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Abstract. There is a class of linear problems for which the computation of the matrix-vector
product is very expensive since a time consuming approximation method is necessary to compute it
with some prescribed relative precision. In this paper we investigate the impact of approximately
computed matrix-vector products on the convergence and attainable accuracy of several Krylov
subspace solvers. We will argue that the success of a relaxation strategy depends on the underlying
way the Krylov subspace is constructed and not on the optimality properties of the particular method.
The obtained insight is used to tune the precision of the matrix-vector product in every iteration step
in such a way that an overall efficient process is obtained. Our analysis confirms the empirically found
relaxation strategy of Bouras and Frayssé for the GMRES method proposed in [2]. Furthermore, we
give an improved version of a strategy of Bouras, Frayssé, and Giraud [3] for the Conjugate Gradient
method.

1. Introduction. There is a class of linear problems where the coefficient ma-
trix cannot be stored explicitly in computer memory but where the matrix-vector
products can be computed relatively cheaply using an approximation technique. For
this type of problems direct methods are not attractive. Krylov subspace methods
for solving linear systems of equations require, in every iteration step, basic linear
algebra operations, like adding vectors and doing inner products, and, usually, one or
two matrix-vector products. This makes this class of solution methods very attractive
for this class of problems since we can very easily replace the matrix-vector product
in a particular Krylov subspace method with some approximation.

It is obvious that the accurate computation of the matrix-vector product can be
quite time consuming if done to high precision. On the other hand, the accuracy
of the matrix-vector product has influence on the Krylov subspace method used for
solving the linear system. In this paper we investigate the impact of approximately
computed, or inexact, matrix-vector products on the convergence and attainable accu-
racy of various Krylov subspace methods. Our analysis should provide further insight
into the relaxation strategies for the accuracy of the matrix-vector product as intro-
duced by Bouras et al. [2, 3]. For example for GMRES, they propose to compute
the matrix-vector product with a precision proportional to the inverse of the norm of
the current residual. When the residual decreases, the demands on the quality of the
computed matrix-vector product are relaxed which explains the term relaxation. Var-
ious researchers have reported that this strategy works remarkably well for practical
problems.

The, perhaps, counter-intuitive phenomenon that an accurate matrix-vector prod-
uct is needed in the beginning of the iterative process, instead of at the final iterations
has also been observed and analyzed for the Lanczos method for the eigenvalue prob-
lem [12]. We also like to refer to independent work of Simoncini and Szyld presented
in [25]. Their approach is based on an orthogonality condition, but the fundamental
ideas seem to be related (for more details, see below §9).

In this paper we consider the effect of perturbations on the matrix-vector product
for various Krylov subspace solvers. This problem is related to rounding error analysis
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of Krylov subspace methods since, in the latter case, an inexact matrix-vector product
is one source of errors. In our analysis we will use an approved method from this area:
we try to bound the norm of the residual gap and separately analyze the behavior
of the computed residuals (although this is only possible in a few special cases). The
usual way for bounding the gap is based on an inspection of the recurrences, e.g.,
[26, 14, 19, 18]. Our approach differs from the analysis in these papers in the sense
that our analysis is based on properties of the upper Hessenberg matrix that arises in
the matrix formulation of the Krylov subspace method. Where possible we point out
the differences with techniques used in literature and discuss implications for rounding
error analysis.

Another related problem is when a variable preconditioner is used in the Krylov
subspace method. See [9, 23, 30, 8, 11] for some results.

The outline of this paper is as follows. In Sections 2 and 3 we setup the framework
that we need in the rest of this paper. We give an expression for the residual gap for
a general Krylov subspace method in Section 3. This general expression is exploited
in the remainder of this paper, starting with Richardson iteration in Section 4 and
Chebyshev iteration in Section 5. The Conjugate Gradient method is the subject of
Section 6. Inexact GMRES and FOM for general matrices are treated in Section 7
and we conclude with some numerical experiments in Section 8.

2. Krylov subspace methods. This paper is concerned with the approximate
solution of the n× n linear system

Ax = b, with ‖b‖2 = 1.(2.1)

In this section we define the general class of Krylov subspace methods for solving this
linear system and we collect some of their properties in terms of matrix formulations.

Before we continue we define some notation. The vector ek denotes the k-th
standard basis vector, i.e., (ek)j = 0 for all j 6= k and (ek)k = 1. Furthermore, ~1 is
the vector with all components one and, similarly, ~0 is the vector with all components
zero. The dimension of these vectors should be apparent from the context. We warn
the reader for some unconventional notation: if we apply a matrix with k columns
to an `-vector with ` ≤ k, then we assume the vector to be expanded with zeros if
necessary (we do the same with other operations and equalities). Finally, we use bold
capital letters to denote matrices of length n and use small bold capitals to denote the
columns of these matrices where the subscript denotes the column number (starting
with 0), so, for example, v0 = Ve1. The zero vector of length n is denoted by 0.

The notion of a Krylov subspace plays an important role in the analysis and
derivation of a large class of iterative methods for solving (2.1). The Krylov subspace
of order k (generated by the matrix A and the vector b) is defined as

Kk ≡ Kk(A,b) ≡ span{b,Ab, . . . ,Ak−1b}.(2.2)

In this paper we concentrate on iterative solution methods for which the residual,
rj , corresponding to the constructed iterate in step j belongs to the space Kj+1 and
r0 = b. Iterative solution methods with this property are called Krylov subspace
methods. If we, furthermore, assume for all j ≤ k that the first j residuals span
the j-th Krylov space, then the residuals provide a sequence that after k steps of the
subspace method can be summarized by the following matrix relation

ARk = Rk+1Sk, Rke1 = b, with ~1∗Sk = ~0∗.(2.3)
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Here, the matrix Rk is an n by k matrix with as j-th column rj−1, and Sk is a k+1 by
k upper Hessenberg matrix. The last condition in (2.3) for the Hessenberg matrix is a
necessary condition if rj is a residual that corresponds to some approximate solution
from the space Kj , see [17, Section 4.4]. Indeed, if Sj denotes the matrix Sj from
which the last row is dropped, then, if Sj is invertible, we have with β ≡ e∗j+1Sjej ,

~0∗ = ~1∗Sj = ~1∗Sj + βe∗j ⇒ βe∗jS
−1
j = −~1∗,

and

SjS
−1
j e1 =

[
Sj

βe∗j

]
S−1

j e1 = e1 − ej+1.(2.4)

Now, let

xj ≡ Rj(S−1
j e1).(2.5)

Then we get using (2.3) and (2.4) that

b−Axj = b−ARj(S−1
j e1) = b−Rj+1(SjS

−1
j e1)

= b−Rj+1(e1 − ej+1) = b− (r0 − rj) = rj .

This shows that rj = b −Axj if xj is as in (2.5). Hence, for this choice the iterate
xj is consistent with the residual rj .

Moreover, we can get a recursion for the iterates xj by substituting Rk = b~1∗ −
AXk in (2.3). This shows that

−Rk = Xk+1Sk, Xke1 = 0.(2.6)

Some Krylov subspace methods use the recursions in (2.3) or (2.6) explicitly in their
implementation. An example is the Chebyshev method where the iterates are com-
puted with the, in this case, three-term relation in (2.6), see also Section 5.

It is common to view Krylov subspace methods as polynomial based iteration
methods where the residuals are characterized as matrix polynomials in A that act
on the vector b, see e.g., [5]. This viewpoint plays an important role in the convergence
analysis of a large number of Krylov subspace methods. The property of Sk that the
columns sum up to zero, is equivalent to the fact that the residual polynomials have
the interpolatory constraint that they are one in zero. We will, however, not use
this polynomial interpretations and mostly use the matrix formulation and exploit
algebraic properties of the matrix Sk.

We conclude this section with a useful property of the Hessenberg matrix Sk that
we will frequently use in the remainder of this paper.

