{c}_{k}, \alpha \leftarrow \mathbf{c}_{k}^{*} \mathbf{r} / \sigma_{k} \\
& \mathbf{x} \leftarrow \mathbf{x}+\alpha \mathbf{u}_{k} \\
& \mathbf{r} \leftarrow \mathbf{r}-\alpha \mathbf{C}_{k} \\
& \text { end for }
\end{aligned}
$$

GCR

$$
\begin{aligned}
& \text { Choose tol }>0, \mathbf{x}, k_{\max }, \\
& \text { Compute } \mathbf{r}=\mathbf{b}-\mathbf{A x} \\
& \text { For } k=0,1,2, \ldots, k_{\max } \\
& \text { Stop if }\|\mathbf{r}\|_{2} \leq{\text { tol }\|\mathbf{b}\|_{2}}^{\text {Solve } \mathbf{A} \mathbf{u}_{k}=\mathbf{r} \text { for } \mathbf{u}_{k}} \\
& \mathbf{C}_{k}=\mathbf{A} \mathbf{u}_{k} \\
& \text { For } j=0,1,2, \ldots, k-1 \\
& \beta \leftarrow \mathbf{c}_{j}^{*} \mathbf{c}_{k} / \sigma_{j} \\
& \mathbf{u}_{k}=\mathbf{u}_{k}-\beta \mathbf{u}_{j} \\
& \mathbf{C}_{k}=\mathbf{c}_{k}-\beta \mathbf{c}_{j} \\
& \text { end for } \\
& \sigma_{k}=\mathbf{c}_{k}^{*} \mathbf{c}_{k}, \alpha \leftarrow \mathbf{c}_{k}^{*} \mathbf{r} / \sigma_{k} \\
& \mathbf{x} \leftarrow \mathbf{x}+\alpha \mathbf{u}_{k} \\
& \mathbf{r} \leftarrow \mathbf{r}-\alpha \mathbf{C}_{k} \\
& \text { end for }
\end{aligned}
$$

If, in GCR, we replace the line

$$
\mathbf{u}_{k}=\mathbf{r}_{k}
$$

in, say, the fourth step ($k=4$) by
Solve $\mathbf{A} \mathbf{u}_{k}=\mathbf{r}_{k}$ for \mathbf{u}_{k},
then $\mathbf{r}_{k+1}=\mathbf{0}$.

If, in GCR, we replace the line

$$
\mathbf{u}_{k}=\mathbf{r}_{k}
$$

in, say, the fourth step ($k=4$) by

$$
\text { Solve } \mathbf{A u}_{k}=\mathbf{r}_{k} \text { for } \mathbf{u}_{k},
$$

then $\mathbf{r}_{k+1}=\mathbf{0}$.

However,
solving $\mathbf{A u}_{k}=\mathbf{r}_{k}$ is as hard as solving $\mathbf{A x}=\mathbf{b}$.

If, in GCR, we replace the line

$$
\mathbf{u}_{k}=\mathbf{r}_{k}
$$

in, say, the fourth step ($k=4$) by

$$
\text { Solve } \mathbf{A u}_{k}=\mathbf{r}_{k} \text { for } \mathbf{u}_{k},
$$

then $\mathbf{r}_{k+1}=\mathbf{0}$.

However, solving $\mathbf{A u}_{k}=\mathbf{r}_{k}$ is as hard as solving $\mathbf{A x}=\mathbf{b}$.

But it suggests that (cheaply) finding an approximate solution of $\mathbf{A} \mathbf{u}_{k}=\mathbf{r}_{k}$ might be a good idea.

Flexible GCR

$$
\begin{aligned}
& \text { Choose tol }>0, \mathbf{x}, k_{\max }, \\
& \text { Compute } \mathbf{r}=\mathbf{b}-\mathbf{A x} \\
& \text { For } k=0,1,2, \ldots, k_{\max } \\
& \text { Stop if }\|\mathbf{r}\|_{2} \leq \text { tol }\|\mathbf{b}\|_{2} \\
& \text { Find an appropriate search vector } \mathbf{u}_{k} \\
& \mathbf{C}_{k}=\mathbf{A} \mathbf{u}_{k} \\
& \text { For } j=0,1,2, \ldots, k-1 \\
& \beta \leftarrow \mathbf{C}_{j}^{*} \mathbf{c}_{k} / \sigma_{j} \\
& \mathbf{u}_{k}=\mathbf{u}_{k}-\beta \mathbf{u}_{j} \\
& \mathbf{C}_{k}=\mathbf{C}_{k}-\beta \mathbf{C}_{j} \\
& \text { end for } \\
& \sigma_{k}=\mathbf{C}_{k}^{*} \mathbf{c}_{k}, \alpha \leftarrow \mathbf{C}_{k}^{*} \mathbf{r} / \sigma_{k} \\
& \mathbf{X} \leftarrow \mathbf{x}+\alpha \mathbf{u}_{k} \\
& \mathbf{r} \leftarrow \mathbf{r}-\alpha \mathbf{c}_{k} \\
& \text { end for }
\end{aligned}
$$

Find an appropriate search vector \mathbf{u}_{k}

In principle, any appropriate vector \mathbf{u}_{k} can be "injected" in the search subspace.

Example.

- \mathbf{u}_{0} is the vector variant of the pressure function in the neighbourhood of a pump.
- $\mathbf{u}_{0}=\widetilde{\mathbf{x}}$, with $\widetilde{\mathbf{x}}$ the solution before installing a pump, or before the river started carrying water.
- The solution of $\mathbf{A} \mathbf{u}_{k}=\mathbf{r}_{k}$ as obtained with m steps of GCR (GCR is nested here with itself).
- Eigenvectors of \mathbf{A} that correspond to small eigenvalues.

Find an appropriate search vector \mathbf{u}_{k}

In principle, any appropriate vector \mathbf{u}_{k} can be "injected" in the search subspace.

Remark. In this generality
flexible GCR does not form a Krylov subspace.

Find an appropriate search vector \mathbf{u}_{k}

In principle, any appropriate vector \mathbf{u}_{k} can be "injected" in the search subspace.

A systematic way to find appropriate vectors \mathbf{u}_{k} (that is, vectors that are more effective than $\mathbf{u}_{k}=\mathbf{r}_{k}$) is with a so-called preconditioner.

Program

- Flexible GCR
- Preconditioning
- D-ILU
- Incomplete LU-decomposition
- Why preconditioning?
- Costs
- How to include a preconditioner
- Savings

Preconditioning

An n by n matrix \mathbf{M} is called a preconditioner if

- the system $\mathbf{M u}_{k}=\mathbf{r}_{k}$ can efficiently be solved and
- M approximates \mathbf{A} (to some degree).
that is, $\mathbf{u}_{k}=\mathbf{M}^{-1} \mathbf{r}_{k}$ is more effective than $\mathbf{u}_{k}=\mathbf{r}_{k}$ in finding an approximate solution of $\mathbf{A u}=\mathbf{r}_{k}$.

Preconditioned GCR

$$
\begin{aligned}
& \text { Choose tol }>0, \mathbf{x}, k_{\max }, \\
& \text { Compute } \mathbf{r}=\mathbf{b}-\mathbf{A x} \\
& \text { For } k=0,1,2, \ldots, k_{\max } \\
& \text { Stop if }\|\mathbf{r}\|_{2} \leq \text { tol }\|\mathbf{b}\|_{2} \\
& \text { Solve } \mathbf{M u}_{k}=\mathbf{r}_{k} \text { for } \mathbf{u}_{k} \\
& \mathbf{c}_{k}=\mathbf{A} \mathbf{u}_{k} \\
& \text { For } j=0,1,2, \ldots, k-1 \\
& \beta \leftarrow \mathbf{c}_{j}^{*} \mathbf{c}_{k} / \sigma_{j} \\
& \mathbf{u}_{k}=\mathbf{u}_{k}-\beta \mathbf{u}_{j} \\
& \mathbf{c}_{k}=\mathbf{c}_{k}-\beta \mathbf{c}_{j} \\
& \text { end for } \\
& \sigma_{k}=\mathbf{c}_{k}^{*} \mathbf{C}_{k}, \alpha \leftarrow \mathbf{c}_{k}^{*} \mathbf{r} / \sigma_{k} \\
& \mathbf{x} \leftarrow \mathbf{x}+\alpha \mathbf{u}_{k} \\
& \mathbf{r} \leftarrow \mathbf{r}-\alpha \mathbf{c}_{k} \\
& \text { end for }
\end{aligned}
$$

Preconditioning

An n by n matrix \mathbf{M} is called a preconditioner if

- the system $\mathbf{M} \mathbf{u}_{k}=\mathbf{r}_{k}$ can efficiently be solved and
- \mathbf{M} approximates \mathbf{A} (to some degree).

Examples.

- Diagonal preconditioning. $\mathbf{M} \equiv \mathbf{D}_{A} \equiv \operatorname{diag}(\mathbf{A})$.

Preconditioning

An n by n matrix \mathbf{M} is called a preconditioner if

- the system $\mathbf{M} \mathbf{u}_{k}=\mathbf{r}_{k}$ can efficiently be solved and
- \mathbf{M} approximates \mathbf{A} (to some degree).

Examples.

- Diagonal preconditioning. $\mathbf{M} \equiv \mathbf{D}_{A} \equiv \operatorname{diag}(\mathbf{A})$.

Usually this does not lead to a 'great' reduction in the number of required iteration steps. But, on the other hand, application of this preconditioner is extremely cheap.

Solving $\mathbf{D}_{A} \mathbf{u}_{k}=\mathbf{r}_{k}$ costs n flop extra per step. In k steps this is $k n$ flop.
With a reduction of the required number of steps from, say, 100 to 98 the 'gain' would be $1200 n$ flop with a 'loss' of only $100 n$ flop

Preconditioning

An n by n matrix \mathbf{M} is called a preconditioner if

- the system $\mathbf{M} \mathbf{u}_{k}=\mathbf{r}_{k}$ can efficiently be solved and
- \mathbf{M} approximates \mathbf{A} (to some degree).

Examples.

