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Flexible GCR

Choose tol >0, X, kmax,
Compute r = b — AX
For £k =0,1,2,..., kmax
stop if |[rll> < tol|b]
‘Find an appropriate search vector Uy
Cp = Auk
For =0,1,2,...,k—1
B — cic/o;
U, = U, — ﬂUj
Cp =Cp—fCj
end for
o = CiCk, «a « Cir/oy
X «— X+ aug
r —r—acCg

end for




Preconditioned GCR

Choose tol >0, X, Ekmax,
Compute r = b — AX
For k=0,1,2,..., kmax
Stop if |r|[2 < tol|[bl|2
‘Solve Mu, =r; for uk‘
Cr = Auy,
For j:o,l,Q,...,k'—]-
ﬁ — C;Ck/a'j
U, = ug — ﬁu‘]
Cr, =Cr— B¢
end for
o) = CiCk, «a « Cir/oy
X «— X—|—Ozuk
r—r—acCg

end for

Preconditioning

M=(Ls +D)D (D+U;)=A+R
The system Mu =r can be solved in three steps.
e Solve (Ly +D)u'=r for u’.
e Compute u”’ = DU’
e Solve (D+ Uy)u=u" for u.

Assignment. Write a function subroutine

u = Msolve(A,D,r)

that incorporates the above steps. Try to make the routine
as efficient as possible also concerning use of memory.

Incorporate Msolve in GCR: write a routine PGCR
X = PGCR(A, b,Xo, tO/, k:max, D)

Preconditioning

An n by n matrix M is called a preconditioner if

e the system Mu; = r; can efficiently be solved and

e M approximates A (to some degree).

Examples.
e Diagonal preconditioning. M = Dy, = diag(A).
e Gauss—Seidel. M =Ly +Dy.
e Symmetric Successive overrelaxation.
M= (L4 +D)D (D + Up)
with D = %DA for a relaxation parameter w.

Note that M= A 4+ R for
R=(-1Dy+L4sD U,

Preconditioning

Find a diagonal matrix D such that with
M=(Ls +D)D (D+U;)=A+R
the “error”
R=D-Dy +LysD 1Uy

is small in some sense.

Examples.
e Diagonal-Incomplete LU: diag(R) = 0.
e D-Modified ILU: R1 =0, with 1 =(1,1,...,1)7

e D-Relaxed ILU: a mix of ILU and MILU



LU-decomposition

L is strict lower triangular n x n (i.e., L;; = 0 if i < j).
Iis the n x n identity. £; = L(:, ), €; =1(:,j).

LU-decomposition or Gaussian elimination:
U@ =aA,u®, .. U1 =uU such that
UG = (1 -¢eHul-1 G=1,...,n)
and the jth column of U pelow the diagonal is zero:
with p; = U001 (,5), £;6) =U0=D(,5)/p; for i > j.
Theorem. If the pivots p; # 0 all j, then
A=LU

Sparsity pattern of A;  Fy ={(,7) | A(s,5) # 0}
Fill:  {(4,5) € Fa | L(i,5) # 0 or UK, 5) # 0}

LU-decomposition

L is strict lower triangular n x n (i.e., L;; = 0 if i < j).
Iis the n x n identity. £; = L(:,5), €; = I(:, 7).

Modified ILU-decomposition. Select a
fill pattern F C {(i,5) | 4,7 =1,...,n} with {(4,7)} C F.
If B is an n X n matrix, then B is the matrix with entries
B(i,j) = B(4,5) if (4,5) € F,i#j
B(i,j) =0if (i,j) ¢ F,
B(i,i) = B(i,i) + 5 (i j)er B, )
Put Ny (B)=B. Note. B1 = M,,(B)1.

UG = n,,OY)

LU-decomposition

L is strict lower triangular n x n (i.e., L;; = 0 if i < j).
Iis the n x n identity. £; = L(:, ), €; =1(:,j).

Incomplete LU-decomposition.

Select a fill pattern F cC {(4,7)|4,5=1,...,n}.