Lemma 2.1. If the matrix Sj is invertible for j ≤ k, then the LU -decomposition
of Sk and the one of Sk exists. Furthermore,

Sk = JkUk and Sk = JkUk,(2.7)

where Jk is lower bidiagonal with (Jk)j,j = 1 and (Jk)j+1,j = −1 and and Uk is upper
triangular with (Uk)i,j =

∑i
l=1(Sk)l,j for i ≤ j.

Proof. The existence of the LU -decomposition of Sk follows from the fact that
each principal submatrix of Sk is nonsingular, see, for instance, [10, Theorem 3.2.1].
The matrix J−1

k is lower triangular with all components one. Therefore, it follows
that J−1

k Sk = Uk. This proves the first equality in (2.7). The second equality follows
by checking that

JkUk = (Jk − ek+1e
∗
k)Uk = Sk − ek+1e

∗
kUk = Sk.
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2.1. Derivation from Krylov decompositions. For theoretical purposes and
future convenience, we summarize in this section some facts about a, so-called, Krylov
decomposition given by

ACk = Ck+1Tk, Cke1 = b,(2.8)

where Ck is an n by k matrix and Tk is a k + 1 by k upper Hessenberg matrix. The
column space of Ck is a subspace of the Krylov space Kk but the columns, cj , are not
necessarily residuals corresponding to approximations from Kj . However, from this
relation different residual sequences (2.3) can be derived depending on the required
properties for the rj . In order to continue our discussion, we assume that Tk has
full rank, and we define the k + 1-vector ~γk as the vector such that ~γ∗kTk = ~0∗ and
~γ∗k = (1, γ1, . . . , γk)∗. Notice that, due to the Hessenberg structure of Tk, the elements
γj can be computed using a simple and efficient recursion.

A simple way to derive a residual sequence is to put Γk ≡ diag(~γk−1); then we
see that the matrices

Sk ≡ Γk+1TkΓ−1
k and Rk ≡ CkΓ−1

k(2.9)

satisfy (2.3) (with, indeed, ~1∗Sk = ~0∗). In this case the residual rj is a multiple of
the vector cj . In terms of the polynomial interpretation of Krylov subspace methods,
this construction of the residual sequence can be viewed as obtaining the residual
polynomials by scaling the polynomials, generated by the coefficients in Tk, such that
they are one in zero. Furthermore, if Tj is invertible, then we have for the residual

rj = cj/γj = Cj+1(I − TjT
−1
j )e1 = b−ACjT

−1
j e1,(2.10)

where we have used (2.8) and the first statement of the following lemma. (For ease
of future reference, we formulate the lemma slightly more general than needed here.)

Lemma 2.2. Let j ≤ k. Then,

e1 − Tj(T
−1
j e1) =

ej+1

γj
and e1 − Tj(T

†
je1) =

~γj

‖~γj‖22
,(2.11)

where T †
j denotes the generalized inverse of Tj [10, Section 5.5.4], and where, for the

first expression, Tj is assumed to be invertible.
Proof. The first expression follows from a combination of e1 − Tj(T

−1
j e1) =

e1−Γ−1
j+1SjS

−1
j Γje1 and (2.4). For the second expression we notice that I−TjT

†
j is the

orthogonal projection on Ker(Tj
∗) = span(~γj), we have that I−TjT

†
j = ‖~γj‖−2

2 ~γj ~γ∗j .
This leads to the first expression in (2.11).

The lemma also leads to an expression for residuals from an alternative construc-
tion:

rj = b−ACjT
†
je1 = Cj+1(I − TjT

†
j)e1 =

1
‖~γj‖22

Cj+1~γj .(2.12)

If we define

Υk ≡ [~γ0, . . . , ~γk−1], Θk ≡ diag(‖~γ0‖2, . . . , ‖~γk−1‖2),

then we get

Sk ≡ (Υk+1Θ−2
k+1)

−1Tk(ΥkΘ−2
k ) and Rk ≡ Ck(ΥkΘ−2

k ).(2.13)
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It can be easily checked that ~1∗(Υk+1Θ−2
k+1)

−1 = ~γ∗k and therefore ~1∗Sk = ~0∗ and also
the Hessenberg form is preserved. It should be noted that the matrix (Υk+1Θ−2

k+1)
−1

can be decomposed into simple factors since Υk+1 = Γk+1J
−1
k+1. These latter observa-

tions are related to the well-known fact, see e.g., [5, Section 2.5], that minimal residual
polynomials, or Kernel polynomials, can be generated efficiently using coupled recur-
rences.

3. Inexact Krylov subspace methods. In the previous section we collected
some general properties of Krylov subspace methods. There is a class of applications
for which it is very costly to compute the matrix-vector product to high precision. The
original motivation for the research in this paper was a linear system that occurs in
simulations in quantum chromodynamics (QCD) [7]. In this area the so-called overlap
formulation has initiated a lot of research in solving linear systems of the form

(rΓ5 + sign(Q))x = b, ‖b‖ = 1 (r ≥ 1),(3.1)

where Q and Γ5 are sparse Hermitian indefinite matrices. The matrix sign(Q) is the
so-called matrix sign function, see, e.g., [10, p. 372]. This matrix is dense and is only
known implicitly since we are only given the matrices Q and Γ5. Realistic simula-
tions require in the order of one to ten million unknowns. Usually, Equation (3.1)
is solved with a standard Krylov subspace method for linear systems, for example
the Conjugate Gradient method (since this matrix is Hermitian). In every step some
vector iteration method is required to compute the product of sign(Q) and a vector.
The usual approach is to construct some polynomial approximation for the sign func-
tion, for example with a Lanczos approximation. For an overview and comparison of
methods used in this context we refer to [29].

In this paper we consider the more general problem of solving (2.1) where we
assume that we are given some approximation Mη : Cn → Cn with the property that

Mη(y) = Ay + g with ‖g‖2 ≤ η‖A‖2 ‖y‖2.(3.2)

It is, furthermore, assumed that the smaller η is chosen, the more time consuming
this approximation becomes to construct.

In step j of all the iterative methods, that we discuss, it it necessary to compute
the product of the matrix A with some vector, say y. If this approximation is accom-
plished by replacing the matrix-vector product with the approximation Mη, we will
refer to the resulting method as an inexact Krylov subspace method. It is equivalent
to view an inexact Krylov subspace method as a variant of an exact Krylov subspace
method where a perturbation gj−1 is added to the matrix-vector product in step j
with gj−1 such that ‖gj−1‖2 ≤ ηj−1‖A‖2 ‖y‖2.

Due to the existence of the errors, gj−1, the space spanned by the residuals is
in general not a Krylov subspace generated by A anymore. This has two conse-
quences: the convergence behavior is altered, and the maximal attainable accuracy
of the iterative method is limited. The central question in this paper is how large the
perturbations can be if one is interested in a solution xk such that ‖b−Axk‖2 = O(ε)
without altering the convergence behavior too much, or equivalently, how to pick ηj−1

in step j.

3.1. Relaxation strategies. In [2], Bouras and Frayssé showed numerical ex-
periments for GMRES with a relative precision ηj in step j + 1 given by

ηj = max
{

ε

‖b−Axj‖2
, ε

}
.(3.3)
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An interesting property of this choice for ηj is that it requires very accurate matrix-
vector products in the beginning of the process, and the precision is relaxed as soon
as the method starts to converge, that is, the residuals become small. This justifies
the term relaxation strategy as introduced in [2]. For an impressive list of numerical
experiments, they observe that with (3.3) the GMRES method converges roughly as
fast as the unperturbed version, despite the, sometimes large, perturbations. Further-
more, the norm of the true residual (‖b−Axj‖2) seems to stagnate around a value of
O(ε). Obviously, such a strategy can result in large savings in practical applications.
The true residual is unfortunately in general not known, since this would require an
exact matrix-vector product. The approximate residual as computed in the inexact
Krylov subspace method (cf. §3.2) can serve as an alternative. We conclude with the
remark that this condition was derived empirically in [2] based on the experience of
the authors with a large number of experiments.

