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Aspect werkelijkheid

Modelleer ⇓

Wiskundig model

Discretiseer ⇓

Discreet model

⇓

Computer model

Implementeer ⇓

Simulatie

Stroming grondwater

⇓

−∇(K∇φ) = Q op Ω

−K ∂φ
∂x
· n = γ(φ− φ0) op ∂Ω

⇓ Eindige differences, . . .

φ(x+∆x,y)−φ(x−∆x,y)
2∆x

. . .

. . .
Ax = b

⇓ Iteratieve lineaire solver

Rekenschema voor het
oplossen van x uit Ax = b

⇓ C++

Simulatie
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Program

• Flexible GCR

• Preconditioning

• D-ILU

• Incomplete LU-decomposition

• Why preconditioning?

• Costs

• How to include a preconditioner

• Savings



The costs of GCR and of Gaussian elimination are compa-

rable for our equations

Ax = b

from 2 dimensional advection-diffusion.

(For problems from 3 d, GCR is the clear winner).

An additional action is required to make iterative methods

more efficient.
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GCR

Choose tol > 0, x, kmax,

Compute r = b−Ax
For k = 0,1,2, . . . , kmax

Stop if ‖r‖2 ≤ tol‖b‖2
uk = r

ck = Auk
For j = 0,1,2, . . . , k − 1

β ← c∗jck/σj

uk = uk − β uj
ck = ck − β cj

end for

σk = c∗kck, α ← c∗kr/σk
x ← x + αuk
r ← r− αck

end for



GCR

Choose tol > 0, x, kmax,

Compute r = b−Ax
For k = 0,1,2, . . . , kmax

Stop if ‖r‖2 ≤ tol‖b‖2
Solve Auk = r for uk

ck = Auk
For j = 0,1,2, . . . , k − 1

β ← c∗jck/σj

uk = uk − β uj
ck = ck − β cj

end for

σk = c∗kck, α ← c∗kr/σk
x ← x + αuk
r ← r− αck

end for



If, in GCR, we replace the line

uk = rk

in, say, the fourth step (k = 4) by

Solve Auk = rk for uk,

then rk+1 = 0.



If, in GCR, we replace the line

uk = rk

in, say, the fourth step (k = 4) by

Solve Auk = rk for uk,

then rk+1 = 0.

However,

solving Auk = rk is as hard as solving Ax = b.



If, in GCR, we replace the line

uk = rk

in, say, the fourth step (k = 4) by

Solve Auk = rk for uk,

then rk+1 = 0.

However,

solving Auk = rk is as hard as solving Ax = b.

But it suggests that (cheaply) finding an approximate so-

lution of Auk = rk might be a good idea.



Flexible GCR

Choose tol > 0, x, kmax,

Compute r = b−Ax
For k = 0,1,2, . . . , kmax

Stop if ‖r‖2 ≤ tol‖b‖2
Find an appropriate search vector uk

ck = Auk
For j = 0,1,2, . . . , k − 1

β ← c∗jck/σj

uk = uk − β uj
ck = ck − β cj

end for

σk = c∗kck, α ← c∗kr/σk
x ← x + αuk
r ← r− αck

end for



Find an appropriate search vector uk

In principle, any appropriate vector uk can be “injected” in

the search subspace.

Example.

• u0 is the vector variant of the pressure function in the

neighbourhood of a pump.

• u0 = x̃, with x̃ the solution before installing a pump, or

before the river started carrying water.

• The solution of Auk = rk as obtained with m steps of

GCR (GCR is nested here with itself).

• Eigenvectors of A that correspond to small eigenvalues.



Find an appropriate search vector uk

In principle, any appropriate vector uk can be “injected” in

the search subspace.

Remark. In this generality

flexible GCR does not form a Krylov subspace.



Find an appropriate search vector uk

In principle, any appropriate vector uk can be “injected” in

the search subspace.

A systematic way to find appropriate vectors uk

(that is, vectors that are more effective than uk = rk)

is with a so-called preconditioner.
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Preconditioning

An n by n matrix M is called a preconditioner if

• the system Muk = rk can efficiently be solved and

• M approximates A (to some degree).

that is, uk = M−1rk is more effective than uk = rk
in finding an approximate solution of Au = rk.



Preconditioned GCR

Choose tol > 0, x, kmax,

Compute r = b−Ax
For k = 0,1,2, . . . , kmax

Stop if ‖r‖2 ≤ tol‖b‖2
Solve Muk = rk for uk

ck = Auk
For j = 0,1,2, . . . , k − 1

β ← c∗jck/σj

uk = uk − β uj
ck = ck − β cj

end for

σk = c∗kck, α ← c∗kr/σk
x ← x + αuk
r ← r− αck

end for



Preconditioning

An n by n matrix M is called a preconditioner if

• the system Muk = rk can efficiently be solved and

• M approximates A (to some degree).

Examples.

• Diagonal preconditioning. M ≡ DA ≡ diag(A).



Preconditioning

An n by n matrix M is called a preconditioner if

• the system Muk = rk can efficiently be solved and

• M approximates A (to some degree).

Examples.

• Diagonal preconditioning. M ≡ DA ≡ diag(A).