- Diagonal preconditioning. $\mathbf{M} \equiv \mathbf{D}_{A} \equiv \operatorname{diag}(\mathbf{A})$.
- Gauss-Seidel. $\mathbf{M} \equiv \mathbf{L}_{A}+\mathbf{D}_{A}$ where \mathbf{L}_{A} is the strict lower triangular part \mathbf{A} :

$$
\mathbf{L}_{i, j}=\mathbf{A}_{i, j} \text { if } i>j \text { and } \mathbf{L}_{i, j}=0 \text { else. }
$$

Preconditioning

An n by n matrix \mathbf{M} is called a preconditioner if

- the system $\mathbf{M} \mathbf{u}_{k}=\mathbf{r}_{k}$ can efficiently be solved and
- \mathbf{M} approximates \mathbf{A} (to some degree).

Examples.

- Diagonal preconditioning. $\mathbf{M} \equiv \mathbf{D}_{A} \equiv \operatorname{diag}(\mathbf{A})$.
- Gauss-Seidel. $\mathbf{M} \equiv \mathbf{L}_{A}+\mathbf{D}_{A}$.
- A variant: $\mathbf{M}=\mathbf{D}_{A}+\mathbf{U}_{A}$ with \mathbf{U}_{A} the strict upper triangular part of \mathbf{A}.
- A variant called Successive overrelaxation: $\mathbf{M} \equiv \mathbf{L}_{A}+\frac{1}{\omega} \mathbf{D}_{A}$ with ω a relaxation parameter.

Preconditioning

An n by n matrix \mathbf{M} is called a preconditioner if

- the system $\mathbf{M} \mathbf{u}_{k}=\mathbf{r}_{k}$ can efficiently be solved and
- \mathbf{M} approximates \mathbf{A} (to some degree).

Examples.

- Diagonal preconditioning. $\mathbf{M} \equiv \mathbf{D}_{A} \equiv \operatorname{diag}(\mathbf{A})$.
- Gauss-Seidel. $\mathbf{M} \equiv \mathbf{L}_{A}+\mathbf{D}_{A}$.
- Symmetric Successive overrelaxation.

$$
\mathbf{M} \equiv\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{U}\right)
$$

with $\mathbf{D} \equiv \frac{1}{\omega} \mathbf{D}_{A}$ for a relaxation parameter ω.
These "classical" preconditioners have been introduced (and used until ± 1975 only) in combination with Richardson iteration. From ± 1985 on they where used as preconditioner.

Preconditioning

An n by n matrix \mathbf{M} is called a preconditioner if

- the system $\mathbf{M} \mathbf{u}_{k}=\mathbf{r}_{k}$ can efficiently be solved and
- \mathbf{M} approximates \mathbf{A} (to some degree).

Examples.

- Diagonal preconditioning. $\mathbf{M} \equiv \mathbf{D}_{A} \equiv \operatorname{diag}(\mathbf{A})$.
- Gauss-Seidel. $\mathbf{M} \equiv \mathbf{L}_{A}+\mathbf{D}_{A}$.
- Symmetric Successive overrelaxation.

$$
\mathbf{M} \equiv\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{U}\right)
$$

with $\mathbf{D} \equiv \frac{1}{\omega} \mathbf{D}_{A}$ for a relaxation parameter ω.
Note that $\mathbf{M}=\mathbf{A}+\mathbf{R}$ for

$$
\mathbf{R} \equiv\left(\frac{1}{\omega}-1\right) \mathbf{D}_{A}+\mathbf{L}_{A} \mathbf{D}^{-1} \mathbf{U}_{A}
$$

Program

- Flexible GCR
- Preconditioning
- D-ILU
- Incomplete LU-decomposition
- Why preconditioning?
- Costs
- How to include a preconditioner
- Savings

Preconditioning

$$
\mathbf{M} \equiv\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right)=\mathbf{A}+\mathbf{R}
$$

The system $\mathbf{M u}=\mathbf{r}$ can be solved in three steps.

- Solve $\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{u}^{\prime}=\mathbf{r}$ for \mathbf{u}^{\prime}.
- Compute $\mathbf{u}^{\prime \prime}=\mathbf{D} \mathbf{u}^{\prime}$.
- Solve $\left(\mathbf{D}+\mathbf{U}_{A}\right) \mathbf{u}=\mathbf{u}^{\prime \prime}$ for \mathbf{u}.

Assignment. Write a function subroutine

$$
\mathbf{u}=\operatorname{Msolve}(\mathbf{A}, \mathbf{D}, \mathbf{r})
$$

that incorporates the above steps. Try to make the routine as efficient as possible also concerning use of memory.

Hint. For testing purposes, you can initially take

$$
\mathbf{D}=\mathbf{D}_{A} \text { of } \mathbf{D}=\frac{1}{\omega} \mathbf{D}_{A} .
$$

Preconditioning

$$
\mathbf{M} \equiv\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right)=\mathbf{A}+\mathbf{R}
$$

The system $\mathbf{M u}=\mathbf{r}$ can be solved in three steps.

- Solve $\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{u}^{\prime}=\mathbf{r}$ for \mathbf{u}^{\prime}.
- Compute $\mathbf{u}^{\prime \prime}=\mathbf{D} \mathbf{u}^{\prime}$.
- Solve $\left(\mathbf{D}+\mathbf{U}_{A}\right) \mathbf{u}=\mathbf{u}^{\prime \prime}$ for \mathbf{u}.

Assignment. Write a function subroutine

$$
\mathbf{u}=\operatorname{Msolve}(\mathbf{A}, \mathbf{D}, \mathbf{r})
$$

that incorporates the above steps. Try to make the routine as efficient as possible also concerning use of memory.

Incorporate Msolve in GCR: write a routine PGCR

$$
\mathbf{x}=\operatorname{PGCR}\left(\mathbf{A}, \mathbf{b}, \mathbf{x}_{0}, \text { tol }, k_{\max }, \mathbf{D}\right)
$$

Preconditioning

Find a diagonal matrix \mathbf{D} such that with

$$
\mathbf{M} \equiv\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right)=\mathbf{A}+\mathbf{R}
$$

the "error"

$$
\mathbf{R} \equiv \mathbf{D}-\mathbf{D}_{A}+\mathbf{L}_{A} \mathbf{D}^{-1} \mathbf{U}_{A}
$$

is small in some sense.

Preconditioning

Find a diagonal matrix \mathbf{D} such that with

$$
\mathbf{M} \equiv\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right)=\mathbf{A}+\mathbf{R}
$$

the "error"

$$
\mathbf{R} \equiv \mathbf{D}-\mathbf{D}_{A}+\mathbf{L}_{A} \mathbf{D}^{-1} \mathbf{U}_{A}
$$

is small in some sense.

Examples.

- Diagonal-Incomplete LU: $\operatorname{diag}(\mathbf{R})=\mathbf{0}$.

Preconditioning

Find a diagonal matrix \mathbf{D} such that with

$$
\mathbf{M} \equiv\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right)=\mathbf{A}+\mathbf{R}
$$

the "error"

$$
\mathbf{R} \equiv \mathbf{D}-\mathbf{D}_{A}+\mathbf{L}_{A} \mathbf{D}^{-1} \mathbf{U}_{A}
$$

is small in some sense.

Examples.

- Diagonal-Incomplete LU: $\operatorname{diag}(\mathbf{R})=\mathbf{0}$.
- D-Modified ILU: $\mathbf{R 1}=\mathbf{0}$, with $\mathbf{1} \equiv(1,1, \ldots, 1)^{\top}$

Preconditioning

Find a diagonal matrix \mathbf{D} such that with

$$
\mathbf{M} \equiv\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right)=\mathbf{A}+\mathbf{R}
$$

the "error"

$$
\mathbf{R} \equiv \mathbf{D}-\mathbf{D}_{A}+\mathbf{L}_{A} \mathbf{D}^{-1} \mathbf{U}_{A}
$$

is small in some sense.

Examples.

- Diagonal-Incomplete LU: $\operatorname{diag}(\mathbf{R})=\mathbf{0}$.
- D-Modified ILU: $\mathbf{R 1}=\mathbf{0}$, with $\mathbf{1} \equiv(1,1, \ldots, 1)^{\top}$
- D-Relaxed ILU: a mix of ILU and MILU

Program

- Flexible GCR
- Preconditioning
- D-ILU
- Incomplete LU-decomposition
- Why preconditioning?
- Costs
- How to include a preconditioner
- Savings

LU-decomposition

\mathbf{L} is strict lower triangular $n \times n$ (i.e., $\mathbf{L}_{i j}=0$ if $i \leq j$).
\mathbf{I} is the $n \times n$ identity.
Let ℓ_{j} be the j th column of \mathbf{L} and
\mathbf{e}_{j} the j th standard basis vector
($\ell_{j}=\mathbf{L}(:, j), \mathbf{e}_{j}=\mathbf{I}(:, j)$ in MATLAB notation).

Exercise. Prove

- $\left(\mathbf{I}-\ell_{j} \mathbf{e}_{j}^{*}\right)^{-1}=\mathbf{I}+\ell_{j} \mathbf{e}_{j}^{*}$
- $\left(\mathbf{I}+\ell_{j} \mathbf{e}_{j}^{*}\right)\left(\mathbf{I}+\ell_{k} \mathbf{e}_{k}^{*}\right)=\mathbf{I}+\ell_{j} \mathbf{e}_{j}^{*}+\ell_{k} \mathbf{e}_{k}^{*}$ if $j<k$.
- $(\mathbf{I}+\mathbf{L})^{-1}=\left(\mathbf{I}-\ell_{n-1} \mathbf{e}_{n-1}^{*}\right)\left(\mathbf{I}-\ell_{n-2} \mathbf{e}_{n-2}^{*}\right) \ldots\left(\mathbf{I}-\ell_{1} \mathbf{e}_{1}^{*}\right)$

Interpretation. If $\mathbf{U}^{\prime}=\left(\mathbf{I}-\ell_{1} \mathbf{e}_{1}^{*}\right) \mathbf{U}$, then

$$
\mathbf{U}^{\prime}(i,:)=\mathbf{U}(i,:)-\ell_{1}(i) \mathbf{U}(1,:)
$$

a multiple of the 1 st row of \mathbf{U} is subtracted from the i th row.

LU-decomposition

\mathbf{L} is strict lower triangular $n \times n$ (i.e., $\mathbf{L}_{i j}=0$ if $i \leq j$).
\mathbf{I} is the $n \times n$ identity. $\ell_{j} \equiv \mathbf{L}(:, j), \mathbf{e}_{j} \equiv \mathbf{I}(:, j)$.