3.2. The analysis of inexact Krylov subspace methods. In the remainder
of this paper we will see that, for the methods that we consider, the approximate resid-
uals, rj , computed in the inexact Krylov subspace method now satisfy the perturbed
relation

ARk + Fk = Rk+1Sk, Rke1 = b, with ~1∗Sk = ~0∗.(3.4)

The columns of the matrix Fk are a function of the errors in the matrix-vector prod-
ucts. Furthermore, xj still satisfies (2.5) (or equivalently (2.6)) because of the assump-
tion of exact arithmetic. For the moment we assume these two properties but we stress
that their validity must be checked for every inexact Krylov subspace method which
is obtained by replacing in a particular method the exact matrix-vector product with
some approximation.

As a consequence of the perturbation term Fk, the vector rk is usually not a
residual anymore for the approximate solution xk. Therefore, we will refer to the
vector rk as the computed residual in contrast to the true residual defined by b−Axk.
In the analysis of inexact Krylov methods, the true residuals are the quantities of
interest and we have

‖b−Axk‖2 ≤ ‖rk‖2 + ‖rk − (b−Axk)‖2.(3.5)

This inequality forms the basis of our analysis. If the computed residuals, for suffi-
ciently large k, become small compared to the residual gap, then it follows from (3.5)
that the stagnation level of the inexact Krylov subspace method is determined by
the residual gap, the difference between the computed residual and the true residual.
Furthermore, in the early iterations the norm of the computed residuals is large com-
pared to the size of the residual gap. This shows that the initial convergence of the
true residuals is determined by the residuals computed in the inexact Krylov subspace
method.

In the coming sections, we will analyze the effect of inexact matrix-vector products
and relaxation strategies as in (3.3) for different Krylov subspace methods by writing
the residual relation into the form (3.4) and by bounding the residual gap. If it is
additionally shown that the computed residuals rk become sufficiently small, then the
residual gap will ultimately determine the attainable accuracy. The convergence of
the computed residuals is a difficult topic that we can only analyze in some special
cases. It should be noticed that for the applications that we have in mind the norm
of the computed residuals can be efficiently monitored, while for the true residual or
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size of the residual gap, it is necessary to compute an accurate matrix-vector product
which is not feasible. It turns out that, under our assumptions, a general expression
can be given for the residual gap. We give this expression in the next section and
exploit it in the remainder of this paper.

For the analysis in this paper, we assume the use of exact arithmetic operations:
here, we are interested in the effect of errors in the matrix-vector multiplication, but it
is also a reasonable assumption, considering that in general the “error” in the matrix-
vector product is much larger than machine precision, as in the QCD example (3.1)
mentioned in the beginning of Section 3, where the error in the matrix-vector product
is an error resulting from the truncation of an approximation process for the matrix
sign function times a vector.

3.3. A general expression for the residual gap. The goal is to get an ex-
pression for the residual gap. Assuming that xk is of the form (2.6) and the computed
residuals satisfy (3.4), then we find, using again (2.4), the following expression

rk − (b−Axk) = rk − r0 + ARkS−1
k e1 = −FkS−1

k e1 = −
k∑

j=1

fj−1e
∗
jS

−1
k e1.(3.6)

This shows that the expression for the gap is a linear combination of the columns
of Fk, i.e., the vectors fj−1, with the coefficients −(e∗jS

−1
k e1) which determine the

propagation of the perturbations through the recurrences. Our approach for bounding
the gap is based on using properties of the matrix Sk. We will do this for various
Krylov subspace methods in the remainder of this paper. Therefore, the following
lemma is convenient and will frequently be used.

Lemma 3.1. Let Tk be upper Hessenberg and of full rank. For j ≤ k, we have

|e∗jT
†
ke1| ≤ ‖T †k‖2

1
‖~γj−1‖2

, |e∗jT−1
k e1| ≤ ‖T †k‖2

(
1

‖~γj−1‖2
+

1
|γk|

)
.(3.7)

Proof. To prove (3.7), we observe that T †
kTk is the identity on k-vectors if Tk is

of rank k. Since e∗j~yj−1 = 0 for any j − 1-vector ~yj−1 we have that

e∗jT
†
ke1 = e∗jT

†
k(e1 − Tk~yj−1) and

e∗jT
−1
k e1 = e∗jT

†
k(e1 − Tk~yj−1) + e∗jT

†
k(Tk(T−1

k e1)− e1).

With ~yj−1 = T †j−1e1 and ~yj−1 = T−1
j−1e1, a combination with (2.11) leads to

e∗jT
†
ke1 = e∗jT

†
k

~γj−1

‖~γj−1‖22
= e∗jT

†
k

ej

γj−1
and e∗jT

−1
k e1 = e∗jT

†
ke1 − e∗jT

†
k

ek+1

γk
.(3.8)

and (3.7) easily follows.
We expressed our estimates in terms of the smallest singular value of Tk. This

value depends monotonically (decreasing) on k, and ‖T−1
m ‖2 ≥ ‖Tk

†‖2 if m > k. The
smallest singular value of Tk does not have this attractive property: even if Tm is
well-conditioned, there may be a k < m for which Tk is singular or nearly singular.

4. Inexact Richardson iteration. One of the simplest iterative method for
linear systems is Richardson iteration, e.g., [15]. This method allows a straightforward
analysis, however, it already demonstrates some important aspects of our analysis.
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Therefore, Richardson iteration is a useful starting point. With a perturbed matrix-
vector product, this method is described by the following recurrences for j = 1, . . . , k
(with x0 = 0, r0 = b)

rj = rj−1 − α(Arj−1 + gj−1)(4.1)
xj = xj−1 + αrj−1(4.2)

and ‖gj‖ ≤ ηj‖A‖2 ‖rj‖2. For simplicity we restrict our attention to symmetric
positive definite matrices A with an optimal choice for α:

α ≡ 2
λmin + λmax

,(4.3)

where λmin and λmax are, respectively the smallest and largest eigenvalue of A.
For this method it is clear that after k steps of the method, the iterates satisfy

(2.6) and the residuals satisfy (3.4) with Fk = Gk and Sk = JkUk with Uk = α−1I.
Therefore, we can exploit (3.6) and, using e∗jS

−1
k e1 = α, we get the following bound

on the norm of the residual gap

‖rk − (b−Axk)‖2 = ‖
k∑

j=1

fj−1α‖2 ≤ α‖A‖2
k−1∑
j=0

ηj‖rj‖2.

Recall that we are only interested in an approximate solution xk with ‖b−Axk‖2 =
O(ε). This suggests to pick ηj = ε/‖rj‖2 and we get using (4.3),

‖rk − (b−Axk)‖2 ≤ εkα‖A‖2 = ε2k
C(A)

C(A) + 1
< ε2k,

where C(A) ≡ ‖A‖2 ‖A−1‖2. We stress that the residual gap for this simple iteration
method can be obtained by comparing the recursions for rj and b − Axj directly.
We have used here a slightly more involved approach to demonstrate the use of our
general formula (3.6) which becomes more important when studying more advanced
methods.

It remains to be shown that the computed residuals become sufficiently small.
For inexact Richardson iteration we have the following result which even shows that
the computed residuals become small at a speed comparable to the exact process.

Theorem 4.1. Let rk satisfy (4.1) with ηj = 0, and let rk satisfy (4.1) with
ηj = ε/‖rj‖2. Then

‖rk − rk‖ ≤ εC(A).

Proof. The difference between the two residuals is given by

rk− rk = (I−αA)kb+α
k∑

j=1

(I−αA)k−jfj−1− (I−αA)kb = α
k∑

j=1

(I−αA)k−jfj−1.

For ηj = ε/‖rj‖2 we have ‖fj‖2 ≤ ηj‖A‖2 ‖rj‖2 = ε‖A‖2, hence

‖rk − rk‖2 ≤ |α|
k∑

j=1

‖(I − αA)‖k−j
2 ε‖A‖2 ≤ ε‖A‖2 ‖(αA)−1‖2|α| = εC(A).
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Fig. 4.1: Richardson iteration with ηj = 10−5/‖rj‖2, true residuals (—), norm computed
residual (- ·) and the quantities 10−5C(A), 2j10−5 (both dotted) as a function of j. The matrix A
has dimension 1000 and C(A) = 10. Left picture: errors have all components equal. Right picture:
random errors.