Usually this does not lead to a ‘great’ reduction in the

number of required iteration steps. But, on the other hand,

application of this preconditioner is extremely cheap.

Solving DAuk = rk costs n flop extra per step.
In k steps this is kn flop.
With a reduction of the required number of steps from,
say, 100 to 98 the ‘gain’ would be 1200n flop
with a ‘loss’ of only 100n flop



Preconditioning

An n by n matrix M is called a preconditioner if

• the system Muk = rk can efficiently be solved and

• M approximates A (to some degree).

Examples.

• Diagonal preconditioning. M ≡ DA ≡ diag(A).

• Gauss–Seidel. M ≡ LA + DA

where LA is the strict lower triangular part A:

Li,j = Ai,j if i > j and Li,j = 0 else.



Preconditioning

An n by n matrix M is called a preconditioner if

• the system Muk = rk can efficiently be solved and

• M approximates A (to some degree).

Examples.

• Diagonal preconditioning. M ≡ DA ≡ diag(A).

• Gauss–Seidel. M ≡ LA + DA .

• A variant: M = DA + UA

with UA the strict upper triangular part of A.

• A variant called Successive overrelaxation:

M ≡ LA + 1
ωDA with ω a relaxation parameter.



Preconditioning

An n by n matrix M is called a preconditioner if

• the system Muk = rk can efficiently be solved and

• M approximates A (to some degree).

Examples.

• Diagonal preconditioning. M ≡ DA ≡ diag(A).

• Gauss–Seidel. M ≡ LA + DA .

• Symmetric Successive overrelaxation.

M ≡ (LA + D)D−1(D + UU)

with D ≡ 1
ωDA for a relaxation parameter ω.

These “classical” preconditioners have been introduced

(and used until ±1975 only) in combination with Richard-

son iteration. From ±1985 on they where used as precon-

ditioner.



Preconditioning

An n by n matrix M is called a preconditioner if

• the system Muk = rk can efficiently be solved and

• M approximates A (to some degree).

Examples.

• Diagonal preconditioning. M ≡ DA ≡ diag(A).

• Gauss–Seidel. M ≡ LA + DA .

• Symmetric Successive overrelaxation.

M ≡ (LA + D)D−1(D + UU)

with D ≡ 1
ωDA for a relaxation parameter ω.

Note that M = A + R for

R ≡ (1
ω − 1)DA + LAD−1UA
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Preconditioning

M ≡ (LA + D)D−1(D + UA ) = A + R

The system Mu = r can be solved in three steps.

• Solve (LA + D)u′ = r for u′.
• Compute u′′ = Du′.
• Solve (D + UA )u = u′′ for u.

Assignment. Write a function subroutine

u = Msolve(A,D, r)

that incorporates the above steps. Try to make the routine

as efficient as possible also concerning use of memory.

Hint. For testing purposes, you can initially take

D = DA of D = 1
ωDA .



Preconditioning

M ≡ (LA + D)D−1(D + UA ) = A + R

The system Mu = r can be solved in three steps.

• Solve (LA + D)u′ = r for u′.
• Compute u′′ = Du′.
• Solve (D + UA )u = u′′ for u.

Assignment. Write a function subroutine

u = Msolve(A,D, r)

that incorporates the above steps. Try to make the routine

as efficient as possible also concerning use of memory.

Incorporate Msolve in GCR: write a routine PGCR

x = PGCR(A,b,x0, tol, kmax,D)



Preconditioning

Find a diagonal matrix D such that with

M ≡ (LA + D)D−1(D + UA ) = A + R

the “error”

R ≡ D−DA + LAD−1UA

is small in some sense.



Preconditioning

Find a diagonal matrix D such that with

M ≡ (LA + D)D−1(D + UA ) = A + R

the “error”

R ≡ D−DA + LAD−1UA

is small in some sense.

Examples.

• Diagonal-Incomplete LU: diag(R) = 0.



Preconditioning

Find a diagonal matrix D such that with

M ≡ (LA + D)D−1(D + UA ) = A + R

the “error”

R ≡ D−DA + LAD−1UA

is small in some sense.

Examples.

• Diagonal-Incomplete LU: diag(R) = 0.

• D-Modified ILU: R1 = 0, with 1 ≡ (1,1, . . . ,1)T



Preconditioning

Find a diagonal matrix D such that with

M ≡ (LA + D)D−1(D + UA ) = A + R

the “error”

R ≡ D−DA + LAD−1UA

is small in some sense.

Examples.

• Diagonal-Incomplete LU: diag(R) = 0.

• D-Modified ILU: R1 = 0, with 1 ≡ (1,1, . . . ,1)T

• D-Relaxed ILU: a mix of ILU and MILU
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LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity.

Let `j be the jth column of L and

ej the jth standard basis vector

(`j = L(:, j), ej = I(:, j) in MATLAB notation).

Exercise. Prove

• (I− `je
∗
j)
−1 = I + `je

∗
j

• (I + `je
∗
j)(I + `ke

∗
k) = I + `je

∗
j + `ke

∗
k if j < k.