LU-decomposition or Gaussian elimination:
$\mathbf{U}^{(0)} \equiv \mathbf{A}, \mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(n-1)}=\mathbf{U}$ such that

$$
\mathbf{U}^{(j)}=\left(\mathbf{I}-\ell_{j} \mathbf{e}_{j}^{*}\right) \mathbf{U}^{(j-1)} \quad(j=1, \ldots, n)
$$

and the j th column of $\mathbf{U}^{(j)}$ below the diagonal is zero:
with $p_{j} \equiv \mathbf{U}^{(j-1)}(j, j), \quad \ell_{j}(i)=\mathbf{U}^{(j-1)}(i, j) / p_{j}$ for $i>j$.

LU-decomposition

\mathbf{L} is strict lower triangular $n \times n$ (i.e., $\mathbf{L}_{i j}=0$ if $i \leq j$).
\mathbf{I} is the $n \times n$ identity. $\ell_{j} \equiv \mathbf{L}(:, j), \mathbf{e}_{j} \equiv \mathbf{I}(:, j)$.

LU-decomposition or Gaussian elimination:
$\mathbf{U}^{(0)} \equiv \mathbf{A}, \mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(n-1)}=\mathbf{U}$ such that

$$
\mathbf{U}^{(j)}=\left(\mathbf{I}-\ell_{j} \mathbf{e}_{j}^{*}\right) \mathbf{U}^{(j-1)} \quad(j=1, \ldots, n)
$$

and the j th column of $\mathbf{U}^{(j)}$ below the diagonal is zero:
with $p_{j} \equiv \mathbf{U}^{(j-1)}(j, j), \quad \ell_{j}(i)=\mathbf{U}^{(j-1)}(i, j) / p_{j}$ for $i>j$.
Theorem. If the pivots $p_{j} \neq 0$ all j, then

$$
A=L U
$$

LU-decomposition

\mathbf{L} is strict lower triangular $n \times n$ (i.e., $\mathbf{L}_{i j}=0$ if $i \leq j$).
\mathbf{I} is the $n \times n$ identity. $\ell_{j} \equiv \mathbf{L}(:, j), \mathbf{e}_{j} \equiv \mathbf{I}(:, j)$.

LU-decomposition or Gaussian elimination:
$\mathbf{U}^{(0)} \equiv \mathbf{A}, \mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(n-1)}=\mathbf{U}$ such that

$$
\mathbf{U}^{(j)}=\left(\mathbf{I}-\ell_{j} \mathbf{e}_{j}^{*}\right) \mathbf{U}^{(j-1)} \quad(j=1, \ldots, n)
$$

and the j th column of $\mathbf{U}^{(j)}$ below the diagonal is zero:
with $p_{j} \equiv \mathbf{U}^{(j-1)}(j, j), \quad \ell_{j}(i)=\mathbf{U}^{(j-1)}(i, j) / p_{j}$ for $i>j$.
Theorem. If the pivots $p_{j} \neq 0$ all j, then

$$
A=L U
$$

Sparsity pattern of $\mathbf{A} ; \quad \mathcal{F}_{A} \equiv\{(i, j) \mid \mathbf{A}(i, j) \neq 0\}$
Fill: $\quad\left\{(i, j) \notin \mathcal{F}_{A} \mid \mathbf{L}(i, j) \neq 0\right.$ or $\left.\mathbf{U}^{(k)}(i, j) \neq 0\right\}$

LU-decomposition

\mathbf{L} is strict lower triangular $n \times n$ (i.e., $\mathbf{L}_{i j}=0$ if $i \leq j$).
\mathbf{I} is the $n \times n$ identity. $\ell_{j} \equiv \mathbf{L}(:, j), \mathbf{e}_{j} \equiv \mathbf{I}(:, j)$.
Incomplete LU-decomposition.
Select a fill pattern $\mathcal{F} \subset\{(i, j) \mid i, j=1, \ldots, n\}$.
If \mathbf{B} is an $n \times n$ matrix, then \mathbf{B}^{\prime} is the matrix with entries $\mathbf{B}^{\prime}(i, j)=\mathbf{B}(i, j)$ if $(i, j) \in \mathcal{F}$ and $\mathbf{B}^{\prime}(i, j)=0$ if $(i, j) \notin \mathcal{F}$.
Put $\quad \Pi(B)=\mathbf{B}^{\prime}$.
$\mathbf{U}^{(0)} \equiv \mathbf{A}, \mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(n-1)}=\mathbf{U}$ such that

$$
\widetilde{U}^{(j)}=\left(\mathbb{I}-l_{j} \mathrm{e}_{j}^{*}\right) \mathrm{U}^{(j-1)}, \quad \mathbf{u}^{(j)}=\Pi\left(\widetilde{\mathbf{U}}^{(j)}\right)
$$

and the j column of $\widetilde{\mathbf{U}}^{(j)}$ below the diagonal is zero:
with $p_{j} \equiv \mathbf{U}^{(j-1)}(j, j), \quad \ell_{j}(i)=\mathbf{U}^{(j-1)}(i, j) / p_{j}$ for $i>j$.

The location of the non-zero entries of a matrix and the desired fill patron

Replace to unwanted non zero entries by zero

LU-decomposition

\mathbf{L} is strict lower triangular $n \times n$ (i.e., $\mathbf{L}_{i j}=0$ if $i \leq j$).
\mathbf{I} is the $n \times n$ identity. $\ell_{j} \equiv \mathbf{L}(:, j), \mathbf{e}_{j} \equiv \mathbf{I}(:, j)$.
Incomplete LU-decomposition.
Select a fill pattern $\mathcal{F} \subset\{(i, j) \mid i, j=1, \ldots, n\}$.
If \mathbf{B} is an $n \times n$ matrix, then \mathbf{B}^{\prime} is the matrix with entries
$\mathbf{B}^{\prime}(i, j)=\mathbf{B}(i, j)$ if $(i, j) \in \mathcal{F}$ and $\mathbf{B}^{\prime}(i, j)=0$ if $(i, j) \notin \mathcal{F}$.
Put $\quad \Pi(B)=\mathbf{B}^{\prime}$.
$\mathbf{U}^{(0)} \equiv \mathbf{A}, \mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(n-1)}=\mathbf{U}$ such that

$$
=\left(\mathbb{I}-l_{j} \mathrm{e}_{j}^{*}\right) \mathrm{U}^{(j-1)}, \quad \mathbf{U}^{(j)}=\Pi\left(\widetilde{\mathbf{U}}^{(j)}\right)
$$

and the j column of $\widetilde{\mathbf{U}}^{(j)}$ below the diagonal is zero:
with $p_{j} \equiv \mathbf{U}^{(j-1)}(j, j), \quad \ell_{j}(i)=\mathbf{U}^{(j-1)}(i, j) / p_{j}$ for $i>j$.
Theorem. With ILU and $\mathbf{M}=\mathbf{L U}$,
we have that $\mathbf{A}(i, j)=\mathbf{M}(i, j)$ for all $(i, j) \in \mathcal{F}$

LU-decomposition

\mathbf{L} is strict lower triangular $n \times n$ (i.e., $\mathbf{L}_{i j}=0$ if $i \leq j$).
\mathbf{I} is the $n \times n$ identity. $\ell_{j} \equiv \mathbf{L}(:, j), \mathbf{e}_{j} \equiv \mathbf{I}(:, j)$.
Modified ILU-decomposition. Select a fill pattern $\mathcal{F} \subset\{(i, j) \mid i, j=1, \ldots, n\}$ with $\{(i, i)\} \subset \mathcal{F}$.
If \mathbf{B} is an $n \times n$ matrix, then \mathbf{B} is the matrix with entries

$$
\begin{aligned}
& \widetilde{\mathbf{B}}(i, j)=\mathbf{B}(i, j) \text { if }(i, j) \in \mathcal{F}, i \neq j \\
& \widetilde{\mathbf{B}}(i, j)=0 \text { if }(i, j) \notin \mathcal{F}, \\
& \widetilde{\mathbf{B}}(i, i)=\mathbf{B}(i, i)+\sum_{j,(i, j) \notin \mathcal{F}} \mathbf{B}(i, j)
\end{aligned}
$$

Put $\quad \Pi_{M}(\mathbf{B})=\widetilde{\mathbf{B}}$.
$\mathbf{U}^{(0)} \equiv \mathbf{A}, \mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(n-1)}=\mathbf{U}$ such that

$$
\widetilde{\mathbf{U}}^{(j)}=\left(\mathrm{I}-l_{j} \mathrm{e}_{j}^{*}\right) \mathbf{U}^{(j-1)}, \quad \mathbf{u}^{(j)}=\boldsymbol{\Pi}_{M}\left(\widetilde{\mathbf{U}}^{(j)}\right)
$$

and the j th column of $\widetilde{U}^{(j)}$ below the diagonal is zero:
with $p_{j} \equiv \mathbf{U}^{(j-1)}(j, j), \quad \ell_{j}(i)=\mathbf{U}^{(j-1)}(i, j) / p_{j}$ for $i>j$.

LU-decomposition

\mathbf{L} is strict lower triangular $n \times n$ (i.e., $\mathbf{L}_{i j}=0$ if $i \leq j$).
\mathbf{I} is the $n \times n$ identity. $\ell_{j} \equiv \mathbf{L}(:, j), \mathbf{e}_{j} \equiv \mathbf{I}(:, j)$.
Modified ILU-decomposition. Select a fill pattern $\mathcal{F} \subset\{(i, j) \mid i, j=1, \ldots, n\}$ with $\{(i, i)\} \subset \mathcal{F}$.
If \mathbf{B} is an $n \times n$ matrix, then \mathbf{B} is the matrix with entries

$$
\begin{array}{r}
\widetilde{\mathbf{B}}(i, j)=\mathbf{B}(i, j) \text { if }(i, j) \in \mathcal{F}, i \neq j \\
\widetilde{\mathbf{B}}(i, j)=0 \text { if }(i, j) \notin \mathcal{F}, \\
\widetilde{\mathbf{B}}(i, i)=\mathbf{B}(i, i)+\sum_{j,(i, j) \notin \mathcal{F}} \mathbf{B}(i, j) \\
\text { Put } \quad \Pi_{M}(\mathbf{B})=\widetilde{\mathbf{B}} \quad \text { Note. } \mathbf{B} \mathbf{1}=\Pi_{M}(\mathbf{B}) \mathbf{1} .
\end{array}
$$

$\mathbf{U}^{(0)} \equiv \mathbf{A}, \mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(n-1)}=\mathbf{U}$ such that

$$
\widetilde{U}^{(j)}=\left(\mathbb{I}-l_{j} \mathrm{e}_{j}^{*}\right) \cup^{(j-1)}, \quad \mathbf{U}^{(j)}=\Pi_{M}\left(\widetilde{\mathbf{U}}^{(j)}\right)
$$

and the j th column of $\widetilde{\mathbf{U}}^{(3)}$ below the diagonal is zero:
with $p_{j} \equiv \mathbf{U}^{(j-1)}(j, j), \quad \ell_{j}(i)=\mathbf{U}^{(j-1)}(i, j) / p_{j}$ for $i>j$.