Since rk will go to zero for k →∞, we expect the norm of rk ultimately to stagnate
at a level below εC(A). This shows that the final residual precision is essentially
determined by the residual gap. We give a simple illustration of this in Figure 4.1.
We conclude that for Richardson iteration the required precision of the matrix-vector
product can be relaxed with a strategy similar as the one proposed for GMRES in
(3.3).

4.1. Discussion. One might remark that in practical applications the residual
is not computed in an incremental fashion as in (4.1). However, incrementally com-
puted residuals are important for a relaxation strategy to be successful. Furthermore,
directly computed residuals are not necessarily more accurate even if using a fixed
precision, i.e., ηj = η. In this case a direct computation of the k +1-th residual yields

‖rk − (b−Axk)‖2 ≤ η‖A‖2 ‖xk‖2 = ‖(η‖A‖2Rk)S−1
k e1‖2,

whereas an expression for the recursively computed residual follows from (3.6)

‖rk − (b−Axk)‖2 = ‖FkS−1
k e1‖2.

Both Fk and η‖A‖2Rk have a j+1-th column with a length smaller than η‖A‖2 ‖rj‖2.
Hence, the difference in the upper bounds is determined by the mutual angle between
the columns. In case the residuals change slowly and if the fj are random, the recur-
sively computed residual can be more accurate. Practical experiments confirm this,
although the differences are small. Numerical experiments suggest that in the situ-
ation of only finite precision errors an incrementally computed residual is no longer
necessarily more accurate than a directly computed residual as is often observed in
practice.

5. Inexact Chebyshev iteration. A more advanced method than Richardson
iteration is Chebyshev iteration, e.g., [10, Section 10.1.5],[6, Chapter 7]. It is more ad-
vanced than Richardson iteration in the sense that it employs a three-term recurrence
for the residuals for faster convergence. For clarity and in order to establish notation,
we start with a short derivation of Chebyshev iteration. Again, we assume A to be
symmetric positive definite.
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We define φ(t) ≡ αt − β as a function that maps the interval [λmin, λmax] to the
interval [−1, 1], so (for example)

α ≡ 2
λmax − λmin

, β ≡ λmax + λmin

λmax − λmin

.(5.1)

The main idea behind the Chebyshev method is to construct the residuals rj as
multiples of the vectors cj = cj(φ(A))b, where cj(t) is the Chebyshev polynomial of
degree j, see for a definition [6, p. 4]. An efficient algorithm comes from the three-term
recurrence for the Chebyshev polynomials

cj = 2φ(A)cj−1 − cj−2, with c0 = b, c1 = φ(A)b,

which reads in matrix formulation for k steps,

ACk = CkTk with Tk ≡



β
α

1
2α

1
α

β
α

1
2α

1
2α

. . . . . .

. . . . . .
1
2α


.(5.2)

Equations (2.3) and (2.9) now give a three-term recurrence for the residuals with
γj = cj(φ(0)). A recursion for the approximate solutions xj is given by (2.6). For
convenience of the reader, we give the resulting recurrence relations: for j = 2, . . . , k,
we have

rj = 2α
γj−1

γj
(Arj−1 + gj−1)− 2β

γj−1

γj
rj−1 −

γj−2

γj
rj−2,(5.3)

xj = −2α
γj−1

γj
rj−1 − 2β

γj−1

γj
xj−1 −

γj−2

γj
xj−2,(5.4)

with r0 = b, r1 = αγ0
γ1

(Ar0 + g0) − β γ0
γ1

r0, x0 = 0 and x1 = −αγ0
γ1

r0. In this
recursion we have already replaced the matrix-vector product in (5.3) with a perturbed
version. It easily follows that the computed residuals in the inexact Chebyshev method
satisfy (3.4) with Fk = Gk and therefore ‖fj‖2 ≤ ηj‖A‖2‖rj‖2. In order to bound
the residual gap with (3.6), we have to bound e∗jS

−1
k e1, this is accomplished in the

following lemma.
Lemma 5.1. Let Tk be as in (5.2), and let α and β be as (5.1). Then

|e∗jS−1
k e1| = |e∗jT−1

k ej | ≤
2α√
β2 − 1

=
2√

λmaxλmin

= 2

√
C(A)
‖A‖2

.(5.5)

Proof. Using (2.4) we see that

e∗jS
−1
k e1 = e∗jS

−1
k (e1 − Sk(S−1

j−1e1)) = e∗jS
−1
k (e1 − Sj−1(S

−1
j−1e1)) = e∗jS

−1
k ej .

The first equality now follows from the relation Sk = ΓkTkΓ−1
k .

The matrix Tk is given by Tk = β
α (I + 1

2β ∆), where ∆ is the k by k matrix with
zeros entries everywhere except at the positions (i − 1, i) and (i, i − 1), where it has
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the value one and the (2, 1) element is 2. To obtain the estimate for e∗jT
−1
k ej , we

express (I + 1
2β ∆)−1 as a Neumann series, and check that e∗j∆

2i−1ej = 0. With some

effort it can be shown that |e∗j∆2iej | ≤ 2 (2i)!
(i!)2 for all i = 1, 2, . . ., see Lemma A.1 in

Appendix A. Now use for t = 1/β2 that

1√
1− t

=
∞∑

i=0

(2i)!
(2ii!)2

ti if |t| < 1.

This leads to the estimate in (5.5).

A combination of Lemma 5.1 and (3.6) gives the following bound on the residual
gap

‖rk − (b−Axk)‖2 ≤ 2
√
C(A)/‖A‖2

k−1∑
j=0

‖fj‖2 ≤ 2
√
C(A)

k−1∑
j=0

ηj‖rj‖2.

Given the fact that we are interested in a residual precision of only O(ε), we propose
the same relaxation strategy as for Richardson iteration in Section 4, i.e., pick ηj =
ε/‖rj‖2. The gap for this strategy can then be bounded as

‖rk − (b−Axk)‖2 ≤ 2kε
√
C(A).(5.6)

The proposed relaxation strategy allows very large perturbations when the resid-
uals are small. Nevertheless, the following theorem shows that also the convergence
of the computed residuals for this strategy is close to that of the exact method. Fur-
thermore, the computed residuals become in the end sufficiently small for (5.6) to be
meaningful as measure for the attainable accuracy.

Theorem 5.2. Let rk satisfy (5.3) with ηj = 0, and let rk satisfy (5.3) with
ηj = ε/‖rj‖2. Then,

‖rk − rk‖2 ≤ ε(1− |γk|−1)C(A).

Proof. If we subtract (2.3) from (3.4), then we get

A(Rk −Rk) + Fk = (Rk+1 −Rk+1)Sk, (R0 −R0)e1 = 0.(5.7)

Let v− be the normalized eigenvector of A corresponding to λmin. We will show
that ‖rk − rk‖2 is maximal when for all perturbations we have fj = ε‖A‖2vmin (or
Fk = ε‖A‖2vmin

~1∗). Subsequently, we will solve (5.7) for these perturbations from
which our claim follows.

With (2.9) we rewrite (5.7) as

ADk + FkΓk = Dk+1Tk,

with dj ≡ (rj − rj)γj . Written as a three-term recurrence this reads

dj = 2φ(A)dj−1 − dj−2 + 2αfj−1γj−1,

with d0 = 0, d1 = αf0. This recurrence can be solved using standard techniques (e.g.,
[6, p.58],[9, Section 2]), which gives

dk = αuk(φ(A))f0γ0 +
k−1∑
j=1

2αuk−j(φ(A))fjγj ,
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Fig. 5.1: Chebyshev iteration with ηj = 10−10/‖rj‖, true residuals (—), norm computed

residual (- ·) and the quantities 10−10C(A), 2j10−10
√

C(A) (both dotted) as a function of j. The
matrix A has dimension 100 and C(A) = 1000. Left picture: errors have all components equal. Right
picture: random errors.

where uj is the so-called Chebyshev polynomial of the second kind (e.g., [6]), i.e.,
uj+1(t) = 2tuj(t)− uj−1(t), u0(t) = 0 and u1(t) = 1.