• (I + L)−1 = (I− `n−1e
∗
n−1)(I− `n−2e

∗
n−2) . . . (I− `1e

∗
1)

Interpretation. If U′ = (I− `1e
∗
1)U, then

U′(i, :) = U(i, :)− `1(i)U(1, :)

a multiple of the 1st row of U is subtracted from the ith row.



LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. `j ≡ L(:, j), ej ≡ I(:, j).

LU-decomposition or Gaussian elimination:

U(0) ≡ A,U(1), . . . , U(n−1) = U such that

U(j) = (I− `j e
∗
j)U

(j−1) (j = 1, . . . , n)

and the jth column of U(j) below the diagonal is zero:

with pj ≡ U(j−1)(j, j), `j(i) = U(j−1)(i, j)/pj for i > j.



LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. `j ≡ L(:, j), ej ≡ I(:, j).

LU-decomposition or Gaussian elimination:

U(0) ≡ A,U(1), . . . , U(n−1) = U such that

U(j) = (I− `j e
∗
j)U

(j−1) (j = 1, . . . , n)

and the jth column of U(j) below the diagonal is zero:

with pj ≡ U(j−1)(j, j), `j(i) = U(j−1)(i, j)/pj for i > j.

Theorem. If the pivots pj 6= 0 all j, then

A = LU



LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. `j ≡ L(:, j), ej ≡ I(:, j).

LU-decomposition or Gaussian elimination:

U(0) ≡ A,U(1), . . . , U(n−1) = U such that

U(j) = (I− `j e
∗
j)U

(j−1) (j = 1, . . . , n)

and the jth column of U(j) below the diagonal is zero:

with pj ≡ U(j−1)(j, j), `j(i) = U(j−1)(i, j)/pj for i > j.

Theorem. If the pivots pj 6= 0 all j, then

A = LU

Sparsity pattern of A; FA ≡ {(i, j) | A(i, j) 6= 0}
Fill: {(i, j) 6∈ FA | L(i, j) 6= 0 or U(k)(i, j) 6= 0}



LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. `j ≡ L(:, j), ej ≡ I(:, j).

Incomplete LU-decomposition.

Select a fill pattern F ⊂ {(i, j) | i, j = 1, . . . , n}.
If B is an n× n matrix, then B′ is the matrix with entries

B′(i, j) = B(i, j) if (i, j) ∈ F and B′(i, j) = 0 if (i, j) 6∈ F.

Put Π(B) = B′.

U(0) ≡ A, U(1), . . . ,U(n−1) = U such that

Ũ
(j)

= (I− `je
∗
j)U

(j−1), U(j) = Π(Ũ
(j)

)

and the j column of Ũ
(j)

below the diagonal is zero:

with pj ≡ U(j−1)(j, j), `j(i) = U(j−1)(i, j)/pj for i > j.
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Replace to unwanted non zero entries by zero



LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. `j ≡ L(:, j), ej ≡ I(:, j).

Incomplete LU-decomposition.

Select a fill pattern F ⊂ {(i, j) | i, j = 1, . . . , n}.
If B is an n× n matrix, then B′ is the matrix with entries

B′(i, j) = B(i, j) if (i, j) ∈ F and B′(i, j) = 0 if (i, j) 6∈ F.

Put Π(B) = B′.

U(0) ≡ A, U(1), . . . ,U(n−1) = U such that

Ũ
(j)

= (I− `je
∗
j)U

(j−1), U(j) = Π(Ũ
(j)

)

and the j column of Ũ
(j)

below the diagonal is zero:

with pj ≡ U(j−1)(j, j), `j(i) = U(j−1)(i, j)/pj for i > j.

Theorem. With ILU and M = LU,
we have that A(i, j) = M(i, j) for all (i, j) ∈ F



LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. `j ≡ L(:, j), ej ≡ I(:, j).

Modified ILU-decomposition. Select a

fill pattern F ⊂ {(i, j) | i, j = 1, . . . , n} with {(i, i)} ⊂ F.

If B is an n× n matrix, then B̃ is the matrix with entries

B̃(i, j) = B(i, j) if (i, j) ∈ F , i 6= j

B̃(i, j) = 0 if (i, j) 6∈ F,

B̃(i, i) = B(i, i) +
∑

j,(i,j)6∈F B(i, j)

Put ΠM(B) = B̃.

U(0) ≡ A, U(1), . . . ,U(n−1) = U such that

Ũ
(j)

= (I− `je
∗
j)U

(j−1), U(j) = ΠM(Ũ
(j)

)

and the jth column of Ũ
(j)

below the diagonal is zero:

with pj ≡ U(j−1)(j, j), `j(i) = U(j−1)(i, j)/pj for i > j.



LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. `j ≡ L(:, j), ej ≡ I(:, j).

Modified ILU-decomposition. Select a

fill pattern F ⊂ {(i, j) | i, j = 1, . . . , n} with {(i, i)} ⊂ F.

If B is an n× n matrix, then B̃ is the matrix with entries

B̃(i, j) = B(i, j) if (i, j) ∈ F , i 6= j

B̃(i, j) = 0 if (i, j) 6∈ F,

B̃(i, i) = B(i, i) +
∑

j,(i,j)6∈F B(i, j)

Put ΠM(B) = B̃. Note. B1 = ΠM(B)1.