LU-decomposition

\mathbf{L} is strict lower triangular $n \times n$ (i.e., $\mathbf{L}_{i j}=0$ if $i \leq j$).
\mathbf{I} is the $n \times n$ identity. $\ell_{j} \equiv \mathbf{L}(:, j), \mathbf{e}_{j} \equiv \mathbf{I}(:, j)$.
Theorem. With MILU-decomposition and $\mathbf{M} \equiv \mathbf{L U}$, we have that

$$
\mathbf{M 1}=\mathbf{A} \mathbf{1}, \text { where } \mathbf{1} \equiv(1,1, \ldots, 1)^{\top} .
$$

LU-decomposition

\mathbf{L} is strict lower triangular $n \times n$ (i.e., $\mathbf{L}_{i j}=0$ if $i \leq j$).
\mathbf{I} is the $n \times n$ identity. $\ell_{j} \equiv \mathbf{L}(:, j), \mathbf{e}_{j} \equiv \mathbf{I}(:, j)$.
Relaxed ILU-decomposition. Select an $\omega \in[0,1]$ and a fill pattern $\mathcal{F} \subset\{(i, j) \mid i, j=1, \ldots, n\}$ with $\{(i, i)\} \subset \mathcal{F}$.
If \mathbf{B} is an $n \times n$ matrix, then $\widetilde{\mathbf{B}}$ is the matrix with entries

$$
\begin{aligned}
& \widetilde{\mathbf{B}}(i, j)=\mathbf{B}(i, j) \text { if }(i, j) \in \mathcal{F}, i \neq j \\
& \widetilde{\mathbf{B}}(i, j)=0 \text { if }(i, j) \notin \mathcal{F}, \\
& \widetilde{\mathbf{B}}(i, i)=\mathbf{B}(i, i)+\omega \sum_{j,(i, j) \notin \mathcal{F}} \mathbf{B}(i, j)
\end{aligned}
$$

Put $\quad \Pi_{\omega}(\mathbf{B})=\widetilde{\mathbf{B}}$.
$\mathbf{U}^{(0)} \equiv \mathbf{A}, \mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(n-1)}=\mathbf{U}$ such that

$$
=\left(\mathbb{I}-\ell_{j} \mathrm{e}_{j}^{*}\right) \mathbf{U}^{(j-1)}, \quad \mathbf{U}^{(j)}=\boldsymbol{\Pi}_{\omega}\left(\widetilde{\mathbf{U}}^{(j)}\right)
$$

and the j th column of $\widetilde{U}^{(j)}$ below the diagonal is zero: with $p_{j} \equiv \mathbf{U}^{(j-1)}(j, j), \quad \ell_{j}(i)=\mathbf{U}^{(j-1)}(i, j) / p_{j}$ for $i>j$.

LU-decomposition

\mathbf{L} is strict lower triangular $n \times n$ (i.e., $\mathbf{L}_{i j}=0$ if $i \leq j$).
\mathbf{I} is the $n \times n$ identity. $\ell_{j} \equiv \mathbf{L}(:, j), \mathbf{e}_{j} \equiv \mathbf{I}(:, j)$.
Remark. RILU(0)=ILU, RILU(1)=MILU.

Diagonal ILU decomposition

Write $\mathbf{A}=\mathbf{L}_{A}+\mathbf{D}_{A}+\mathbf{U}_{A}$ with
\mathbf{L}_{A} the strict lower triangular part of \mathbf{A}

$$
\left(\mathbf{L}_{A}(i, j)=\mathbf{A}(i, j) \text { if } i>j, \mathbf{L}_{A}(i, j)=0 \text { if } i \leq j\right)
$$

$\mathbf{D}_{A}=\operatorname{diag}(\mathbf{A}) \quad$ (in Matlab: D_A=diag(diag(A));)
\mathbf{U}_{A} the strict upper triangular part of \mathbf{A}.
For an $n \times n$ diagonal matrix \mathbf{D} consider

$$
\mathbf{M} \equiv\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right)
$$

D-ILU: \mathbf{D} is such that $\operatorname{diag}(\mathbf{M})=\operatorname{diag} \mathbf{A})$.

Diagonal ILU decomposition

Write $\mathbf{A}=\mathbf{L}_{A}+\mathbf{D}_{A}+\mathbf{U}_{A}$ with
\mathbf{L}_{A} the strict lower triangular part of \mathbf{A}

$$
\left(\mathbf{L}_{A}(i, j)=\mathbf{A}(i, j) \text { if } i>j, \mathbf{L}_{A}(i, j)=0 \text { if } i \leq j\right)
$$

$\mathbf{D}_{A}=\operatorname{diag}(\mathbf{A}) \quad$ (in Matlab: D_A=diag(diag(A));)
\mathbf{U}_{A} the strict upper triangular part of \mathbf{A}.
For an $n \times n$ diagonal matrix \mathbf{D} consider

$$
\mathbf{M} \equiv\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right)
$$

$\mathbf{D}-\mathbf{I L U}: \mathbf{D}$ is such that $\operatorname{diag}(\mathbf{M})=\operatorname{diag} \mathbf{A})$.
Theorem. If \mathbf{A} is the matrix from a 5 -point stencil (2-d advection diffusion) or from a 7-point stencil (3-d advection diffusion), then D-ILU $=$ ILU, i.e., if \mathbf{L} and \mathbf{U} are from ILU, then

$$
\mathbf{L}=\mathbf{L}_{A} \mathbf{D}^{-1}+\mathbf{I} \text { and } \mathbf{U}=\mathbf{D}+\mathbf{U}_{A}
$$

Diagonal ILU decomposition

Write $\mathbf{A}=\mathbf{L}_{A}+\mathbf{D}_{A}+\mathbf{U}_{A}$ with
\mathbf{L}_{A} the strict lower triangular part of \mathbf{A}

$$
\left(\mathbf{L}_{A}(i, j)=\mathbf{A}(i, j) \text { if } i>j, \mathbf{L}_{A}(i, j)=0 \text { if } i \leq j\right)
$$

$\mathbf{D}_{A}=\operatorname{diag}(\mathbf{A}) \quad$ (in Matlab: D_A=diag $(\operatorname{diag}(\mathrm{A}))$;)
\mathbf{U}_{A} the strict upper triangular part of \mathbf{A}.
For an $n \times n$ diagonal matrix \mathbf{D} consider

$$
\mathbf{M} \equiv\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right)
$$

D-MILU: \mathbf{D} is such that $\mathbf{M 1}=\mathbf{A 1}$.

Diagonal ILU decomposition

Write $\mathbf{A}=\mathbf{L}_{A}+\mathbf{D}_{A}+\mathbf{U}_{A}$ with
\mathbf{L}_{A} the strict lower triangular part of \mathbf{A}

$$
\left(\mathbf{L}_{A}(i, j)=\mathbf{A}(i, j) \text { if } i>j, \mathbf{L}_{A}(i, j)=0 \text { if } i \leq j\right)
$$

$\mathbf{D}_{A}=\operatorname{diag}(\mathbf{A}) \quad$ (in Matlab: D_A=diag(diag(A));)
\mathbf{U}_{A} the strict upper triangular part of \mathbf{A}.
For an $n \times n$ diagonal matrix \mathbf{D} consider

$$
\mathbf{M} \equiv\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right)
$$

D-MILU: \mathbf{D} is such that $\mathbf{M 1}=\mathbf{A 1}$.
Theorem. If \mathbf{A} is the matrix from a 5 -point stencil (2-d advection diffusion) or from a 7 -point stencil (3-d advection diffusion), then $D-M I L U=$ MILU, i.e., if \mathbf{L} and \mathbf{U} are from MILU, then

$$
\mathbf{L}=\mathbf{L}_{A} \mathbf{D}^{-1}+\mathbf{I} \text { and } \mathbf{U}=\mathbf{D}+\mathbf{U}_{A} .
$$

Other ILU-decompositions

The idea behind ILU is to form a lower triangular matrix
\mathbf{L} and an upper triangular matrix \mathbf{U} such that

- $\mathbf{M} \equiv \mathbf{L} \mathbf{U}$ approximates \mathbf{A} well in some sense.
- The systems $\mathbf{L} \mathbf{u}^{\prime}=\mathbf{r}$ and $\mathbf{U u}=\mathbf{u}^{\prime}$ can efficiently be solved,
- but the L and U should also be efficiently computable.

In practise, the first condition and the last have to be balanced and the meaning of "efficient" and "approximates well" often depends on the application.

As an extreme example, if $\mathbf{M x}=\mathbf{A x}$, then preconditioned GCR started with $\mathbf{x}_{0}=\mathbf{0}$ finds \mathbf{x} in one step even if $\mathbf{R}=\mathbf{A}-\mathbf{M}$ is large.