Realizing that |uj(t)| ≤ j for t ∈ [−1, 1], uj(−1) = (−1)jj and sign(γj) = (−1)j

it follows that

‖dk‖2 ≤

∣∣∣∣∣∣εα‖A‖2
uk(φ(λ−))γ0 +

k−1∑
j=1

2uk−j(φ(λmin))γj

∣∣∣∣∣∣ .
This shows that the error is maximal if all perturbations are ε‖A‖2vmin.

In order to solve (5.7) with Fk = ε‖A‖2vmin
~1∗, we use a relation for the iterates

which follows from substituting Rk = b~1∗ −AXk in (2.6):

AXk − b~1∗ = Xk+1Sk, X0e1 = 0.(5.8)

Comparing (5.8) with (5.7) shows that ‖rk − rk‖2 is bounded by the norm of the
k + 1-th approximate solution of Chebyshev iteration when the right-hand side is
ε‖A‖2vmin, which is

ε‖A‖2
1− ck(−1)/γk

λmin

vmin.

By noting that 0 ≤ ck(−1)/γk ≤ 1 and |ck(−1)| = 1 the proof can be concluded.
In Figure 5.1 we give an illustration of our relaxation strategy for Chebyshev

iteration as we did for Richardson iteration in Section 4.

5.1. Discussion. The effect of perturbations on the Chebyshev method has been
investigated in literature. In [32], Woźniakowski analyzes the effect of finite precision
arithmetic on the Chebyshev method. He describes a variant of the Chebyshev method
where the residuals are computed directly and concludes that this method is forward
stable. He, furthermore, points out this method is not well-behaved: the residuals for
this method can stagnate at a level of C(A)‖A‖2 ‖A−1b‖2 times the machine precision
(it is interesting to note that a similar observation has been made for MINRES [27]). A
method is well-behaved if the true residuals decrease below the level of ‖A‖2 ‖A−1b‖2
times the machine precision.
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Gutknecht et al. [19] analyze the residual gap for general Krylov subspace methods
that use two three-term recurrences (one for the residuals and one for the approximate
solutions). This analysis is applied in [18] in a qualitative discussion on the residual
gap for the Chebyshev method. The approach from [18] differs essentially from ours
in that we are using properties of the matrix Sk to bound the gap instead of a close
inspection of the recursion as in [19]. The advantage is that it is easier to derive bounds
in terms of global properties (as in Lemma 5.1) and our approach is not restricted to
a certain type of recursion. Similar expressions as in [19] can be obtained from (3.6)
by writing out e∗jS

−1
k e1 using the LU -decomposition from Lemma 2.1. A difference

is that, due to a different context, we do not consider perturbations on the recursion
for the iterates but an analysis as in the previous sections can be easily extended to
this case.

For the Chebyshev method with inexact preconditioning, called flexible precon-
ditioning in [9], convergence results have been established by Golub and Overton [9]
for ηj = η but where η can be modest. Moreover, under certain assumptions for the
cost of the flexible preconditioner, it is shown in [8] that a fixed threshold strategy
is optimal. It is not difficult to see that, if one sets the preconditioner to M = I,
the residuals of this flexible process satisfy the perturbed residual relation given in
(3.4). However, since the perturbation is the consequence of inexact preconditioning,
instead of inexact matrix-vector products, we still have that rj = b − Axj . This
shows that, although there are common elements, flexible preconditioning is different
from the case of inexact matrix-vector products. Since, for the latter case there is
also an accuracy issue.

6. The inexact Conjugate Gradient method. In this section we discuss
relaxation strategies for the Conjugate Gradient method [20] and some of its variants
although, strictly speaking, not all variants that we discuss use gradients that are
conjugate. The most popular formulation of the CG method is due to Hestenes and
Stiefel [20, Section 3] and consists of three coupled two-term recurrences. For j =
1, . . . , k this method, with inexact matrix-vector product, is defined by the recurrences

c = Apj−1 + gj−1(6.1)
rj = rj−1 − αj−1c(6.2)
xj = xj−1 + αj−1pj−1(6.3)
pj = rj + βj−1pj−1,(6.4)

with

αj−1 ≡
‖rj−1‖22
p∗j−1c

and βj−1 ≡
‖rj‖22
‖rj−1‖22

,(6.5)

and p0 = r0 = b and x0 = 0. We have added a perturbation, gj−1, to the matrix-vec-
tor product in (6.2) to obtain the inexact version with ‖gj−1‖2 ≤ ηj−1‖A‖2 ‖pj−1‖2.

The goal is, again, to obtain a final residual precision of about ε. Therefore,
we want to investigate the influence of the ηj on the residual gap and we make the
assumption that the computed residuals become sufficiently small in the end as for
Chebyshev iteration in the previous section.
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We define

Ũk ≡



1 −β0

1 −β1

. . . . . .
. . . −βk−2

1


,∆k ≡



α0

α1

. . .
. . .

αk−1


.

This gives us the following equivalent matrix formulations of the recurrences of the
inexact CG method

APk + Gk = Rk+1Jk∆−1
k , Xk+1Jk = −Pk∆k, Rk = PkŨk.

Combining these relations shows that

ARk + (GkŨk) = Rk+1(Jk∆−1
k Ũk) and −Rk = Xk+1(Jk∆−1

k Ũk).(6.6)

We see that (3.4) and (2.6) are satisfied for this method with Sk ≡ Jk∆−1
k Ũk and

Fk ≡ GkŨk. Therefore, we can use our familiar formula (3.6) to get an expression for
the residual gap:

rk − (b−Axk) = −FkS−1
k e1 = −GkŨkS−1

k e1 = −Gk∆kJ−1
k e1 = −

k−1∑
j=0

αjgj .

This expression can also be obtained by an inductive combination of (6.2) and (6.3).
This simpler argument, that avoids the matrix formulation, was used in [26, 14].
However, the present argument explains how CG fits in the general framework of this
paper. Moreover, for the conclusions below we need the matrix formulation anyway.

From ‖gj‖2 ≤ ηj‖A‖2‖pj‖2, we get the following bound on the norm of the
residual gap:

‖rk − (b−Axk)‖2 ≤
k−1∑
j=0

ηj |αj |‖A‖2‖pj‖2.(6.7)

Thus, the problem of deriving relaxation strategies for the Conjugate Gradient method
amounts to bounding |αj |‖pj‖2. We do this in the remainder of this section.

The Conjugate Gradient method (CG) is intimately connected with the Lanczos
method, e.g., [10, Chapter 9]. In order to continue, we introduce for theoretical
purposes the following inexact Lanczos process

AVk + F̃k = Vk+1Tk,(6.8)

where Tk ≡ Γ−1
k+1SkΓk, Γk ≡ diag(~γk−1), γj ≡ (−1)j‖rj‖−1

2 , Vk ≡ RkΓk, and F̃k ≡
FkΓk. From (6.6) and Section 2 it follows that xj = RjS

−1
j e1 = VjT

−1
j e1 and

combining this with (6.3) shows that

αjpj = Vk(T−1
j+1e1 − T−1

j e1).(6.9)

We will use this relation to bound |αj |‖pj‖2.
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6.1. The case of Tk positive definite. First we assume that Tk is positive
definite. In the previous section we reduced the problem of bounding the gap to
bounding |αj |‖pj‖2. We will do this using (6.9) and the following result.

