
WISB356, Utrecht, 9 oktober 2012

Scientific Computing

Gerard Sleijpen

Rob Bisseling

Alessandro Sbrizzi

Department of Mathematics

http://www.staff.science.uu.nl/∼sleij101/

WISB356, Utrecht, 9 oktober 2012

Preconditioneren

van

iteratieve methoden

Gerard Sleijpen
Department of Mathematics

http://www.staff.science.uu.nl/∼sleij101/

Program

• Flexible GCR

• Preconditioning

• D-ILU

• Incomplete LU-decomposition

• Why preconditioning?

• Costs

• How to include a preconditioner

• Savings

Flexible GCR

Choose tol > 0, x, kmax,

Compute r = b−Ax

For k = 0,1,2, . . . , kmax

Stop if ‖r‖2 ≤ tol‖b‖2
Find an appropriate search vector uk

ck = Auk
For j = 0,1,2, . . . , k − 1

β ← c∗jck/σj

uk = uk − β uj
ck = ck − β cj

end for

σk = c∗kck, α ← c∗kr/σk
x ← x + αuk
r ← r− αck

end for

Preconditioned GCR

Choose tol > 0, x, kmax,

Compute r = b−Ax

For k = 0,1,2, . . . , kmax

Stop if ‖r‖2 ≤ tol‖b‖2
Solve Muk = rk for uk

ck = Auk
For j = 0,1,2, . . . , k − 1

β ← c∗jck/σj

uk = uk − β uj
ck = ck − β cj

end for

σk = c∗kck, α ← c∗kr/σk
x ← x + αuk
r ← r− αck

end for

Preconditioning

An n by n matrix M is called a preconditioner if

• the system Muk = rk can efficiently be solved and

• M approximates A (to some degree).

Examples.

• Diagonal preconditioning. M ≡ DA ≡ diag(A).

• Gauss–Seidel. M ≡ LA + DA .

• Symmetric Successive overrelaxation.

M ≡ (LA + D)D−1(D + UU)

with D ≡ 1
ωDA for a relaxation parameter ω.

Note that M = A + R for

R ≡ (1
ω − 1)DA + LAD−1UA

Preconditioning

M ≡ (LA + D)D−1(D + UA) = A + R

The system Mu = r can be solved in three steps.

• Solve (LA + D)u′ = r for u′.

• Compute u′′ = Du′.

• Solve (D + UA)u = u′′ for u.

Assignment. Write a function subroutine

u = Msolve(A,D, r)

that incorporates the above steps. Try to make the routine

as efficient as possible also concerning use of memory.

Incorporate Msolve in GCR: write a routine PGCR

x = PGCR(A,b,x0, tol, kmax,D)

Preconditioning

Find a diagonal matrix D such that with

M ≡ (LA + D)D−1(D + UA) = A + R

the “error”

R ≡D−DA + LAD−1UA

is small in some sense.

Examples.

• Diagonal-Incomplete LU: diag(R) = 0.

• D-Modified ILU: R1 = 0, with 1 ≡ (1,1, . . . ,1)T

• D-Relaxed ILU: a mix of ILU and MILU

LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. ℓj ≡ L(:, j), ej ≡ I(:, j).

LU-decomposition or Gaussian elimination:

U(0) ≡ A,U(1), . . . , U(n−1) = U such that

U(j) = (I− ℓj e
∗
j)U

(j−1) (j = 1, . . . , n)

and the jth column of U(j) below the diagonal is zero:

with pj ≡ U(j−1)(j, j), ℓj(i) = U(j−1)(i, j)/pj for i > j.

Theorem. If the pivots pj 6= 0 all j, then

A = LU

Sparsity pattern of A; FA ≡ {(i, j) | A(i, j) 6= 0}
Fill: {(i, j) 6∈ FA | L(i, j) 6= 0 or U(k)(i, j) 6= 0}

LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. ℓj ≡ L(:, j), ej ≡ I(:, j).

Incomplete LU-decomposition.

Select a fill pattern F ⊂ {(i, j) | i, j = 1, . . . , n}.
If B is an n × n matrix, then B′ is the matrix with entries

B′(i, j) = B(i, j) if (i, j) ∈ F and B′(i, j) = 0 if (i, j) 6∈ F.

Put Π(B) = B′.

U(0) ≡ A, U(1), . . . ,U(n−1) = U such that

Ũ
(j)

= (I− ℓje
∗
j)U

(j−1), U(j) = Π(Ũ
(j)

)

and the j column of Ũ
(j)

below the diagonal is zero:

with pj ≡ U(j−1)(j, j), ℓj(i) = U(j−1)(i, j)/pj for i > j.

Theorem. With ILU and M = LU,
we have that A(i, j) = M(i, j) for all (i, j) ∈ F 10

LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. ℓj ≡ L(:, j), ej ≡ I(:, j).