U(0) ≡ A, U(1), . . . ,U(n−1) = U such that

Ũ
(j)

= (I− `je
∗
j)U

(j−1), U(j) = ΠM(Ũ
(j)

)

and the jth column of Ũ
(j)

below the diagonal is zero:

with pj ≡ U(j−1)(j, j), `j(i) = U(j−1)(i, j)/pj for i > j.



LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. `j ≡ L(:, j), ej ≡ I(:, j).

Theorem. With MILU-decomposition and M ≡ LU,

we have that M1 = A1, where 1 ≡ (1,1, . . . ,1)T.



LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. `j ≡ L(:, j), ej ≡ I(:, j).

Relaxed ILU-decomposition. Select an ω ∈ [0,1] and a

fill pattern F ⊂ {(i, j) | i, j = 1, . . . , n} with {(i, i)} ⊂ F.

If B is an n× n matrix, then B̃ is the matrix with entries

B̃(i, j) = B(i, j) if (i, j) ∈ F , i 6= j

B̃(i, j) = 0 if (i, j) 6∈ F,

B̃(i, i) = B(i, i) + ω
∑

j,(i,j)6∈F B(i, j)

Put Πω(B) = B̃.

U(0) ≡ A, U(1), . . . ,U(n−1) = U such that

Ũ
(j)

= (I− `je
∗
j)U

(j−1), U(j) = Πω(Ũ
(j)

)

and the jth column of Ũ
(j)

below the diagonal is zero:

with pj ≡ U(j−1)(j, j), `j(i) = U(j−1)(i, j)/pj for i > j.



LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. `j ≡ L(:, j), ej ≡ I(:, j).

Remark. RILU(0)=ILU, RILU(1)=MILU.



Diagonal ILU decomposition

Write A = LA + DA + UA with

LA the strict lower triangular part of A

(LA (i, j) = A(i, j) if i > j, LA (i, j) = 0 if i ≤ j)

DA = diag(A) (in Matlab: D A=diag(diag(A));)

UA the strict upper triangular part of A.

For an n× n diagonal matrix D consider

M ≡ (LA + D)D−1(D + UA )

D-ILU: D is such that diag(M) = diagA).



Diagonal ILU decomposition

Write A = LA + DA + UA with

LA the strict lower triangular part of A

(LA (i, j) = A(i, j) if i > j, LA (i, j) = 0 if i ≤ j)

DA = diag(A) (in Matlab: D A=diag(diag(A));)

UA the strict upper triangular part of A.

For an n× n diagonal matrix D consider

M ≡ (LA + D)D−1(D + UA )

D-ILU: D is such that diag(M) = diagA).

Theorem. If A is the matrix from a 5-point stencil
(2-d advection diffusion) or from a 7-point stencil
(3-d advection diffusion), then D-ILU= ILU,
i.e., if L and U are from ILU, then

L = LAD−1 + I and U = D + UA .



Diagonal ILU decomposition

Write A = LA + DA + UA with

LA the strict lower triangular part of A

(LA (i, j) = A(i, j) if i > j, LA (i, j) = 0 if i ≤ j)

DA = diag(A) (in Matlab: D A=diag(diag(A));)

UA the strict upper triangular part of A.

For an n× n diagonal matrix D consider

M ≡ (LA + D)D−1(D + UA )

D-MILU: D is such that M1 = A1.



Diagonal ILU decomposition

Write A = LA + DA + UA with

LA the strict lower triangular part of A

(LA (i, j) = A(i, j) if i > j, LA (i, j) = 0 if i ≤ j)

DA = diag(A) (in Matlab: D A=diag(diag(A));)

UA the strict upper triangular part of A.

For an n× n diagonal matrix D consider

M ≡ (LA + D)D−1(D + UA )

D-MILU: D is such that M1 = A1.

Theorem. If A is the matrix from a 5-point stencil
(2-d advection diffusion) or from a 7-point stencil
(3-d advection diffusion), then D-MILU=MILU,
i.e., if L and U are from MILU, then

L = LAD−1 + I and U = D + UA .



Other ILU-decompositions

The idea behind ILU is to form a lower triangular matrix

L and an upper triangular matrix U such that

• M ≡ LU approximates A well in some sense.

• The systems Lu′ = r and Uu = u′
can efficiently be solved,

• but the L and U should also be
efficiently computable.

In practise, the first condition and the last have to be ba-

lanced and the meaning of “efficient” and “approximates

well” often depends on the application.

As an extreme example, if Mx = Ax, then preconditioned GCR star-

ted with x0 = 0 finds x in one step even if R = A−M is large.



Other ILU-decompositions

For a fill pattern F ⊂ {(i, j) | i, j = 1, . . . , n}, define

F+ ≡ {(i, j) | (i, k), (k, j) ∈ F for some k < i, k < j}
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Other ILU-decompositions

For a fill pattern F ⊂ {(i, j) | i, j = 1, . . . , n}, define

F+ ≡ {(i, j) | (i, k), (k, j) ∈ F for some k < i, k < j}
Interpretation. In the kth step of the Gaussian elimina-

tion, the matrix entries at the position (i, k) and (k, j) are

used to form the entry at position (i, j):

U(k)(i, j) = U(k−1)(i, j)−U(k−1)(i, k)U(k−1)(k, j)/pk

with pivot pk = U(k−1)(k, k).