Lemma 6.1. Let j < k. Then,

T−1
j+1e1 − T−1

j e1 = T−1
j+1

ej+1

γj
=

~γj

~γ∗j Tj+1~γj
.(6.10)

Proof. First observe that

T−1
j+1e1 − T−1

j e1 = T−1
j+1(e1 − Tj+1T

−1
j e1) = T−1

j+1(e1 − TjT
−1
j e1).

Now, the first identity in (6.10) follows from Lemma 2.2.
Since ~γ∗j+1Tj+1 = ~0∗, we see that ~γ∗j Tj+1 = δe∗j+1 for some scalar δ. Multiplication

from the right with ~γj , shows that δ = ~γ∗j Tj+1~γj/γj . Since Tj+1 is symmetric, we find
~γj = δT−1

j+1ej+1, which leads to second identity.
We combine this lemma with (6.9) and arrive at the estimate

|αj |‖pj‖2 ≤ ‖Vk‖2‖T−1
k ‖2ρj , with ρj ≡

1
‖~γj‖2

=

(
j∑

i=0

‖ri‖−2
2

)−1/2

.(6.11)

We substitute this estimate in (6.7) and find the following bound on the norm of the
residual gap

‖rk − (b−Axk)‖2 ≤ ‖Vk‖2‖A‖2‖T−1
k ‖2

k−1∑
j=0

ηjρj .(6.12)

This estimate can be further bounded by using ‖Vk‖2 ≤ ‖Vk‖F ≤
√

k. In practice,
this turns out to be crude since ‖Vk‖2 is close to one or only a modest multiple of
one. If A is symmetric positive definite, then, in the exact case, ‖T−1

k ‖2 ≤ ‖A−1‖2.
In the inexact case, ‖A‖2‖T−1

k ‖2 can be viewed as an approximation to C(A). It
is tempting to refer to the results of Paige [22] for perturbed Lanczos processes to
bound this quantity. However, the perturbations in our context are not assumed to be
uniformly bounded. In fact, they are allowed to grow during the process. Therefore,
we cannot make use of his results. Of course, we can monitor this quantity during
the inexact process and, possibly, incorporate this estimate into our tolerance ηj .

Bouras, Frayssé and Giraud proposed in [3], following their work for inexact
GMRES and (3.3), a relaxation strategy for the CG method where they take

ηj = max
{

ε

‖rj‖2
, ε

}
.(6.13)

If we take the larger tolerance ηj = ε
ρj

(since ρj ≤ ‖rj‖2), we have from (6.12) that

‖rk − (b−Axk)‖2 ≤ εk‖Vk‖2‖A‖2‖T−1
k ‖2.(6.14)

We saw that our analysis of the residual gap helps to provide insight into the practical
success of the Bouras-Frayssé-Giraud condition (6.13) and even suggests that we can
relax more aggressively than previously proposed. Indeed, numerical experiments
with symmetric positive definite matrices A confirm this.
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An alternative for bounding |αj |‖pj‖2 follows from noticing in (6.10) that, for
fixed values of i, the quantities e∗i (T

−1
j e1 − T−1

j−1e1) have a constant sign for all j (or
are zero). Therefore, we have that

‖T−1
j e1 − T−1

j−1e1‖2 ≤ ‖T−1
i e1‖2 for i ≥ j.

This provides a similar bound on |αj |‖pj‖2 as derived by Greenbaum in [14] for the
residual gap of CG in order to study the attainable accuracy of the CG method in finite
precision computations. She uses that the errors of the CG method are monotonically
decreasing in 2-norm in order to bound ‖αjpj‖2. In our context this approach is too
crude since it does not lead to a relaxation strategy.

6.2. The case of Tk indefinite. The CG method is still used in practice for
solving Hermitian indefinite systems, despite its lack of robustness. One reason is
that, although the tridiagonal matrix can be ill-conditioned in one iteration, this can
never happen for two consecutive iterations, e.g., [1, 16]. If A is symmetric indefinite,
but nonsingular, then, even in the exact case, Tk will not be definite and we cannot
uniformly bound ~γ∗j Tk~γj away from zero. We may not expect that Lemma 6.1 leads
to useful results for bounding |αj |‖pj‖2 using (6.9). As an alternative, we use the
following lemma.

Lemma 6.2. Let j < k. Then,

T−1
j+1e1 − T−1

j e1 = T †j+1

(
ej+1

γj
− ej+2

γj+1

)
.(6.15)

Proof. We observe that T †j+1Tj+1 is the identity on j + 1-vectors and conclude
that

T−1
j+1e1 − T−1

j e1 = T †
j+1

(
(e1 − Tj+1T

−1
j e1)− (e1 − Tj+1T

−1
j+1e1)

)
.

The proof can be concluded by rewriting the expressions on the right using Lemma 2.2.

If we use that ‖T †
j+1‖2 ≤ ‖T †k‖2 for k > j and, from (6.5), that βj = γ2

j /γ2
j+1,

then we can bound the norm of the residual gap as

‖rk − (b−Axk)‖2 ≤ ‖Vk‖2‖A‖2‖T †
k‖2

k−1∑
j=0

ηj‖rj‖2
√

1 + βj .(6.16)

A similar expression can be found in [26, 14], where the perturbations are assumed
to be small and second order terms have been neglected (then it can be proven that
‖A‖2‖T †

k‖2 . C(A)). For the choice ηj = ε
‖rj‖2 , we get, using (6.16),

‖rk − (b−Axk)‖2 ≤ εk‖Vk‖2‖A‖2‖T †
k‖2 max

0≤j<k

√
1 + βj .(6.17)

We see that, as long as the βj are bounded, this strategy can work very well. However,
practical problems often lead to a matrix A that is indefinite, for instance in the QCD
example discussed in Section 3. In this case there can be very large intermediate
residuals caused by an eigenvalue of Tk being ‘accidentally’ close to zero. The situation
of an eigenvalue of Tk close to zero is in literature often referred to as a near breakdown.
It results in a value of βj that is very large and it follows from (6.17) that the proposed
strategy in (6.13) may fail in achieving the required residual precision.
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From (6.16) it follows that picking ηj = ε/(‖rj+1‖2 + ‖rj‖2) is a better strategy
in this case. However, this is not practical since rj+1 is not known yet. An alternative
is to consider the first bound in Equation (6.7) and pick

ηj =
ε

|αj |‖pj‖2
.

If the approximation of the matrix-vector product is computed with an iterative
method, then the inner product of pj with the ‘current’ approximation to the matrix-
vector product can be monitored (at the cost of an additional inner product) and from
this αj can be estimated. Nevertheless, in case of a near breakdown a very accurate
matrix-vector product is still necessary. We will therefore consider variants of the
Conjugate Gradient method in Section 6.4.

6.3. The behavior of the computed residuals. Studying the convergence
and stagnation level of the computed residuals is a much more difficult topic. Green-
baum [13] showed that the convergence of a slightly perturbed CG process is equal
to that of the exact method applied to a matrix with eigenvalues in small clusters
around the eigenvalues of the original matrix. The width of these clusters is deter-
mined by the size of the perturbation of the Lanczos process. Unfortunately, this
analysis does not apply in our situation since it does not explain why the accuracy
of the matrix-vector product can be relaxed when the CG method converges as was
the case for Richardson iteration and Chebyshev iteration in the previous sections.
Numerical experiments indeed suggest that a relaxation strategy for the accuracy of
the matrix-vector products does not spoil the convergence of the computed residuals
and they seem to stagnate at a level in the order of ε.

However, a near breakdown of the Conjugate Gradient method can severely alter
the behavior of the computed residuals. In this case, F̃k in (6.8) has some relatively
very large columns. We know that for the j-th column of F̃k we have ‖̃fj−1‖ =
‖gj−1 − βj−2gj−2‖2/‖rj−1‖2. A simple analysis shows that

‖pj−1‖2 = ‖RkŨ−1
k ej‖2 ≤ ‖RkΓk‖2 ‖Γ−1

k Ũ−1
k ej‖2 = ‖Vk‖2

‖rj−1‖22
ρj−1

,

where ρj is as defined in (6.11). Notice that ρj can be viewed as the norm of a
smoothed residual e.g., [20, Section 7]. We have the following upper bound for the
norm of the j-th column of F̃k

‖̃fj−1‖ = ‖gj−1 − βj−2gj−2‖2/‖rj−1‖2 ≤ ‖A‖2 ‖Vk‖2 ‖rj−1‖2
(

ηj−1

ρj−1
+

ηj−2

ρj−2

)
.