If B is an n x n matrix, then B’ is the matrix with entries
B'(i,5) = B(3,5) if (i,57) € F and B/(4,5) = 0 if (i,5) € F.
Put Mn(B)=DB

u® = N

Theorem. With ILU and M = LU,
we have that A(i,j) = M(4,5) for all (i,5) € F

LU-decomposition

L is strict lower triangular n x n (i.e., L;; = 0 if i < j).
Iis the n x n identity. £; = L(:,5), €; = 1(:, 7).

Theorem. With MILU-decomposition and M = LU,
we have that M1 = A1, where 1 =(1,1,...,1)T.



LU-decomposition

L is strict lower triangular n x n (i.e., L;; = 0 if i < j).
Iis the n x n identity. £; = L(:, ), €; =1(:,j).

Relaxed ILU-decomposition. Select an w € [0,1] and a
fill pattern 7 C {(4,5) | 4,7 = 1,...,n} with {(4,7)} C F.
If B is an n x n matrix, then B is the matrix with entries
B(i,j) =B(4,5) if (4,j) € F,i#j
B(i,j) = 0 if (4,j) ¢ F,
B(i,i) = B(i,i) + wX; (i j)gr B(, )
Put nNu(B)=B.

u® = n,UY)

Diagonal ILU decomposition

Write A=Ly +Dy4 + U, with
L4 the strict lower triangular part of A
(La (i, 5) = AG,5) if i > j, Ly (i,5) =0 if i < j)
D4 = diag(A) (in Matlab: D_A=diag(diag(A));)
U, the strict upper triangular part of A.

For an n x n diagonal matrix D consider
M= (Ly +D)D (D +Uy,)
D-MILU: D is such that M1 = A1l.

Theorem. If A is the matrix from a 5-point stencil
(2-d advection diffusion) or from a 7-point stencil
(3-d advection diffusion), then

D-ILU=ILU(0) and D-MILU=MILU(0)

LU-decomposition

L is strict lower triangular n x n (i.e., L;; = 0 if i < j).
Iis the n x n identity. £; = L(:, ), €; =1(:,j).

Remark. RILU(0)=ILU, RILU(1)=MILU.

Other ILU-decompositions

For a fill pattern F C {(4,7) | 4,5 =1,...,n}, define
f+5{(7’7])|(lak),(ka])6f' for Somek:<i,k:<j}

Terminology. With F4(0) = F4 = {(i,5) | A(i,5) # 0},
Fa(l) =F4 (£ —1)*t for t=1,2,...
F4 (0) is fill of level /.

Note that to determine F4 (£) no specific values for the
entries of A are required.

ILU(®), that is, ILU for A with fill pattern F4 (¢),
is called ILU of level /.

ILU(0) =ILU.



Other ILU-decompositions
Select an € > 0 (the drop tolerance).

If B is an n x n matrix, then B is the matrix with entries
B(i,j) = B(i,5) if |B(i,j)| >¢
B(i,j) =0 if |B(i,j)| <e

Put nN.(B)=B.

Using s in each step of the Gaussian elimination process
leads to ILU(e), ILU with drop tolerance

Advanced ILU.
e Drop tolerance and level strategies can be combined.

e The value of the drop tolerance can be selected
to depend on the level, on the size of the matrix entries,

Does preconditioning harm?

M= (Ly +D)D (D + Uy).
Costs. The costs of computing D are negligible
An M-solve costs 11n flop.

e The extra costs in k-steps for including M solves in each
step of GCR are 11kn.

e Reduction costs in GCR when reducing the number if
steps from k + m to k is (with no precond. for 2-d) is
> (19n + 6kn)m flop.

Conclusion. The total costs in GCR already reduces by in-
cluding M-solves if this leads to a reduction in the number
of required steps by 2 steps (if m > 2 then (6kn)m > 11kn).

Why preconditioning?

