
Incorporating preconditioners

In practice, high dimensional matrices are usually
sparse, that is, the number of non zero entries in each
row is small. Iterative solvers require preconditioning
to be fast: rather then solving

Ax = b, (1)

the preconditioned system

M−1Ax = M−1b (2)

is solved. Here, M approximates A in some (weak)
sense and systems Mu = r can efficiently be solved.
Preconditioners M are often of the form M = LU

with L and U sparse non-singular triangular matri-
ces, L lower and U upper triangular. Via

Lu′ = r and Uu = u′,

the system
Mu = r

can efficiently be solved for u.
Now suppose we have a Matlab subroutine, say

function [x,hist,success] = ...

pcg(A,b,x0,kmax,tol);

that solves (1) iteratively.1 Here, at the input side
• A is the matrix A,
• b is the vector b,
• x0 is the initial guess x0 (often x0 = 0, x0=0*b

in Matlab),
• kmax is the maximum number of iteration steps

that is allowed and
• tol is the required reduction of the residual

norm, that is, stop the iteration if

‖rk‖2/‖r0‖2 < tol.

At the output site
• x is the solution as computed by the subroutine

(i.e., x= xk with k=kmax or ‖rk‖2/‖r0‖2 <tol),
• hist is the convergence history,

that is, the sequence (‖rj‖2/‖r0‖2)
k
j=0

of inter-
mediate residual norm reductions,

• success is 1 if ‖rk‖2/‖r0‖2 <tol and 0 else.
To use this routine we have to form the vector

M−1b, which is not a problem. But, we also either
have
1) to form the matrix M−1A or

1Three dots ... form a Matlab command: they indicate
that the command continues on next line.

2) to adapt the code pcg.m to compute the vector
c = M−1Ar from r.

Discussion 1. The matrices L−1, U−1 will be full.
Therefore, the matrix M−1A is full. Forming the
matrix M−1A explicitly is extremely expensive (in,
both computational costs as well as in memory and
is often even not possible). Even if the matrix Ã ≡
M−1A would be available, the computation of c =
Ãr from r by multiplication by Ã (at 2n2 flop) is
much more expensive than performing the steps

c1 = Ar,

solve Lc2 = c1 for c2,

solve Uc = c2 for c,

(3)

(at kn flop with k the maximum number of non-zeros
in each row of L, U and A together).

Discussion 2. Adapting the code pcg.m to per-
form the steps as in (3) is not attractive:
a) the code has to be adapted at several places (in
the input list of pcg [we need A, L, U instead of A],
and in all lines where the command c=A*u is used
[with the danger of missing one matrix-vector multi-
plication]),
b) other types of preconditioning would require simi-
lar but new adaptations, and
c) if you want to try another solver (than PCG), then
the code for this solver has to be adapted as well.

Matrix or subroutine

An efficient way out is to call a function subroutine,
say PMV.m, in the pcg.m code whenever a MV (matrix
vector multiplication) is required:

function [x,hist,success] = ...

pcg(MV,b,x0,kmax,tol);

where now MV is the string of the name of this sub-
routine, as MV=’PMV’, and in pcg.m the commands
with

c=A*u;

are replaced by
c=feval(MV,u);.

PMV.m could be the function subroutine

function c=PMV(u)

c1=A*u; c2=L\c1; c=U\c2;

return

(4)

We can make the routine PMV.m as efficient as pos-
sible without fiddling with the routine pcg.m. Now,
we can call pcg.m in the command window as

x=pcg(’PMV’,b,0*b,500,1.e-6); (5)

1

If another type of preconditioning is required, we can
make another function subroutine, say PMV2.m, to
handle this new matrix vector product.2

Note 1. The routines for iterative solvers of the
Matlab company (as gmres.m and bicgstab.m)
take as input a matrix as well as a function sub-
routine that performs the MV.

Global variables

Note that, in order to be able to use the subroutine
PMV.m of (4), we have to get the matrices A, L and
U known to this subroutine. We do not want to do
that via an input argument of the form function

c=PMV(u,A,L,U). Because, we then have to include
these quantities also in the input list of pcg.m, which
we were trying to avoid. The alternative of defi-
ning these quantities inside the subroutine PMV.m

is even more undesirable, since then the quantities
would be defined again and again in each iterative
step of pcg in which the routine PMV.m is called (by
c=feval(MV,u);). Global variables offer an efficient
alternative:

function c=PMV(u)

global A L U

c1=A*u; c2=L\c1; c=U\c2;

return

(6)

Matlab (help global): “If several functions, all
declare a particular name as GLOBAL, then they all
share a single copy of that variable. Any assignment
to that variable, in any function, is available to all the
other functions declaring it GLOBAL”. Global varia-
bles are ‘known’ also in other function subroutines in
which they have been declared global, whereas local

variables are known only inside the function subrou-
tine in which they are used.

Note 2. To make sure that global variables do not
accidentally get mixed up with local ones, global va-
riables are usually given long complicated names, so
rather MyMATRIX than A, MyLOWERTRIANGULAR than L,
etc..

Note 3. If you want to have a global variables as
MyMATRIX also available in the command window or
in the workspace, then you have to declare it global

2This subroutine approach for incorporating the MV is also
useful if, for instance, c is the solution at time T , c = Y(T),
of a high dimensional time dependent linear differential equa-
tion Y

′(t) = HY(t) with initial condition Y(0) = u. Then
a subroutine that solves the differential equation defines the
action of the matrix (A = exp(TH)). The matrix itself is not
available but is also not needed in this approach.

in the command window (or in an M-file, not being
a function subroutine, as main.m) as well.

Defining global variables

Of course, we have to define the global variables so-
mewhere (that is, to give them the appropriate va-
lues). Before executing the command (5), execute a
command like PreProcess,

PreProcess();

x=pcg(’PMV’,b,0*b,500,1.e-6);

where PreProcess.m is a function subroutine in
which A, L and U are also declared global and where
they are defined

function PreProcess(.....) 3

global A L U

A=.....;

L=.....;

U=.....;

return

(7)

Note 4. The ‘declaring’ subroutine PreProcess.m

and the ‘matrix-vector subroutine’ PMV.m go to-
gether: if you want another MV (or another pre-
conditioner), then you have to write a new declaring
subroutine, PreProcess2.m say, and a new MV sub-
routine, PMV2.m say. Or, is I did, use switches, in the
two subroutines PreProcess.m and PMV.m to find the
commands that go together. Make sure that both
subroutines use the same switches.

Note 5. If you do left preconditioning, say you solve

U−1L−1Ax = b̃ ≡ U−1L−1b

then you can compute b̃ in the ‘declaring’ subroutine
PreProcess.m as well:

function b=PreProcess(.....,b)

global A L U

A=.....;

L=.....;

U=.....;

b=U\(L\b);

return

(8)

3Here, the five dots in the input indicate that the quantities
A, L and U may depend on parameters.

2