The ratio ‖rj−1‖2/ρj−1 is large in case of a near breakdown, since then we have
that ρj−1 � ‖rj−1‖2. We see that, when there is a near breakdown, there can be a
relatively very large perturbation of the Lanczos relation. One consequence is a large
residual gap (as discussed). Another effect is a potential delay in the convergence (or
even worse). A simple numerical example of this is given in the next section.

6.4. Variants of the Conjugate Gradient method. Mathematically equiv-
alent variants of the CG method can be derived from the Lanczos method. In this
section we will consider two alternatives for the CG method in the previous section.
These methods are based on a three-term recurrence for the residuals instead of the
coupled two-term recurrences of the Hestenes and Stiefel implementation discussed in
the previous sections. We start with a short derivation of these alternatives.
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Since the CG residuals are multiples of the Lanczos vectors, we can derive the
coefficients for the recurrence (2.3) from the Lanczos relation by virtue of (2.9). To
see this, we write

Tk ≡



α0 β0

β0 α1
. . .

. . . . . . . . .
. . . . . . βk−2

βk−2 αk−1

βk−1


, Sk ≡



µ0 δ0

τ0 µ1
. . .

. . . . . . . . .
. . . . . . δk−2

τk−2 µk−1

τk−1


.

The matrix Tk is computed using the Lanczos method and we want expressions for
the elements of the matrix Sk. We can do this similar to our derivation of Chebyshev
iteration in Section 5. From the necessary property that ~1∗Sk = ~0, it immediately
follows that τj = −(µj + δj−1) (with δ−1 = 0). Using (2.9) we see that µj = αj ,
δj = βj(γj/γj+1) and τj = βj(γj+1/γj). Eliminating βj gives that δj = τj(γj/γj+1)2.
With δ−1 = 0 we get, using (2.12),

δj = τj
‖rj+1‖22
‖rj‖22

, µj =
r∗jArj

‖rj‖22
, τj = −(µj + δj−1).

Computing the residuals and iterates with these coefficients using the recurrences
described by (2.3) and (2.6) gives a variant of CG known as Orthores (we use the
nomenclature from [19]).

Rutishauser’s variant of this method is obtained by introducing auxiliary vari-
ables ∆xj and ∆rj using the LU -decomposition, Sk = JkUk, from Lemma 2.1 where
(Uk)j,j = −τj−1 and (Uk)j+1,j = δj−1. This gives

Rk+1Jk = ∆Rk, ∆Rk Uk = ARk and
Xk+1Jk = ∆Xk, ∆Xk Uk = −Rk.

(6.18)

Now that we have defined the two methods, we shift our attention to the inexact
case. In inexact Orthores the matrix-vector product is perturbed in step j with a
term gj−1. This gives the (familiar) perturbed residual relation

Rk + Fk = Rk+1Sk, Rke1 = b, with ~1∗Sk = ~0∗,

where Fk = Gk and, therefore, ‖fj‖2 ≤ ηj‖A‖2 ‖rj‖2. For the inexact version of
Rutishauser’s method we have ∆Rk Uk = ARk + Gk, and it follows that, for the
same perturbations, the inexact version of Orthores and Rutishauser’s variant are
equivalent under the assumption of exact arithmetic and, hence, the same upper
bounds apply.

We want to bound the gap for the discussed methods and derive a suitable relax-
ation strategy. Therefore, we notice that the residuals of inexact Orthores are now
multiples (γ−1

j ) of the Lanczos vectors of an inexact Lanczos process given by (6.8)
with Tk = Γ−1

k+1SkΓk, Γk = diag(~γk−1) and γj = (−1)j‖rj‖−1
2 . Combining this with

Lemma 3.1 shows that

|e∗jS−1
k e1| ≤ ‖T †

k‖2
1

‖rj−1‖2
(ρj−1 + ‖rk‖2) ,(6.19)
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with ρj−1 as defined in (6.11). The general expression for the residual gap (3.6), now
leads to the following bound

‖rk − (b−Axk)‖2 ≤ ‖T †k‖2
k−1∑
j=0

‖rj‖−1
2 (ρj + ‖rk‖2) ‖fj‖2

≤ ‖A‖2 ‖T †
k‖2

k−1∑
j=0

ηj (ρj + ‖rk‖2) .

Recall that we assume that the computed residuals ultimately become small enough.
Now, assume that we terminate the iterative process for ‖rk‖2 ≤ ε. In this case we
see that the size of the gap is essentially determined by the values of the ρj , the ηj ,
and ‖T †

k‖2. Unfortunately, we have no a priori knowledge about the size of ‖T †
k‖2.

We hope that this quantity is in the order of ‖A−1‖2. For inexact Orthores (and
Rutishauser’s variant) we propose the following relaxation strategy

ηj =
ε

ρj
,(6.20)

where ρj is given in (6.19). Notice that ρj can be computed at little additional cost.
With this relaxation strategy we get for the residual gap

‖rk − (b−Axk)‖2 ≤ εk‖A‖2 ‖T †k‖2
(

1 +
‖rk‖2

ρk

)
.

This shows that the distance between the computed and true residual can be large
when there is a near breakdown but when the process is terminated, if ‖rk‖2 ≤ ε,
the gap is hopefully O(ε). An alternative is to pick ηj = ε/(ε + ρj) which somewhat
simplifies the resulting expression that bounds the gap.

Let us summarize our findings. If we consider the upper bounds on the residual
gap, we see that for the two discussed variants based on a three-term recurrence
there is no need in computing the matrix-vector product more accurately in case of
a near breakdown in contrast to CG. As seen, we can exploit this in our relaxation
strategy. For indefinite matrices A, where the convergence behavior of the residuals
is highly irregular, the alternative CG methods and relaxation strategy in this section
can offer advantages over CG and the relaxation strategy by Bouras et al. in (6.13).
Furthermore, for the three-term recurrences, a near breakdown does not lead to a
large perturbation of the (implicit) Lanczos relation. Hence, we expect the effect of
loss of convergence speed caused by near breakdowns less dramatic than for CG.

In Figure 6.1 we give a simple illustration. The right-hand side has all components
equal and the matrix is A = diag(1 : 100)−5.2025 I. The shift causes a large interme-
diate residual in the fifth step. The figure illustrates that Orthores and Rutishauser’s
variant perform equal and better than the CG method with respect to accuracy and
convergence speed. Here, we prefer to use the three-term recurrence variants over the
coupled two-term recurrences.

6.5. Discussion. For positive definite systems, the standard CG method seems
appropriate in the inexact setting. The observations in the previous section show
that (in the inexact setting) the use of a three-term recurrence for solving Hermitian
indefinite systems can offer advantages over the standard CG implementation specially
in situations where the matrix A is not too ill-conditioned and convergence is irregular.
Numerical experiments are given in Section 8.
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Fig. 6.1: True residuals exact FOM (dotted), CG (–), Orthores (- ·), Rutishauser’s variant
(dots) as a function of j. In both pictures ε = 10−10. Left picture: ηj = ε. Right picture: ηj = ε/ρj .

Numerical experiments (not reported here) suggest that this is not necessarily
the case when floating point errors are the only source of errors. For example, near-
breakdowns also influence the attainable precision of Rutishauser’s variant of the CG
method, just as for standard CG. Orthores, on the other hand, seems not sensitive to
peaks but appears to be [19], like Chebyshev iteration and MINRES, not well-behaved
(cf. Section 5.1). Our analysis can be extended for making a rounding error analysis
of several variants of the CG method for indefinite systems. This can help identifying
the different design choices in the construction of a CG method that influence the
accuracy.