Other ILU-decompositions

For a fill pattern $\mathcal{F} \subset\{(i, j) \mid i, j=1, \ldots, n\}$, define

$$
\mathcal{F}^{+} \equiv\{(i, j) \mid(i, k),(k, j) \in \mathcal{F} \text { for some } k<i, k<j\}
$$

fill pattern, fill of level 0

fill pattern, fill of level 1

Other ILU-decompositions

For a fill pattern $\mathcal{F} \subset\{(i, j) \mid i, j=1, \ldots, n\}$, define

$$
\mathcal{F}^{+} \equiv\{(i, j) \mid(i, k),(k, j) \in \mathcal{F} \text { for some } k<i, k<j\}
$$

Interpretation. In the k th step of the Gaussian elimination, the matrix entries at the position (i, k) and (k, j) are used to form the entry at position (i, j) :

$$
\mathbf{U}^{(k)}(i, j)=\mathbf{U}^{(k-1)}(i, j)-\mathbf{U}^{(k-1)}(i, k) \mathbf{U}^{(k-1)}(k, j) / p_{k}
$$

with pivot $p_{k}=\mathbf{U}^{(k-1)}(k, k)$.
If $\mathcal{F}=\mathcal{F}_{A}$, then \mathcal{F}^{+}contains the indices of possible nonzero matrix entries formed directly from non-zeros of the original matrix.
$\mathcal{F}=\mathcal{F}_{A}$ is level 0 fill, \mathcal{F}^{+}is level 1 fill.

Other ILU-decompositions

For a fill pattern $\mathcal{F} \subset\{(i, j) \mid i, j=1, \ldots, n\}$, define

$$
\mathcal{F}^{+} \equiv\{(i, j) \mid(i, k),(k, j) \in \mathcal{F} \quad \text { for some } k<i, k<j\}
$$

Terminology. With $\mathcal{F}_{A}(0) \equiv \mathcal{F}_{A} \equiv\{(i, j) \mid \mathbf{A}(i, j) \neq 0\}$,

$$
\mathcal{F}_{A}(\ell) \equiv \mathcal{F}_{A}(\ell-1)^{+} \text {for } \ell=1,2, \ldots
$$

$\mathcal{F}_{A}(\ell)$ is fill of level ℓ.
Note that to determine $\mathcal{F}_{A}(\ell)$ no specific values for the entries of \mathbf{A} are required.
$\operatorname{ILU}(\ell)$, that is, ILU for \mathbf{A} with fill pattern $\mathcal{F}_{A}(\ell)$, is called ILU of level ℓ.
$\operatorname{ILU}(0)=\operatorname{ILU}$.
fill pattern, fill of level 0

fill pattern, fill of level 1

fill pattern, fill of level 2

fill pattern, fill of level 3

fill pattern, fill of level 4

fill pattern, fill of level 5

fill pattern, fill of level 6

fill pattern, fill of level 7

Other ILU-decompositions

Select an $\varepsilon>0$ (the drop tolerance).
If \mathbf{B} is an $n \times n$ matrix, then $\widetilde{\mathbf{B}}$ is the matrix with entries

$$
\begin{aligned}
& \widetilde{\mathbf{B}}(i, j)=\mathbf{B}(i, j) \quad \text { if }|\mathbf{B}(i, j)|>\varepsilon \\
& \widetilde{\mathbf{B}}(i, j)=0 \quad \text { if } \quad|\mathbf{B}(i, j)| \leq \varepsilon
\end{aligned}
$$

Put $\quad \Pi_{\varepsilon}(\mathbf{B}) \equiv \widetilde{\mathbf{B}}$.

Using Π_{ε} in each step of the Gaussian elimination process leads to $\operatorname{ILU}(\varepsilon)$, ILU with drop tolerance

Advanced ILU.

- Drop tolerance and level strategies can be combined.
- The value of the drop tolerance can be selected to depend on the level, on the size of the matrix entries,
- ...

Program

- Flexible GCR
- Preconditioning
- D-ILU
- Incomplete LU-decomposition
- Why preconditioning?
- Costs
- How to include a preconditioner
- Savings

Why preconditioning?

Example. $\left\{\begin{array}{l}-\frac{\partial}{\partial x} \frac{\partial}{\partial x} \phi=0 \quad \text { on } \quad D \equiv[0,1] \\ \phi(0)=1, \quad \phi(1)=0\end{array}\right.$

Why preconditioning?

Example. $\left\{\begin{array}{l}-\frac{\partial}{\partial x} \frac{\partial}{\partial x} \phi=0 \quad \text { on } \quad D \equiv[0,1] \\ \phi(0)=1, \quad \phi(1)=0\end{array}\right.$

Exact solution $\quad \phi(x)=1-x$.

The exact (ϕ) and discrete (x) solution of ϕ " $=0, \phi(0)=1, \phi(1)=0$

Why preconditioning?

Example. $\left\{\begin{array}{l}-\frac{\partial}{\partial x} \frac{\partial}{\partial x} \phi=0 \quad \text { on } \quad D \equiv[0,1] \\ \phi(0)=1, \quad \phi(1)=0\end{array}\right.$
Discretization: symmetric finite differences: $h=\frac{1}{n+1}$

$$
\mathbf{A}=\frac{1}{h^{2}}\left[\begin{array}{rrrrr}
2 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & \\
\vdots & \ddots & -1 & 2 & -1 \\
& & 0 & -1 & 2
\end{array}\right], \quad \mathbf{b}=\frac{1}{h^{2}}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] .
$$

Solve with GCR (or LMR) with $\mathbf{x}_{0}=\mathbf{0}$.

The exact (ϕ) and discrete (x) solution of ϕ " $=0, \phi(0)=1, \phi(1)=0$

The kth ($k=6$) basis vector e_{k} as a grid function

Why preconditioning?

Example. $\left\{\begin{array}{l}-\frac{\partial}{\partial x} \frac{\partial}{\partial x} \phi=0 \quad \text { on } \quad D \equiv[0,1] \\ \phi(0)=1, \quad \phi(1)=0\end{array}\right.$
Discretization: symmetric finite differences: $h=\frac{1}{n+1}$

$$
\mathbf{A}=\frac{1}{h^{2}}\left[\begin{array}{rrrrr}
2 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & \ddots & : \\
0 & \ddots & \ddots & \ddots & \\
\vdots & \ddots & -1 & 2 & -1 \\
& & 0 & -1 & 2
\end{array}\right], \quad \mathbf{b}=\frac{1}{h^{2}}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] .
$$

With $\mathbf{x}_{0}=\mathbf{0}$, we have $\mathbf{r}_{0}=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}=\mathbf{b}=\tau \mathbf{e}_{1}$

Why preconditioning?

Example. $\left\{\begin{array}{l}-\frac{\partial}{\partial x} \frac{\partial}{\partial x} \phi=0 \quad \text { on } \quad D \equiv[0,1] \\ \phi(0)=1, \quad \phi(1)=0\end{array}\right.$
Discretization: symmetric finite differences: $h=\frac{1}{n+1}$

$$
\mathbf{A}=\frac{1}{h^{2}}\left[\begin{array}{rrrrr}
2 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & \ddots & : \\
0 & \ddots & \ddots & \ddots & \\
\vdots & \ddots & -1 & 2 & -1 \\
& & 0 & -1 & 2
\end{array}\right], \quad \mathbf{b}=\frac{1}{h^{2}}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] .
$$

With $\mathbf{x}_{0}=\mathbf{0}$, we have $\mathbf{r}_{0}=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}=\mathbf{b}=\tau \mathbf{e}_{1}$
Observation. For $k=1,2, \ldots, n-1$, we have that

$$
\mathbf{A}\left(\operatorname{span}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right)\right) \subset \operatorname{span}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}, \mathbf{e}_{k+1}\right)
$$

Why preconditioning?

Example. $\left\{\begin{array}{l}-\frac{\partial}{\partial x} \frac{\partial}{\partial x} \phi=0 \quad \text { on } \quad D \equiv[0,1] \\ \phi(0)=1, \quad \phi(1)=0\end{array}\right.$
Discretization: symmetric finite differences: $h=\frac{1}{n+1}$

$$
\mathbf{A}=\frac{1}{h^{2}}\left[\begin{array}{rrrrr}
2 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & \\
\vdots & \ddots & -1 & 2 & -1 \\
& & 0 & -1 & 2
\end{array}\right], \quad \mathbf{b}=\frac{1}{h^{2}}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] .
$$

With $\mathbf{x}_{0}=\mathbf{0}$, we have $\mathbf{r}_{0}=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}=\mathbf{b}=\tau \mathbf{e}_{1}$

$$
\mathbf{u}_{0}=\mathbf{r}_{0}, \quad \mathbf{c}_{1}=\mathbf{A} \mathbf{u}_{0}=\mathbf{A} \mathbf{r}_{0}, \mathbf{x}_{1} \in \operatorname{span}\left(\mathbf{e}_{1}\right), \mathbf{r}_{1}=\mathbf{r}_{0}-\alpha_{1} \mathbf{c}_{1}
$$

Why preconditioning?

Example. $\left\{\begin{array}{l}-\frac{\partial}{\partial x} \frac{\partial}{\partial x} \phi=0 \quad \text { on } \quad D \equiv[0,1] \\ \phi(0)=1, \quad \phi(1)=0\end{array}\right.$
Discretization: symmetric finite differences: $h=\frac{1}{n+1}$

$$
\mathbf{A}=\frac{1}{h^{2}}\left[\begin{array}{rrrrr}
2 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & \\
\vdots & \ddots & -1 & 2 & -1 \\
& & 0 & -1 & 2
\end{array}\right], \quad \mathbf{b}=\frac{1}{h^{2}}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] .
$$

With $\mathbf{x}_{0}=\mathbf{0}$, we have $\mathbf{r}_{0}=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}=\mathbf{b}=\tau \mathbf{e}_{1}$ GCR and LMR: $\mathbf{r}_{k-1}, \mathbf{x}_{k} \in \operatorname{span}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right)$ for $k=1, \ldots, n$.

Why preconditioning?

Example. $\left\{\begin{array}{l}-\frac{\partial}{\partial x} \frac{\partial}{\partial x} \phi=0 \quad \text { on } \quad D \equiv[0,1] \\ \phi(0)=1, \quad \phi(1)=0\end{array}\right.$
Discretization: symmetric finite differences: $h=\frac{1}{n+1}$

$$
\mathbf{A}=\frac{1}{h^{2}}\left[\begin{array}{rrrrr}
2 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & \\
\vdots & \ddots & -1 & 2 & -1 \\
& & 0 & -1 & 2
\end{array}\right], \quad \mathbf{b}=\frac{1}{h^{2}}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] .
$$

With $\mathbf{x}_{0}=\mathbf{0}$, we have $\mathbf{r}_{0}=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}=\mathbf{b}=\tau \mathbf{e}_{1}$
GCR and LMR: $\mathbf{r}_{k-1}, \mathbf{x}_{k} \in \operatorname{span}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right)$ for $k=1, \ldots, n$.
The best solution in $\operatorname{span}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right)$ is (for $k<n$)

$$
\sum_{j \leq k}\left(1-\frac{j}{n+1}\right) \mathbf{e}_{j}, \quad 2 \text {-norm error } \frac{n-k}{n+1} \geq \frac{1}{n+1} .
$$

Why preconditioning?