If F = FA , then F+ contains the indices of possible non-

zero matrix entries formed directly from non-zeros of the

original matrix.

F = FA is level 0 fill, F+ is level 1 fill.



Other ILU-decompositions

For a fill pattern F ⊂ {(i, j) | i, j = 1, . . . , n}, define

F+ ≡ {(i, j) | (i, k), (k, j) ∈ F for some k < i, k < j}

Terminology. With FA (0) ≡ FA ≡ {(i, j) | A(i, j) 6= 0},
FA (`) ≡ FA (`− 1)+ for ` = 1,2, . . .

FA (`) is fill of level `.

Note that to determine FA (`) no specific values for the

entries of A are required.

ILU(`), that is, ILU for A with fill pattern FA (`),

is called ILU of level `.

ILU(0)= ILU.
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Other ILU-decompositions

Select an ε > 0 (the drop tolerance).

If B is an n× n matrix, then B̃ is the matrix with entries

B̃(i, j) = B(i, j) if |B(i, j)| > ε

B̃(i, j) = 0 if |B(i, j)| ≤ ε

Put Πε(B) ≡ B̃.

Using Πε in each step of the Gaussian elimination process

leads to ILU(ε), ILU with drop tolerance

Advanced ILU.
• Drop tolerance and level strategies can be combined.

• The value of the drop tolerance can be selected
to depend on the level, on the size of the matrix entries,

• . . .
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Why preconditioning?

Example.



− ∂

∂x
∂
∂x φ = 0 on D ≡ [0,1]

φ(0) = 1, φ(1) = 0



Why preconditioning?

Example.



− ∂

∂x
∂
∂x φ = 0 on D ≡ [0,1]

φ(0) = 1, φ(1) = 0

Exact solution φ(x) = 1− x.
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Why preconditioning?

Example.



− ∂

∂x
∂
∂x φ = 0 on D ≡ [0,1]

φ(0) = 1, φ(1) = 0

Discretization: symmetric finite differences: h = 1
n+1

A = 1
h2




2 −1 0 . . . 0
−1 2 −1 .. . ...
0 . . . . . . . . .
... . . . −1 2 −1

0 −1 2




, b = 1
h2




1
0
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0
0



.

Solve with GCR (or LMR) with x0 = 0.
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Why preconditioning?

Example.



− ∂

∂x
∂
∂x φ = 0 on D ≡ [0,1]

φ(0) = 1, φ(1) = 0

Discretization: symmetric finite differences: h = 1
n+1

A = 1
h2




2 −1 0 . . . 0
−1 2 −1 .. . ...
0 . . . . . . . . .
... . . . −1 2 −1
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, b = 1
h2
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With x0 = 0, we have r0 = b−Ax0 = b = τe1



Why preconditioning?

Example.



− ∂

∂x
∂
∂x φ = 0 on D ≡ [0,1]

φ(0) = 1, φ(1) = 0

Discretization: symmetric finite differences: h = 1
n+1

A = 1
h2




2 −1 0 . . . 0
−1 2 −1 .. . ...
0 . . . . . . . . .
... . . . −1 2 −1

0 −1 2




, b = 1
h2




1
0
...
0
0



.

With x0 = 0, we have r0 = b−Ax0 = b = τe1

Observation. For k = 1,2, . . . , n− 1, we have that

A(span(e1, . . . ,ek)) ⊂ span(e1, . . . ,ek,ek+1).



Why preconditioning?

Example.



− ∂

∂x
∂
∂x φ = 0 on D ≡ [0,1]

φ(0) = 1, φ(1) = 0

Discretization: symmetric finite differences: h = 1
n+1

A = 1
h2




2 −1 0 . . . 0
−1 2 −1 .. . ...
0 . . . . . . . . .
... . . . −1 2 −1

0 −1 2




, b = 1
h2




1
0
...
0
0



.

With x0 = 0, we have r0 = b−Ax0 = b = τe1

u0 = r0, c1 = Au0 = Ar0, x1 ∈ span(e1), r1 = r0 − α1c1



Why preconditioning?

Example.



− ∂

∂x
∂
∂x φ = 0 on D ≡ [0,1]

φ(0) = 1, φ(1) = 0

Discretization: symmetric finite differences: h = 1
n+1

A = 1
h2




2 −1 0 . . . 0
−1 2 −1 .. . ...
0 . . . . . . . . .
... . . . −1 2 −1

0 −1 2




, b = 1
h2




1
0
...
0
0



.

With x0 = 0, we have r0 = b−Ax0 = b = τe1

GCR and LMR: rk−1,xk ∈ span(e1, . . . ,ek) for k = 1, . . . , n.
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Why preconditioning?

Example.



− ∂

∂x
∂
∂x φ = 0 on D ≡ [0,1]

φ(0) = 1, φ(1) = 0

Discretization: symmetric finite differences: h = 1
n+1

A = 1
h2




2 −1 0 . . . 0
−1 2 −1 .. . ...
0 . . . . . . . . .
... . . . −1 2 −1

0 −1 2




, b = 1
h2




1
0
...
0
0



.