Modified ILU-decomposition. Select a

fill pattern F ⊂ {(i, j) | i, j = 1, . . . , n} with {(i, i)} ⊂ F.

If B is an n× n matrix, then B̃ is the matrix with entries

B̃(i, j) = B(i, j) if (i, j) ∈ F , i 6= j

B̃(i, j) = 0 if (i, j) 6∈ F,

B̃(i, i) = B(i, i) +
∑

j,(i,j) 6∈F B(i, j)

Put ΠM(B) = B̃. Note. B1 = ΠM(B)1.

U(0) ≡ A, U(1), . . . ,U(n−1) = U such that

Ũ
(j)

= (I− ℓje
∗
j)U

(j−1), U(j) = ΠM(Ũ
(j)

)

and the jth column of Ũ
(j)

below the diagonal is zero:

with pj ≡ U(j−1)(j, j), ℓj(i) = U(j−1)(i, j)/pj for i > j. 11

LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. ℓj ≡ L(:, j), ej ≡ I(:, j).

Theorem. With MILU-decomposition and M ≡ LU,

we have that M1 = A1, where 1 ≡ (1,1, . . . ,1)T.

12

LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. ℓj ≡ L(:, j), ej ≡ I(:, j).

Relaxed ILU-decomposition. Select an ω ∈ [0,1] and a

fill pattern F ⊂ {(i, j) | i, j = 1, . . . , n} with {(i, i)} ⊂ F.

If B is an n× n matrix, then B̃ is the matrix with entries

B̃(i, j) = B(i, j) if (i, j) ∈ F , i 6= j

B̃(i, j) = 0 if (i, j) 6∈ F,

B̃(i, i) = B(i, i) + ω
∑

j,(i,j) 6∈F B(i, j)

Put Πω(B) = B̃.

U(0) ≡ A, U(1), . . . ,U(n−1) = U such that

Ũ
(j)

= (I− ℓje
∗
j)U

(j−1), U(j) = Πω(Ũ
(j)

)

and the jth column of Ũ
(j)

below the diagonal is zero:

with pj ≡ U(j−1)(j, j), ℓj(i) = U(j−1)(i, j)/pj for i > j. 13

LU-decomposition

L is strict lower triangular n× n (i.e., Lij = 0 if i ≤ j).

I is the n× n identity. ℓj ≡ L(:, j), ej ≡ I(:, j).

Remark. RILU(0)=ILU, RILU(1)=MILU.

14

Diagonal ILU decomposition

Write A = LA + DA + UA with

LA the strict lower triangular part of A

(LA (i, j) = A(i, j) if i > j, LA (i, j) = 0 if i ≤ j)

DA = diag(A) (in Matlab: D A=diag(diag(A));)

UA the strict upper triangular part of A.

For an n× n diagonal matrix D consider

M ≡ (LA + D)D−1(D + UA)

D-MILU: D is such that M1 = A1.

Theorem. If A is the matrix from a 5-point stencil
(2-d advection diffusion) or from a 7-point stencil
(3-d advection diffusion), then

D-ILU=ILU(0) and D-MILU=MILU(0)

15

Other ILU-decompositions

For a fill pattern F ⊂ {(i, j) | i, j = 1, . . . , n}, define

F+ ≡ {(i, j) | (i, k), (k, j) ∈ F for some k < i, k < j}

Terminology. With FA (0) ≡ FA ≡ {(i, j) | A(i, j) 6= 0},
FA (ℓ) ≡ FA (ℓ− 1)+ for ℓ = 1,2, . . .

FA (ℓ) is fill of level ℓ.

Note that to determine FA (ℓ) no specific values for the

entries of A are required.

ILU(ℓ), that is, ILU for A with fill pattern FA (ℓ),

is called ILU of level ℓ.

ILU(0)= ILU.
16

Other ILU-decompositions

Select an ε > 0 (the drop tolerance).

If B is an n× n matrix, then B̃ is the matrix with entries

B̃(i, j) = B(i, j) if |B(i, j)| > ε

B̃(i, j) = 0 if |B(i, j)| ≤ ε

Put Πε(B) ≡ B̃.

Using Πε in each step of the Gaussian elimination process

leads to ILU(ε), ILU with drop tolerance

Advanced ILU.
• Drop tolerance and level strategies can be combined.

• The value of the drop tolerance can be selected
to depend on the level, on the size of the matrix entries,

• . . . 17

Why preconditioning?

Example.

− ∂

∂x
∂
∂x φ = 0 on D ≡ [0,1]

φ(0) = 1, φ(1) = 0

Discretization: symmetric finite differences: h = 1
n+1

A = 1
h2

2 −1 0 . . . 0
−1 2 −1
0
... . . . −1 2 −1

0 −1 2

, b = 1
h2

1
0
...
0
0

.

With x0 = 0, we have r0 = b−Ax0 = b = τe1

GCR and LMR: rk−1, xk ∈ span(e1, . . . ,ek) for k = 1, . . . , n.