Example. $\left\{\begin{array}{l}-\frac{\partial}{\partial x} \frac{\partial}{\partial x} \phi=0 \quad \text { on } \quad D \equiv[0,1] \\ \phi(0)=1, \quad \phi(1)=0\end{array}\right.$
Discretization: symmetric finite differences: $h=\frac{1}{n+1}$

$$
\mathbf{A}=\frac{1}{h^{2}}\left[\begin{array}{rrrrr}
2 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & \\
\vdots & \ddots & -1 & 2 & -1 \\
& & 0 & -1 & 2
\end{array}\right], \quad \mathbf{b}=\frac{1}{h^{2}}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] .
$$

With $\mathbf{x}_{0}=\mathbf{0}$, we have $\mathbf{r}_{0}=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}=\mathbf{b}=\tau \mathbf{e}_{1}$
GCR and LMR: $\mathbf{r}_{k-1}, \mathbf{x}_{k} \in \operatorname{span}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right)$ for $k=1, \ldots, n$.
The best solution in $\operatorname{span}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right)$ is (for $k<n$)

$$
\sum_{j \leq k}\left(1-\frac{j}{n+1}\right) \mathbf{e}_{j}, \quad 2 \text {-norm error } \frac{n-k}{n+1} \geq \frac{1}{n+1} .
$$

Conclusion. The error can not drop below h in $<n$ steps.

Why preconditioning?

Example. $\left\{\begin{array}{l}-\frac{\partial}{\partial x} \frac{\partial}{\partial x} \phi=0 \quad \text { on } \quad D \equiv[0,1] \\ \phi(0)=1, \quad \phi(1)=0\end{array}\right.$
Discretization: symmetric finite differences: $h=\frac{1}{n+1}$

$$
\mathbf{A}=\frac{1}{h^{2}}\left[\begin{array}{rrrrr}
2 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & \\
\vdots & \ddots & -1 & 2 & -1 \\
& & 0 & -1 & 2
\end{array}\right], \quad \mathbf{b}=\frac{1}{h^{2}}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] .
$$

With $\mathbf{x}_{0}=\mathbf{0}$, we have $\mathbf{r}_{0}=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}=\mathbf{b}=\tau \mathbf{e}_{1}$
GCR and LMR: $\mathbf{r}_{k-1}, \mathbf{x}_{k} \in \operatorname{span}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right)$ for $k=1, \ldots, n$.
Interpretation. It takes a Krylov subspace method at least n (=grid size) steps to carry the information in \mathbf{r}_{0} over the whole grid.

Why preconditioning?

Interpretation. Without preconditioning.

In d-dimensional advection diffusion problems, with symmetric finite difference discretization of order 2 :

It takes any Krylov subspace method at least max $\left(n_{x}, n_{y}, \ldots\right)$ (=max. grid size) steps to carry the information in \mathbf{r}_{0} over the whole grid.
No small error, whence no small residual, can be expected in less than $\max \left(n_{x}, n_{y}, \ldots\right)$ steps with a Krylov subspace method.

Why preconditioning?

Interpretation. Without preconditioning.

In d-dimensional advection diffusion problems, with symmetric finite difference discretization of order 2 :

It takes any Krylov subspace method at least $\max \left(n_{x}, n_{y}, \ldots\right)$ (=max. grid size) steps to carry the information in \mathbf{r}_{0} over the whole grid.
No small error, whence no small residual, can be expected in less than $\max \left(n_{x}, n_{y}, \ldots\right)$ steps with a Krylov subspace method.

If from 1-d advection diffusion, one 'sweep' over the grid solves the problem.
In higher dimensions, more sweeps are needed.

GCR without preconditioning on a 40 by 30 grid.

Why preconditioning?

Interpretation. Without preconditioning.

In d-dimensional advection diffusion problems, with symmetric finite difference discretization of order 2 :

It takes any Krylov subspace method at least max $\left(n_{x}, n_{y}, \ldots\right)$ (=max. grid size) steps to carry the information in \mathbf{r}_{0} over the whole grid.
No small error, whence no small residual, can be expected in less than $\max \left(n_{x}, n_{y}, \ldots\right)$ steps with a Krylov subspace method.

With an ILU-preconditioner, the information is "dragged" all over the grid in each step.
This does not guarantee fast convergence, but it might.

Program

- Flexible GCR
- Preconditioning
- D-ILU
- Incomplete LU-decomposition
- Why preconditioning?
- Costs
- How to include a preconditioner
- Savings

Does preconditioning harm?

$$
\mathbf{M}=\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right) .
$$

Costs. The costs of computing \mathbf{D} are negligible:
D has to be computed only once (before starting the solution process with GCR (or LMR)).

Does preconditioning harm?

$$
\mathbf{M}=\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right)
$$

Costs. The costs of computing \mathbf{D} are negligible
\mathbf{u} is solved from $\mathbf{M u}=\mathbf{r}$ by

- Solve $\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{u}^{\prime}=\mathbf{r}$ for \mathbf{u}^{\prime}
- Compute $\mathbf{u}^{\prime \prime}=\mathbf{D} \mathbf{u}^{\prime}$
- Solve $\left(\mathbf{U}_{A}+\mathbf{D}\right) \mathbf{u}=\mathbf{u}^{\prime \prime}$ for \mathbf{u}

Does preconditioning harm?

$$
\mathbf{M}=\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right)
$$

Costs. The costs of computing \mathbf{D} are negligible
\mathbf{u} is solved from $\mathbf{M u}=\mathbf{r}$ by

- Solve $\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{u}^{\prime}=\mathbf{r}$ for $\mathbf{u}^{\prime} \quad 5 n$ flop
- Compute $\mathbf{u}^{\prime \prime}=\mathbf{D} \mathbf{u}^{\prime}$
- Solve $\left(\mathbf{U}_{A}+\mathbf{D}\right) \mathbf{u}=\mathbf{u}^{\prime \prime}$ for \mathbf{u}

Does preconditioning harm?

$$
\mathbf{M}=\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right)
$$

Costs. The costs of computing \mathbf{D} are negligible
\mathbf{u} is solved from $\mathbf{M u}=\mathbf{r}$ by

- Solve $\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{u}^{\prime}=\mathbf{r}$ for $\mathbf{u}^{\prime} \quad 5 n$ flop
- Compute $\mathbf{u}^{\prime \prime}=\mathbf{D} \mathbf{u}^{\prime}$
n flop
- Solve $\left(\mathbf{U}_{A}+\mathbf{D}\right) \mathbf{u}=\mathbf{u}^{\prime \prime}$ for $\mathbf{u} \quad 5 n$ flop

An M-solve costs $11 n$ flop.

Does preconditioning harm?

$$
\mathbf{M}=\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right) .
$$

Costs. The costs of computing \mathbf{D} are negligible An M-solve costs $11 n$ flop.

- The extra costs in k-steps for including \mathbf{M} solves in each step of GCR are 11 kn .
- Reduction costs in GCR when reducing the number if steps from $k+m$ to k is (with no precond. for $2-\mathrm{d}$) is $\geq(19 n+6 k n) m$ flop.

Conclusion. The total costs in GCR already reduces by including \mathbf{M}-solves if this leads to a reduction in the number of required steps by 2 steps (if $m \geq 2$ then (6 kn) $m \geq 11 \mathrm{kn}$).

Does preconditioning harm?

$$
\mathbf{M}=\left(\mathbf{L}_{A}+\mathbf{D}\right) \mathbf{D}^{-1}\left(\mathbf{D}+\mathbf{U}_{A}\right) .
$$

Costs. The costs of computing \mathbf{D} are negligible An M-solve costs $11 n$ flop.

- The extra costs in k-steps for including \mathbf{M} solves in each step of LMR are 11 kn .
- Reduction costs in LMR when reducing the number if steps from $k+m$ to k is (with no precond. for $2-\mathrm{d}$) is $\geq 19 \mathrm{~nm}$ flop.

Conclusion. The total costs in LMR reduces by including \mathbf{M}-solves if this leads to a reduction in the number of required steps by 40%.

Convergence ILU preconditioning

Groundwaterflow: $\lambda(\mathbf{A}) \in\left[\lambda_{1}, \lambda_{n}\right] \subset(0, \infty), \quad \mathcal{C} \equiv \frac{\lambda_{n}}{\lambda_{1}}$ $1 / C \sim \max \left(h_{x}^{2}, h_{y}^{2}, \ldots\right)$.
Convergence.

$$
\rho_{k} \equiv \frac{\left\|\mathbf{r}_{k}\right\|}{\left\|\mathbf{r}_{0}\right\|} \leq \exp (-2 k / \mu)
$$

Without preconditioning

$$
\text { LMR: } \mu=\mathcal{C}, \quad \text { GCR: } \mu=\sqrt{\mathcal{C}}
$$

With D-MILU preconditioning

$$
\text { LMR: } \mu=\sqrt{\mathcal{C}}, \quad \text { GCR: } \mu=\mathcal{C}^{\frac{1}{4}} .
$$

Example. $\mathcal{C}=210^{4}$. GCR:
without precond. $\rho_{k} \leq 10^{-3}$ for $k=490$,
with D-MILU $\quad \rho_{k} \leq 10^{-3}$ for $k=42$.

Convergence ILU preconditioning

Groundwaterflow: $\lambda(\mathbf{A}) \in\left[\lambda_{1}, \lambda_{n}\right] \subset(0, \infty), \quad \mathcal{C} \equiv \frac{\lambda_{n}}{\lambda_{1}}$ $1 / \mathcal{C} \sim \max \left(h_{x}^{2}, h_{y}^{2}, \ldots\right)$.
Convergence.

$$
\rho_{k} \equiv \frac{\left\|\mathbf{r}_{k}\right\|}{\left\|\mathbf{r}_{0}\right\|} \leq \exp (-2 k / \mu)
$$

Without preconditioning

$$
\text { LMR: } \mu=\mathcal{C}, \quad \text { GCR: } \mu=\sqrt{\mathcal{C}}
$$

With D-MILU preconditioning
LMR: $\mu=\sqrt{\mathcal{C}}, \quad$ GCR: $\mu=\mathcal{C}^{\frac{1}{4}}$.
In case $\mathbf{A x}=\mathbf{b}$ from an advection diffusion PDE:
ILU or $\operatorname{ILU}(\omega)$ with ω small can be very effective if the advection term is large (and the stepsizes are not very small).