With x0 = 0, we have r0 = b−Ax0 = b = τe1

GCR and LMR: rk−1,xk ∈ span(e1, . . . ,ek) for k = 1, . . . , n.

The best solution in span(e1, . . . ,ek) is (for k < n)∑
j≤k(1− j

n+1)ej, 2-norm error n−k
n+1 ≥ 1

n+1.



Why preconditioning?

Example.



− ∂

∂x
∂
∂x φ = 0 on D ≡ [0,1]

φ(0) = 1, φ(1) = 0

Discretization: symmetric finite differences: h = 1
n+1

A = 1
h2




2 −1 0 . . . 0
−1 2 −1 .. . ...
0 . . . . . . . . .
... . . . −1 2 −1

0 −1 2




, b = 1
h2




1
0
...
0
0



.

With x0 = 0, we have r0 = b−Ax0 = b = τe1

GCR and LMR: rk−1,xk ∈ span(e1, . . . ,ek) for k = 1, . . . , n.

The best solution in span(e1, . . . ,ek) is (for k < n)∑
j≤k(1− j

n+1)ej, 2-norm error n−k
n+1 ≥ 1

n+1.

Conclusion. The error can not drop below h in < n steps.



Why preconditioning?

Example.



− ∂

∂x
∂
∂x φ = 0 on D ≡ [0,1]

φ(0) = 1, φ(1) = 0

Discretization: symmetric finite differences: h = 1
n+1

A = 1
h2




2 −1 0 . . . 0
−1 2 −1 .. . ...
0 . . . . . . . . .
... . . . −1 2 −1

0 −1 2




, b = 1
h2




1
0
...
0
0



.

With x0 = 0, we have r0 = b−Ax0 = b = τe1

GCR and LMR: rk−1,xk ∈ span(e1, . . . ,ek) for k = 1, . . . , n.

Interpretation. It takes a Krylov subspace method at least

n (=grid size) steps to carry the information in r0 over the

whole grid.
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Why preconditioning?

Interpretation. Without preconditioning.

In d-dimensional advection diffusion problems, with sym-

metric finite difference discretization of order 2:

It takes any Krylov subspace method at least max(nx, ny, . . .)

(=max. grid size) steps to carry the information in r0 over

the whole grid.

No small error, whence no small residual, can be expected

in less than max(nx, ny, . . .) steps with a Krylov subspace

method.



Why preconditioning?

Interpretation. Without preconditioning.

In d-dimensional advection diffusion problems, with sym-

metric finite difference discretization of order 2:

It takes any Krylov subspace method at least max(nx, ny, . . .)

(=max. grid size) steps to carry the information in r0 over

the whole grid.

No small error, whence no small residual, can be expected

in less than max(nx, ny, . . .) steps with a Krylov subspace

method.

If from 1-d advection diffusion,

one ‘sweep’ over the grid solves the problem.

In higher dimensions, more sweeps are needed.
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Why preconditioning?

Interpretation. Without preconditioning.

In d-dimensional advection diffusion problems, with sym-

metric finite difference discretization of order 2:

It takes any Krylov subspace method at least max(nx, ny, . . .)

(=max. grid size) steps to carry the information in r0 over

the whole grid.

No small error, whence no small residual, can be expected

in less than max(nx, ny, . . .) steps with a Krylov subspace

method.

With an ILU-preconditioner, the information is “dragged”

all over the grid in each step.

This does not guarantee fast convergence, but it might.
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Does preconditioning harm?

M = (LA + D)D−1(D + UA ).

Costs. The costs of computing D are negligible:

D has to be computed only once (before starting the so-

lution process with GCR (or LMR)).



Does preconditioning harm?

M = (LA + D)D−1(D + UA ).

Costs. The costs of computing D are negligible

u is solved from Mu = r by

• Solve (LA + D)u′ = r for u′ 5n flop

• Compute u′′ = Du′ n flop

• Solve (UA + D)u = u′′ for u 5n flop



Does preconditioning harm?

M = (LA + D)D−1(D + UA ).

Costs. The costs of computing D are negligible

u is solved from Mu = r by

• Solve (LA + D)u′ = r for u′ 5n flop

• Compute u′′ = Du′ n flop

• Solve (UA + D)u = u′′ for u 5n flop



Does preconditioning harm?

M = (LA + D)D−1(D + UA ).

Costs. The costs of computing D are negligible

u is solved from Mu = r by

• Solve (LA + D)u′ = r for u′ 5n flop

• Compute u′′ = Du′ n flop

• Solve (UA + D)u = u′′ for u 5n flop

An M-solve costs 11n flop.



Does preconditioning harm?

M = (LA + D)D−1(D + UA ).

Costs. The costs of computing D are negligible

An M-solve costs 11n flop.

• The extra costs in k-steps for including M solves in each

step of GCR are 11kn.

• Reduction costs in GCR when reducing the number if

steps from k + m to k is (with no precond. for 2-d) is

≥ (19n + 6kn)m flop.

Conclusion. The total costs in GCR already reduces by in-

cluding M-solves if this leads to a reduction in the number

of required steps by 2 steps (if m ≥ 2 then (6kn)m ≥ 11kn).