Interpretation. It takes a Krylov subspace method at least

n (=grid size) steps to carry the information in r0 over the

whole grid.

18

Does preconditioning harm?

M = (LA + D)D−1(D + UA).

Costs. The costs of computing D are negligible

An M-solve costs 11n flop.

• The extra costs in k-steps for including M solves in each

step of GCR are 11kn.

• Reduction costs in GCR when reducing the number if

steps from k + m to k is (with no precond. for 2-d) is

≥ (19n + 6kn)m flop.

Conclusion. The total costs in GCR already reduces by in-

cluding M-solves if this leads to a reduction in the number

of required steps by 2 steps (if m ≥ 2 then (6kn)m ≥ 11kn).

19

Does preconditioning harm?

M = (LA + D)D−1(D + UA).

Costs. The costs of computing D are negligible

An M-solve costs 11n flop.

• The extra costs in k-steps for including M solves in each

step of LMR are 11kn.

• Reduction costs in LMR when reducing the number if

steps from k + m to k is (with no precond. for 2-d) is

≥ 19nm flop.

Conclusion. The total costs in LMR reduces by inclu-

ding M-solves if this leads to a reduction in the number of

required steps by 40%.

20

Convergence ILU preconditioning

Groundwaterflow: λ(A) ∈ [λ1, λn] ⊂ (0,∞), C ≡ λn
λ1

1/C ∼ max(h2
x, h2

y , . . .).

Convergence.
ρk ≡

‖rk‖
‖r0‖

≤ exp(−2k/µ)

Without preconditioning

LMR: µ = C, GCR: µ =
√
C

With D-MILU preconditioning

LMR: µ =
√
C, GCR: µ = C 1

4.

Example. C = 2104. GCR:

without precond. ρk ≤ 10−3 for k = 490,

with D-MILU ρk ≤ 10−3 for k = 42.
21

Including a preconditioner

• Modify the GCR algorithm (implicit preconditioning):

replace “uk = rk” by “Solve Muk = rk for uk”.

• Modify the problem to AM−1x̃ = b (explicit right

preconditioning): replace A by AM−1; x = M−1x̃.

• Modify the problem to M−1Ax = b̃ ≡ M−1b (explicit

left preconditioning): replace A by M−1A and b by b̃.

Assignment. Write a routine that perform explicit left

preconditioning.

Compare the performance of this routine with the one of

GCR with implicit preconditioning (use the same precon-

ditioner and the same x0). Make sure that you obtain

residuals of comparable quality.

22

Restarted GCR

Choose tol > 0, x, kmax, ℓ ∈ N

Compute r = b−Ax

For k = 0 : kmax

Stop if ‖r‖2 ≤ tol‖b‖2
uk = r

ck = Auk

For j = ℓ⌊kℓ⌋ : k − 1

β ← c∗jck/σj

uk = uk − β uj
ck = ck − β cj

end for

σk = c∗kck, α ← c∗kr/σk
x ← x + αuk
r ← r− αck

end for

23

Truncated GCR

Choose tol > 0, x, kmax, ℓ ∈ N

Compute r = b−Ax

For k = 0 : kmax

Stop if ‖r‖2 ≤ tol‖b‖2
uk = r

ck = Auk
For j = max(k − ℓ,0) : k − 1

β ← c∗jck/σj

uk = uk − β uj
ck = ck − β cj

end for

σk = c∗kck, α ← c∗kr/σk
x ← x + αuk
r ← r− αck

end for

24

Conjugate Residuals

Choose tol > 0, x, kmax

Compute r = b−Ax

For k = 0 : kmax

Stop if ‖r‖2 ≤ tol‖b‖2
uk = r

ck = Auk
if k > 0

β ← c∗k−1ck/σk−1

uk ← uk − β uk−1
ck ← ck − β ck−1

end if

σk = c∗kck, α ← c∗kr/σk
x ← x + αuk
r ← r− αck

end for

25

Conjugate Residuals

Choose tol > 0, x, kmax

u1 = c1 = 0, σ = 1
Compute r = b−Ax

For k = 0 : kmax

Stop if ‖r‖2 ≤ tol‖b‖2
u0 ← u1, u1 ← r

c0 ← c1, c1 ← Auk
β ← c∗0c1/σ
u1 ← u1 − β u0
c1 ← c1 − β c0
σ ← c∗1c1, α ← c∗1r/σ
x ← x + αu1
r ← r− αc1

end for

26

Theorem. If A∗ = A then GCR = CR.

that is, in exact arithmetic CR and GCR have the same

residual rk and the same approximate solution xk (when

started withe the same initial guess x0).

Assignment. Program CR. Check that CG = GCR in case

the matrix is symmetric (and real).

Include also preconditioning in CR. What is the reduction

in number of steps that is required by including precondi-

tioning in order to have a more efficient CR algorithm?

27