Program

- Flexible GCR
- Preconditioning
- D-ILU
- Incomplete LU-decomposition
- Why preconditioning?
- Costs
- How to include a preconditioner
- Savings

Choose tol $>0, \mathbf{x}, k_{\text {max }}$, Compute $\mathbf{r}=\mathbf{b}-\mathbf{A x}$
For $k=0: k_{\text {max }}$
Stop if $\|\mathbf{r}\|_{2} \leq t o l\|\mathbf{b}\|_{2}$
Solve $\mathbf{M u}_{k}=\mathbf{r}$ for \mathbf{u}_{k}
$\mathbf{c}_{k}=\mathbf{A} \mathbf{u}_{k}$
For $j=0: k-1$
$\beta \leftarrow \mathbf{C}_{j}^{*} \mathbf{C}_{k} / \sigma_{j}$
$\mathbf{u}_{k} \leftarrow \mathbf{u}_{k}-\beta \mathbf{u}_{j}$
$\mathbf{c}_{k} \leftarrow \mathbf{c}_{k}-\beta \mathbf{c}_{j}$
end for
$\sigma_{k}=\mathbf{c}_{k}^{*} \mathbf{c}_{k}, \quad \alpha \leftarrow \mathbf{c}_{k}^{*} \mathbf{r} / \sigma_{k}$
$\mathbf{X} \leftarrow \mathbf{X}+\alpha \mathbf{u}_{k}$
$\mathbf{r} \leftarrow \mathbf{r}-\alpha \mathbf{C}_{k}$
end for

Choose tol $>0, \mathbf{x}, k_{\text {max }}$, Compute $\mathbf{r}=\mathbf{b}-\mathbf{A x}$
For $k=0: k_{\text {max }}$
Stop if $\|\mathbf{r}\|_{2} \leq t o l\|\mathbf{b}\|_{2}$
$\widetilde{\mathbf{u}}_{k}=\mathbf{r}$
$\mathbf{c}_{k}=\mathbf{A} \mathbf{M}^{-1} \widetilde{\mathbf{u}}_{k}$
For $j=0: k-1$
$\beta \leftarrow \mathbf{C}_{j}^{*} \mathbf{c}_{k} / \sigma_{j}$
$\widetilde{\mathbf{u}}_{k} \leftarrow \widetilde{\mathbf{u}}_{k}-\beta \widetilde{\mathbf{u}}_{j}$
$\mathbf{c}_{k} \leftarrow \mathbf{c}_{k}-\beta \mathbf{c}_{j}$
end for
$\sigma_{k}=\mathbf{c}_{k}^{*} \mathbf{c}_{k}, \alpha \leftarrow \mathbf{c}_{k}^{*} \mathbf{r} / \sigma_{k}$
$\widetilde{\mathbf{x}} \leftarrow \widetilde{\mathbf{x}}+\alpha \tilde{\mathbf{u}}_{k}$
$\mathbf{r} \leftarrow \mathbf{r}-\alpha \mathbf{C}_{k}$
end for

Including a preconditioner

There are several way to include preconditioner in GCR.

Including a preconditioner

- Modify the GCR algorithm (implicit preconditioning): replace " $\mathbf{u}_{k}=\mathbf{r}_{k}$ " by "Solve $\mathbf{M} \mathbf{u}_{k}=\mathbf{r}_{k}$ for \mathbf{u}_{k} ".
- Modify the problem to $\mathbf{A M}^{-1} \widetilde{\mathbf{x}}=\mathbf{b}$ (explicit right preconditioning): replace \mathbf{A} by $\mathbf{A M}^{-1} ; \mathbf{x}=\mathbf{M}^{-1} \widetilde{\mathbf{x}}$.

Theorem. The residuals \mathbf{r}_{k} and the \mathbf{c}_{j} in both versions are the same and $\mathbf{x}_{k}=\mathbf{M}^{-1} \widetilde{\mathbf{x}}_{k}$.

Including a preconditioner

- Modify the GCR algorithm (implicit preconditioning): replace " $\mathbf{u}_{k}=\mathbf{r}_{k}$ " by "Solve $\mathbf{M} \mathbf{u}_{k}=\mathbf{r}_{k}$ for \mathbf{u}_{k} ".
- Modify the problem to $\mathbf{A M}^{-1} \widetilde{\mathbf{x}}=\mathbf{b}$ (explicit right preconditioning): replace \mathbf{A} by $\mathbf{A M}^{-1} ; \mathbf{x}=\mathbf{M}^{-1} \widetilde{\mathbf{x}}$.

Explicit preconditioning requires pre processing (that is, before GCR can be applied, a routine has to be formed that computes $\mathbf{c}_{k}=\mathbf{A} \mathbf{M}^{-1} \widetilde{\mathbf{u}}_{k}$) and post processing (after the applying GCR, \mathbf{x}_{k} has to be computed from \widetilde{x}).

Including a preconditioner

- Modify the GCR algorithm (implicit preconditioning): replace " $\mathbf{u}_{k}=\mathbf{r}_{k}$ " by "Solve $\mathbf{M} \mathbf{u}_{k}=\mathbf{r}_{k}$ for \mathbf{u}_{k} ".
- Modify the problem to $\mathbf{A M}^{-1} \widetilde{\mathbf{x}}=\mathbf{b}$ (explicit right preconditioning): replace \mathbf{A} by $\mathbf{A M}^{-1} ; \mathbf{x}=\mathbf{M}^{-1} \widetilde{\mathbf{x}}$.

Observation. Do not explicitly form the matrix $\mathbf{A M}^{-1}$, but design an efficient routine to compute $\mathbf{c}_{k}=\mathbf{A} \mathbf{M}^{-1} \mathbf{u}_{k}$.

$$
\mathbf{c}=\operatorname{MV}(\mathbf{A}, \mathbf{M}, \mathbf{r})
$$

Including a preconditioner

- Modify the GCR algorithm (implicit preconditioning): replace " $\mathbf{u}_{k}=\mathbf{r}_{k}$ " by "Solve $\mathbf{M} \mathbf{u}_{k}=\mathbf{r}_{k}$ for \mathbf{u}_{k} ".
- Modify the problem to $\mathbf{A M}^{-1} \widetilde{\mathbf{x}}=\mathbf{b}$ (explicit right preconditioning): replace \mathbf{A} by $\mathbf{A M}^{-1} ; \mathbf{x}=\mathbf{M}^{-1} \widetilde{\mathbf{x}}$.
- Modify the problem to $\mathbf{M}^{-1} \mathbf{A x}=\widetilde{\mathbf{b}} \equiv \mathbf{M}^{-1} \mathbf{b}$ (explicit left preconditioning): replace \mathbf{A} by $\mathbf{M}^{-1} \mathbf{A}$ and \mathbf{b} by $\widetilde{\mathbf{b}}$.

Explicit left preconditioning requires pre processing (to form a routine that computes $\mathbf{c}_{k}=\mathbf{M}^{-1} \mathbf{A} \mathbf{r}_{k}$) and to solve $\tilde{\mathbf{b}}$ from $\mathbf{M} \widetilde{\mathbf{b}}=\mathbf{b}$. But no post processing

Including a preconditioner

- Modify the GCR algorithm (implicit preconditioning): replace " $\mathbf{u}_{k}=\mathbf{r}_{k}$ " by "Solve $\mathbf{M} \mathbf{u}_{k}=\mathbf{r}_{k}$ for \mathbf{u}_{k} ".
- Modify the problem to $\mathbf{A M}^{-1} \widetilde{\mathbf{x}}=\mathbf{b}$ (explicit right preconditioning): replace \mathbf{A} by $\mathbf{A M}^{-1} ; \mathbf{x}=\mathbf{M}^{-1} \widetilde{\mathbf{x}}$.
- Modify the problem to $\mathbf{M}^{-1} \mathbf{A x}=\widetilde{\mathbf{b}} \equiv \mathbf{M}^{-1} \mathbf{b}$ (explicit left preconditioning): replace \mathbf{A} by $\mathbf{M}^{-1} \mathbf{A}$ and \mathbf{b} by $\widetilde{\mathbf{b}}$.

Assignment. Write a routine that perform explicit left preconditioning.
Compare the performance of this routine with the one of GCR with implicit preconditioning (use the same preconditioner and the same \mathbf{x}_{0}). Make sure that you obtain residuals of comparable quality.

Including a preconditioner

- Modify the GCR algorithm (implicit preconditioning): replace " $\mathbf{u}_{k}=\mathbf{r}_{k}$ " by "Solve $\mathbf{M} \mathbf{u}_{k}=\mathbf{r}_{k}$ for \mathbf{u}_{k} ".
- Modify the problem to $\mathbf{A M}^{-1} \widetilde{\mathbf{x}}=\mathbf{b}$ (explicit right preconditioning): replace \mathbf{A} by $\mathbf{A M}^{-1} ; \mathbf{x}=\mathbf{M}^{-1} \widetilde{\mathbf{x}}$.
- Modify the problem to $\mathbf{M}^{-1} \mathbf{A x}=\widetilde{\mathbf{b}} \equiv \mathbf{M}^{-1} \mathbf{b}$ (explicit left preconditioning): replace \mathbf{A} by $\mathbf{M}^{-1} \mathbf{A}$ and \mathbf{b} by $\widetilde{\mathbf{b}}$.

Observations.

- The \mathbf{x}_{k} and \mathbf{r}_{k} in GCR with implicit preconditioning are approximations and residuals of the original problem.
- GCR with right preconditioning computes residuals of the original problem, but the approximates are preconditioned $\left(\mathbf{M x}{ }_{k}=\widetilde{\mathbf{x}}_{k}\right)$.
- GCR with left preconditioning computes approximate solutions of the original problem, but the residuals are preconditioned.