Does preconditioning harm?

M = (LA + D)D−1(D + UA ).

Costs. The costs of computing D are negligible

An M-solve costs 11n flop.

• The extra costs in k-steps for including M solves in each

step of LMR are 11kn.

• Reduction costs in LMR when reducing the number if

steps from k + m to k is (with no precond. for 2-d) is

≥ 19nm flop.

Conclusion. The total costs in LMR reduces by inclu-

ding M-solves if this leads to a reduction in the number of

required steps by 40%.



Convergence ILU preconditioning

Groundwaterflow: λ(A) ∈ [λ1, λn] ⊂ (0,∞), C ≡ λn
λ1

1/C ∼ max(h2
x, h2

y , . . .).

Convergence.
ρk ≡

‖rk‖
‖r0‖

≤ exp(−2k/µ)

Without preconditioning

LMR: µ = C, GCR: µ =
√C

With D-MILU preconditioning

LMR: µ =
√C, GCR: µ = C 1

4.

Example. C = 2104. GCR:

without precond. ρk ≤ 10−3 for k = 490,

with D-MILU ρk ≤ 10−3 for k = 42.



Convergence ILU preconditioning

Groundwaterflow: λ(A) ∈ [λ1, λn] ⊂ (0,∞), C ≡ λn
λ1

1/C ∼ max(h2
x, h2

y , . . .).

Convergence.
ρk ≡

‖rk‖
‖r0‖

≤ exp(−2k/µ)

Without preconditioning

LMR: µ = C, GCR: µ =
√C

With D-MILU preconditioning

LMR: µ =
√C, GCR: µ = C 1

4.

In case Ax = b from an advection diffusion PDE:
ILU or ILU(ω) with ω small can be very effective
if the advection term is large
(and the stepsizes are not very small).
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Choose tol > 0, x, kmax,

Compute r = b−Ax
For k = 0 : kmax

Stop if ‖r‖2 ≤ tol‖b‖2
Solve Muk = r for uk
ck = Auk
For j = 0 : k − 1

β ← c∗jck/σj

uk ← uk − β uj
ck ← ck − β cj

end for

σk = c∗kck, α ← c∗kr/σk
x ← x + αuk
r ← r− αck

end for

Choose tol > 0, x, kmax,

Compute r = b−Ax
For k = 0 : kmax

Stop if ‖r‖2 ≤ tol‖b‖2
ũk = r
ck = AM−1ũk
For j = 0 : k − 1

β ← c∗jck/σj

ũk ← ũk − β ũj
ck ← ck − β cj

end for

σk = c∗kck, α ← c∗kr/σk
x̃ ← x̃ + α ũk
r ← r− αck

end for



Including a preconditioner

There are several way to include preconditioner in GCR.



Including a preconditioner

• Modify the GCR algorithm (implicit preconditioning):

replace “uk = rk” by “Solve Muk = rk for uk”.

• Modify the problem to AM−1x̃ = b (explicit right

preconditioning): replace A by AM−1; x = M−1x̃.

Theorem. The residuals rk and the cj in both versions

are the same and xk = M−1x̃k.



Including a preconditioner

• Modify the GCR algorithm (implicit preconditioning):

replace “uk = rk” by “Solve Muk = rk for uk”.

• Modify the problem to AM−1x̃ = b (explicit right

preconditioning): replace A by AM−1; x = M−1x̃.

Explicit preconditioning requires pre processing

(that is, before GCR can be applied, a routine has to be

formed that computes ck = AM−1ũk) and post proces-

sing (after the applying GCR, xk has to be computed from

x̃).



Including a preconditioner

• Modify the GCR algorithm (implicit preconditioning):

replace “uk = rk” by “Solve Muk = rk for uk”.

• Modify the problem to AM−1x̃ = b (explicit right

preconditioning): replace A by AM−1; x = M−1x̃.

Observation. Do not explicitly form the matrix AM−1,

but design an efficient routine to compute ck = AM−1uk.

c = MV(A,M, r)



Including a preconditioner

• Modify the GCR algorithm (implicit preconditioning):

replace “uk = rk” by “Solve Muk = rk for uk”.

• Modify the problem to AM−1x̃ = b (explicit right

preconditioning): replace A by AM−1; x = M−1x̃.

• Modify the problem to M−1Ax = b̃ ≡ M−1b (explicit

left preconditioning): replace A by M−1A and b by b̃.

Explicit left preconditioning requires pre processing (to

form a routine that computes ck = M−1Ark) and to solve

b̃ from Mb̃ = b. But no post processing



Including a preconditioner

• Modify the GCR algorithm (implicit preconditioning):

replace “uk = rk” by “Solve Muk = rk for uk”.

• Modify the problem to AM−1x̃ = b (explicit right

preconditioning): replace A by AM−1; x = M−1x̃.

• Modify the problem to M−1Ax = b̃ ≡ M−1b (explicit

left preconditioning): replace A by M−1A and b by b̃.

Assignment. Write a routine that perform explicit left

preconditioning.

Compare the performance of this routine with the one of

GCR with implicit preconditioning (use the same precon-

ditioner and the same x0). Make sure that you obtain

residuals of comparable quality.