Example. {—%%gb:o on D =][0,1]
p(0) =1, ¢(1)=0

Discretization: symmetric finite differences: h = n—_}_l
2 -1 o ... O 1
-1 2 -1 --. : 0

A=L1 0 - - - . b=51:].
I — | 2 -1 0
0o -1 2 0

With Xg =0, we have ro=b-Axg=b=r1e;
GCR and LMR: ry_q,X;, € span(eq,...,e;) fork=1,...,n.
Interpretation. It takes a Krylov subspace method at least

n (=grid size) steps to carry the information in rg over the
whole grid.

Does preconditioning harm?

M= (Ly +D)D (D + Uy).
Costs. The costs of computing D are negligible
An M-solve costs 11n flop.

e The extra costs in k-steps for including M solves in each
step of LMR are 11kn.

e Reduction costs in LMR when reducing the number if
steps from k + m to k is (with no precond. for 2-d) is
> 19nm flop.

Conclusion. The total costs in LMR reduces by inclu-
ding M-solves if this leads to a reduction in the number of
required steps by 40%.



Convergence ILU preconditioning

Groundwaterflow: A(A) € [A, ] C (0,00), C=

Convergence. (LAl

k= < exp(—2k/p)
ol

Without preconditioning
LMR: p=2C, GCR: u=+C

With D-MILU preconditioning
LMR: = C, GCR: pu = Cx.

Example. C =210%  GCR:
without precond.  p, <1073 for k= 490,
with D-MILU pp <1073 for k= 42.

Restarted GCR

Choose tol >0, X, kmax, L €N
Compute r = b — AX
For k=0 : kmax
stop if [|Fll> < tol[[bl]
U, =r
Cc,. = Auy
For j=/([%] k-1
B — C;Ck/aj
up =u, — fuj
Ck:Ck—,BCj
end for
o = CiC, a « Cjr/oy
X «— X—I—Oéuk
r —r—ac;

end for

An
A1

Including a preconditioner

e Modify the GCR algorithm (implicit preconditioning):
replace “up =r;" by “Solve Muy, =r; for u".

e Modify the problem to AM~1x = b (explicit right
preconditioning): replace A by AM~1: x=M"1x.

e Modify the problem to M~1Ax = b = M~1b (explicit
left preconditioning): replace A by M—1A and b by b.

Assignment. Write a routine that perform explicit left
preconditioning.

Compare the performance of this routine with the one of
GCR with implicit preconditioning (use the same precon-
ditioner and the same Xp). Make sure that you obtain
residuals of comparable quality.

Truncated GCR

Choose tol > 0, X, kmax, L €N
Compute r = b — AX
For £k = 0 : kmax
Stop if [IFll2 < tol[b
U, =r
Ck:AUk
For j=max(k—¢,0): k-1
B «— C;Ck/dj
Up = U — B u;
Cr,=Cr—BCj
end for
op = CiCl, o «— Cjr/oy
X «— X—|—O¢uk
r—r—acCg

end for




Conjugate Residuals

Choose tol > 0, X, kmax
Compute r = b — AX
For k = 0 : kmax

Stop if [|r||l2 < tol|[bl|2

U, =r
Ck:AUk
if k>0

B+ C;_1Ck/0k_1
Up < Up— BUg_q
Cp — Cr—fBCr
end if
o = CiCk, «a « Cir/oy
X — X+ aug
r—r—acCg

end for

Theorem. If A* = A then GCR = CR.

that is, in exact arithmetic CR and GCR have the same
residual r;, and the same approximate solution x; (when
started withe the same initial guess Xg).

Assignment. Program CR. Check that CG = GCR in case
the matrix is symmetric (and real).

Include also preconditioning in CR. What is the reduction
in number of steps that is required by including precondi-
tioning in order to have a more efficient CR algorithm?

Conjugate Residuals

Choose tol > 0, X, kmax
up=c¢1 =0, oc=1
Compute r = b — AX
For k= 0 : kmax

stop it [[Fll2 < toll|bll
Ug <« U1, U «— r

Co < C1, C1 «+— Aug
B — cpC1/o

u; < u; —pBug

Ci1 «— €1 — B¢y

o « CijC1, a « Cjr/o
X — X+ auy
r—r—ac;

end for