Program

- Flexible GCR
- Preconditioning
- D-ILU
- Incomplete LU-decomposition
- Why preconditioning?
- Costs
- How to include a preconditioner
- Savings

GCR

$$
\begin{aligned}
& \text { Choose tol }>0, \mathbf{x}, k_{\max }, \\
& \text { Compute } \mathbf{r}=\mathbf{b}-\mathbf{A x} \\
& \text { For } k=0: k_{\max } \\
& \text { Stop if }\|\mathbf{r}\|_{2} \leq t o l\|\mathbf{b}\|_{2} \\
& \mathbf{u}_{k}=\mathbf{r} \\
& \mathbf{c}_{k}=\mathbf{A} \mathbf{u}_{k} \\
& \text { For } j=0: k-1 \\
& \beta \leftarrow \mathbf{c}_{j}^{*} \mathbf{c}_{k} / \sigma_{j} \\
& \mathbf{u}_{k}=\mathbf{u}_{k}-\beta \mathbf{u}_{j} \\
& \mathbf{c}_{k}=\mathbf{c}_{k}-\beta \mathbf{c}_{j} \\
& \text { end for } \\
& \sigma_{k}=\mathbf{c}_{k}^{*} \mathbf{c}_{k}, \alpha \leftarrow \mathbf{c}_{k}^{*} \mathbf{r} / \sigma_{k} \\
& \mathbf{x} \leftarrow \mathbf{x}+\alpha \mathbf{u}_{k} \\
& \mathbf{r} \leftarrow \mathbf{r}-\alpha \mathbf{c}_{k} \\
& \text { end for }
\end{aligned}
$$

More efficients steps

The most expensive part of GCR is the orthogonalization loop: the costs of this part at step k for step k are 6 kn ,
while the costs (for $2-\mathrm{d}$) for the other part are $19 n$ flop (without precond.) or $30 n$ flop (with D-ILU).

For $k>10$, the orthogonalization dominates the costs.

More efficients steps

The most expensive part of GCR is the orthogonalization loop: the costs of this part at step k for step k are 6 kn ,
while the costs (for 2-d) for the other part are $19 n$ flop (without precond.) or $30 n$ flop (with D-ILU).

Idea. Restart every ℓ steps with the most recent approximate solution as initial guess for the next ℓ steps: restarted GCR.

Notation. $\lfloor\mu\rfloor=k$ if $\mu \in[k, k+1)$ and $k \in \mathbb{N}_{0}$.

Restarted GCR

$$
\begin{aligned}
& \text { Choose tol }>0, \mathbf{x}, k_{\max }, \ell \in \mathbb{N} \\
& \text { Compute } \mathbf{r}=\mathbf{b}-\mathbf{A x} \\
& \text { For } k=0: k_{\max } \\
& \text { Stop if }\|\mathbf{r}\|_{2} \leq \text { tol }\|\mathbf{b}\|_{2} \\
& \mathbf{u}_{k}=\mathbf{r} \\
& \mathbf{c}_{k}=\mathbf{A} \mathbf{u}_{k} \\
& \text { For } j=\ell\left\lfloor\frac{k}{\ell}\right\rfloor: k-1 \\
& \beta \leftarrow \mathbf{c}_{j}^{*} \mathbf{c}_{k} / \sigma_{j} \\
& \mathbf{u}_{k}=\mathbf{u}_{k}-\beta \mathbf{u}_{j} \\
& \mathbf{c}_{k}=\mathbf{c}_{k}-\beta \mathbf{c}_{j} \\
& \text { end for } \\
& \sigma_{k}=\mathbf{c}_{k}^{*} \mathbf{c}_{k}, \alpha \leftarrow \mathbf{c}_{k}^{*} \mathbf{r} / \sigma_{k} \\
& \mathbf{x} \leftarrow \mathbf{x}+\alpha \mathbf{u}_{k} \\
& \mathbf{r} \leftarrow \mathbf{r}-\alpha \mathbf{C}_{k} \\
& \text { end for }
\end{aligned}
$$

More efficients steps

The most expensive part of GCR is the orthogonalization loop: the costs of this part at step k for step k are 6 kn ,
while the costs (for 2-d) for the other part are $19 n$ flop (without precond.) or $30 n$ flop (with D-ILU).

Idea. Keep only the last ℓ vectors $\mathbf{c}_{k-\ell}, \ldots, \mathbf{c}_{k-1}$ (and the associated \mathbf{u}_{j}) in the orthogonalization process: truncate GCR.

Truncated GCR

$$
\begin{aligned}
& \text { Choose tol }>0, \mathbf{x}, k_{\max }, \quad \ell \in \mathbb{N} \\
& \text { Compute } \mathbf{r}=\mathbf{b}-\mathbf{A x} \\
& \text { For } k=0: k_{\max } \\
& \text { Stop if }\|\mathbf{r}\|_{2} \leq t o l\|\mathbf{b}\|_{2} \\
& \mathbf{u}_{k}=\mathbf{r} \\
& \mathbf{c}_{k}=\mathbf{A} \mathbf{u}_{k} \\
& \text { For } j=\max ^{(}(k-\ell, 0): k-1 \\
& \beta \leftarrow \mathbf{C}_{j}^{*} \mathbf{c}_{k} / \sigma_{j} \\
& \mathbf{u}_{k}=\mathbf{u}_{k}-\beta \mathbf{u}_{j} \\
& \mathbf{c}_{k}=\mathbf{c}_{k}-\beta \mathbf{c}_{j} \\
& \text { end for } \\
& \sigma_{k}=\mathbf{c}_{k}^{*} \mathbf{c}_{k}, \alpha \leftarrow \mathbf{C}_{k}^{*} \mathbf{r} / \sigma_{k} \\
& \mathbf{x} \leftarrow \mathbf{x}+\alpha \mathbf{u}_{k} \\
& \mathbf{r} \leftarrow \mathbf{r}-\alpha \mathbf{C}_{k} \\
& \text { end for }
\end{aligned}
$$

Assignment. Write a function subroutine GCR

$$
\mathbf{x}=\operatorname{GCR}\left(\mathbf{A}, \mathbf{b}, \mathbf{x}_{0}, \text { tol }, k_{\max }, \ell\right)
$$

that performs

- restart if $\ell>0$,
- standard GCR if $\ell=0$,
- truncates if $\ell<0$ with truncation length $|\ell|$.

More efficients steps

The most expensive part of GCR is the orthogonalization loop: the costs of this part at step k for step k are 6 kn ,
while the costs (for 2-d) for the other part are $19 n$ flop (without precond.) or $30 n$ flop (with D-ILU).

Idea. Keep only the last ℓ vectors $\mathbf{c}_{k-\ell}, \ldots, \mathbf{c}_{k-1}$ (and the associated \mathbf{u}_{j}) in the orthogonalization process: truncate GCR.

Example. $\ell=1$: Conjugate Residuals

Conjugate Residuals

$$
\begin{aligned}
& \text { Choose tol }>0, \mathbf{x}, k_{\max } \\
& \text { Compute } \mathbf{r}=\mathbf{b}-\mathbf{A x} \\
& \text { For } k=0: k_{\max } \\
& \text { Stop if }\|\mathbf{r}\|_{2} \leq t o l\|\mathbf{b}\|_{2} \\
& \mathbf{u}_{k}=\mathbf{r} \\
& \mathbf{c}_{k}=\mathbf{A} \mathbf{u}_{k} \\
& \text { if } k>0 \\
& \beta \leftarrow \mathbf{C}_{k-1}^{*} \mathbf{c}_{k} / \sigma_{k-1} \\
& \mathbf{u}_{k} \leftarrow \mathbf{u}_{k}-\beta \mathbf{u}_{k-1} \\
& \mathbf{c}_{k} \leftarrow \mathbf{C}_{k}-\beta \mathbf{c}_{k-1} \\
& \text { end if } \\
& \sigma_{k}=\mathbf{C}_{k}^{*} \mathbf{c}_{k}, \alpha \leftarrow \mathbf{c}_{k}^{*} \mathbf{r} / \sigma_{k} \\
& \mathbf{x} \leftarrow \mathbf{x}+\alpha \mathbf{u}_{k} \\
& \mathbf{r} \leftarrow \mathbf{r}-\alpha \mathbf{C}_{k} \\
& \text { end for }
\end{aligned}
$$

Conjugate Residuals

Choose tol >0, X, $k_{\text {max }}$
$\mathbf{u}_{1}=\mathbf{c}_{1}=\mathbf{0}, \sigma=1$
Compute $\mathbf{r}=\mathbf{b}-\mathbf{A} \mathbf{x}$
For $k=0: k_{\text {max }}$
Stop if $\|\mathbf{r}\|_{2} \leq t o l\|\mathbf{b}\|_{2}$
$\mathbf{u}_{0} \leftarrow \mathbf{u}_{1}, \mathbf{u}_{1} \leftarrow \mathbf{r}$
$\mathbf{c}_{0} \leftarrow \mathbf{c}_{1}, \mathbf{c}_{1} \leftarrow \mathbf{A} \mathbf{u}_{k}$
$\beta \leftarrow \mathbf{C}_{0}^{*} \mathbf{C}_{1} / \sigma$
$\mathbf{u}_{1} \leftarrow \mathbf{u}_{1}-\beta \mathbf{u}_{0}$
$\mathbf{c}_{1} \leftarrow \mathbf{c}_{1}-\beta \mathbf{c}_{0}$
$\sigma \leftarrow \mathbf{C}_{1}^{*} \mathbf{C}_{1}, \quad \alpha \leftarrow \mathbf{C}_{1}^{*} \mathbf{r} / \sigma$
$\mathbf{X} \leftarrow \mathbf{X}+\alpha \mathbf{u}_{1}$
$\mathbf{r} \leftarrow \mathbf{r}-\alpha \mathbf{C}_{1}$
end for

Theorem. If $\mathbf{A}^{*}=\mathbf{A}$ then $\mathrm{GCR}=\mathrm{CR}$.
that is, in exact arithmetic CR and GCR have the same residual \mathbf{r}_{k} and the same approximate solution \mathbf{x}_{k} (when started withe the same initial guess \mathbf{x}_{0}).

Assignment. Program CR. Check that $C G=G C R$ in case the matrix is symmetric (and real).

Include also preconditioning in CR. What is the reduction in number of steps that is required by including preconditioning in order to have a more efficient CR algorithm?