Including a preconditioner

• Modify the GCR algorithm (implicit preconditioning):

replace “uk = rk” by “Solve Muk = rk for uk”.

• Modify the problem to AM−1x̃ = b (explicit right

preconditioning): replace A by AM−1; x = M−1x̃.

• Modify the problem to M−1Ax = b̃ ≡ M−1b (explicit

left preconditioning): replace A by M−1A and b by b̃.

Observations.
– The xk and rk in GCR with implicit preconditioning are

approximations and residuals of the original problem.
– GCR with right preconditioning computes residuals of the

original problem, but the approximates are preconditioned

(Mxk = x̃k).

– GCR with left preconditioning computes approximate so-

lutions of the original problem, but the residuals are pre-

conditioned.
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GCR

Choose tol > 0, x, kmax,

Compute r = b−Ax
For k = 0 : kmax

Stop if ‖r‖2 ≤ tol‖b‖2
uk = r
ck = Auk
For j = 0 : k − 1

β ← c∗jck/σj

uk = uk − β uj
ck = ck − β cj

end for

σk = c∗kck, α ← c∗kr/σk
x ← x + αuk
r ← r− αck

end for



More efficients steps

The most expensive part of GCR is the orthogonalization

loop: the costs of this part at step k for step k are

6kn,

while the costs (for 2-d) for the other part are

19n flop (without precond.) or

30n flop (with D-ILU).

For k > 10, the orthogonalization dominates the costs.



More efficients steps

The most expensive part of GCR is the orthogonalization

loop: the costs of this part at step k for step k are

6kn,

while the costs (for 2-d) for the other part are

19n flop (without precond.) or

30n flop (with D-ILU).

Idea. Restart every ` steps with the most recent approxi-

mate solution as initial guess for the next ` steps:

restarted GCR.

Notation. bµc = k if µ ∈ [k, k + 1) and k ∈ N0.



Restarted GCR

Choose tol > 0, x, kmax, ` ∈ N
Compute r = b−Ax
For k = 0 : kmax

Stop if ‖r‖2 ≤ tol‖b‖2
uk = r
ck = Auk

For j = `bk`c : k − 1
β ← c∗jck/σj

uk = uk − β uj
ck = ck − β cj

end for

σk = c∗kck, α ← c∗kr/σk
x ← x + αuk
r ← r− αck

end for



More efficients steps

The most expensive part of GCR is the orthogonalization

loop: the costs of this part at step k for step k are

6kn,

while the costs (for 2-d) for the other part are

19n flop (without precond.) or

30n flop (with D-ILU).

Idea. Keep only the last ` vectors ck−`, . . . ,ck−1

(and the associated uj) in the orthogonalization process:

truncate GCR.



Truncated GCR

Choose tol > 0, x, kmax, ` ∈ N
Compute r = b−Ax
For k = 0 : kmax

Stop if ‖r‖2 ≤ tol‖b‖2
uk = r
ck = Auk
For j = max (k − `,0) : k − 1

β ← c∗jck/σj

uk = uk − β uj
ck = ck − β cj

end for

σk = c∗kck, α ← c∗kr/σk
x ← x + αuk
r ← r− αck

end for



Assignment. Write a function subroutine GCR

x = GCR(A,b,x0, tol, kmax, `)

that performs

• restart if ` > 0,

• standard GCR if ` = 0,

• truncates if ` < 0 with truncation length |`|.



More efficients steps

The most expensive part of GCR is the orthogonalization

loop: the costs of this part at step k for step k are

6kn,

while the costs (for 2-d) for the other part are

19n flop (without precond.) or

30n flop (with D-ILU).

Idea. Keep only the last ` vectors ck−`, . . . ,ck−1

(and the associated uj) in the orthogonalization process:

truncate GCR.

Example. ` = 1: Conjugate Residuals



Conjugate Residuals

Choose tol > 0, x, kmax

Compute r = b−Ax
For k = 0 : kmax

Stop if ‖r‖2 ≤ tol‖b‖2
uk = r
ck = Auk
if k > 0

β ← c∗k−1ck/σk−1
uk ← uk − β uk−1
ck ← ck − β ck−1

end if

σk = c∗kck, α ← c∗kr/σk
x ← x + αuk
r ← r− αck

end for



Conjugate Residuals

Choose tol > 0, x, kmax

u1 = c1 = 0, σ = 1
Compute r = b−Ax
For k = 0 : kmax

Stop if ‖r‖2 ≤ tol‖b‖2
u0 ← u1, u1 ← r
c0 ← c1, c1 ← Auk
β ← c∗0c1/σ
u1 ← u1 − β u0
c1 ← c1 − β c0
σ ← c∗1c1, α ← c∗1r/σ
x ← x + αu1
r ← r− αc1

end for



Theorem. If A∗ = A then GCR = CR.

that is, in exact arithmetic CR and GCR have the same

residual rk and the same approximate solution xk (when

started withe the same initial guess x0).

Assignment. Program CR. Check that CG = GCR in case

the matrix is symmetric (and real).

Include also preconditioning in CR. What is the reduction

in number of steps that is required by including precondi-

tioning in order to have a more efficient CR algorithm?