Studying the behavior of the computed residuals is a much more difficult subject.
In general we observe in numerical experiments that the computed residuals become
small enough for the residual gap to be a meaningful indicator for the attainable
residual precision. It is also often observed that the initial convergence speed is
comparable to the convergence speed of the exact method. Nevertheless, in a few
cases, small perturbations of the matrix-vector product can delay convergence for the
CG method and its variants. This also is the case for inexact GMRES that we discuss
in the next section and we refer to this section for a numerical example and further
discussion.

As a final remark we notice that we could have proposed inexact MINRES as
the alternative for indefinite systems. We have not done this here for two reasons.
A simple analysis of inexact MINRES shows that essentially the same bound applies
as for inexact Orthores and therefore the same relaxation strategy is appropriate.
Secondly, we want to illustrate that the underlying mechanism for constructing the
Krylov subspace is important and not the chosen optimality properties of the residuals.
This is also illustrated in the next section in our discussion about inexact FOM and
GMRES.

7. Inexact FOM and GMRES. The Lanczos method is a starting point for
the derivation of a large class of iterative methods for Hermitian matrices A. For
non-Hermitian systems, the Arnoldi method, see, for instance, [10, Section 9.4], can
be used for constructing an orthonormal basis v0, . . . ,vk for Kk+1 and can therefore
serve as a starting point. The Arnoldi method can be summarized by the following
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relation

AVk = Vk+1Tk, Vke1 = b,(7.1)

where Tk is k + 1 by k upper Hessenberg and Vk is n by k and orthogonal. Recall
that we assume that b is assumed to have unit length.

If in step j of the Arnoldi method the matrix-vector product is computed ap-
proximately, i.e., a perturbation gj−1 is added to the matrix-vector product Avj−1,
then we obtain an inexact Arnoldi method. This latter method satisfies the following
perturbed Arnoldi relation

AVk + F̃k = Vk+1Tk, Vke1 = b,(7.2)

where F̃k = Gk and, therefore, ‖̃fj‖ ≤ ηj‖A‖2 ‖vj‖2 = ηj‖A‖2. An interesting
observation is that Vk is still an orthogonal matrix, but now the columns span the
Krylov subspace Kk(Âk,b) with Âk ≡ A + F̃kV∗

k . We will assume in this section
that Tj is invertible and Tj has full rank for j ≤ k.

The inexact FOM and inexact GMRES method [2] use the Arnoldi relation ex-
plicitly and construct their iterates as

yF
j = T−1

j e1, xF
j = Vjy

F
j and yG

j = T †je1, xG
j = Vjy

G
j .

The corresponding computed residuals are given by

rF
j = Vj+1(I − TjT

−1
j )e1 and rG

j = Vj+1(I − TjT
†
j)e1.

These expressions are a special case of Equations (2.10) and (2.12) and, therefore, we
get from Lemma 2.2 that rF

j = vj/γj and rG
j = ‖~γj‖−2

2 Vj~γj , where ~γk is as defined in
Section 2, i.e., γ∗kTk = ~0∗ and ~γ∗ke1 = 1. This gives the following relation between the
norms of the computed residuals of inexact FOM and GMRES

ρj ≡ ‖rG
j ‖2 =

(
j∑

i=0

‖rF
i ‖−2

)−1/2

.(7.3)

The same result is well known for exact FOM and GMRES from the work of Brown
[4].

Notice that an alternative expression for the residuals is given by rF
j = b− ÂjxF

j

and similarly for inexact GMRES. Hence, inexact FOM/GMRES is equivalent to
exact (or ideal) FOM/GMRES applied to the linear system Ânx = b. Therefore,
these methods, after at most n steps, terminate with xF

n = xG
n = (A+ F̃nV∗

n )−1b and
in the inexact GMRES method, the computed residuals are monotonically decreasing.
In the remainder of this section, we will drop the superscripts F or G in expressions
that are valid for both methods.

In order to bound the residual gap in step k, we use an expression for the gap
that is equivalent to (3.6) but is expressed in terms of the matrix F̃k (this simplifies
the analysis in this section somewhat). We have

rk − (b−Axk) = rk − (b− (Âk − F̃kV∗
k )xk) = −F̃kyk.(7.4)

Hence,

‖rk − (b−Axk)‖2 = ‖F̃kyk‖2 ≤ ‖A‖2
k−1∑
j=0

ηj |e∗j+1yk|.(7.5)
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Since the iterates of inexact FOM and GMRES ultimately will approach the same
vector Â

−1

n b, and thus yF
k ≈ yG

k , it is evident from (7.4) that an appropriate relaxation
strategy for inexact GMRES is also suitable for inexact FOM, and vice versa. This
will be confirmed by the analysis below.

If we plug (3.7) into (7.5), then we get the following bound for the residual gap
of inexact FOM,

‖rF
k − (b−AxF

k)‖2 ≤ ‖A‖2 ‖T †
k‖2

k−1∑
j=0

ηj(‖rG
j ‖2 + ‖rF

k‖2),(7.6)

and for inexact GMRES we get

‖rG
k − (b−AxG

k )‖2 ≤ ‖A‖2 ‖T †k‖2
k−1∑
j=0

ηj‖rG
j ‖2.(7.7)

We follow the same approach as for Orthores in Section 6.4 and assume that we
terminate the inexact FOM/GMRES method in step k when ‖rk‖2 ≤ ε, where ε is
again in the order of the required residual precision. We see that in step k the residual
gap is essentially determined by the tolerances ηj , the ‖rG

j ‖2 (or ρj) and the smallest
singular value of Tk. Again, the size of the smallest singular value of the Hessenberg
matrix is difficult to estimate a priori (we can however monitor it during the iterations
and incorporate this quantity in our choice for η). We, again, see that relaxation is
possible with ηj = ε/ρj . This results for inexact FOM in the bound

‖rF
k − (b−AxF

k)‖2 ≤ εk‖A‖2‖T †k‖2
(

1 +
‖rF

k‖2
ρk

)
,(7.8)

and for inexact GMRES we get

‖rG
k − (b−AxG

k )‖2 ≤ εk‖A‖2‖T †
k‖2.(7.9)

We see that the relaxation strategy derived from the bounds on the residual gap
confirms the empirical choice of Bouras et al. in (3.3) for GMRES and can explain
the success of this approach. See also the numerical experiments in [2]. Furthermore,
we note that the expression for the residual gap of the inexact FOM method and
inexact Orthores from the previous section coincide which can be explained by the
fact that, for both methods, the matrix-vector products in the exact counterparts are
applied to an orthogonal basis. Of course, the behavior of the computed residuals and
the values of ‖T †

k‖2 differ.

7.1. The behavior of the computed residuals. For inexact GMRES we know
that the size of the computed residuals monotonically decrease and rn = 0. There-
fore the gap provides in the end useful information about the attainable accuracy.
However, this does not say anything about the speed of convergence of the perturbed
process. The many numerical experiments in [2] suggest that the convergence of the
inexact method with the proposed relaxation strategy is comparable to the conver-
gence speed of the exact method. It is, however, very difficult to give a rigorous
analysis of this observation. In some cases it can be proven that convergence of the
relaxed process is approximately as fast as for the unperturbed process (similar to
what we have seen for Chebyshev iteration). This is for example the case for inexact
processes where the perturbation is of the special form:

F̃k = Vk+1Ek,(7.10)
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with Ek some upper Hessenberg matrix. In this case we have

AVk = Vk+1Tk − F̃k = Vk+1T k, with T k ≡ Tk − Ek.

This shows that only the Hessenberg matrix Tk differs from the Hessenberg matrix
of the unperturbed process T k and the perturbation does not change the Krylov
subspace, or its basis given by Vk+1.

To understand the convergence of the inexact process, we compare the norm of
the computed residual for the inexact process, with perturbations of the form (7.10),
to that of the exact method. We denote the computed residuals of both methods
with, respectively, rj and rj . For the GMRES method these ‘residuals’ are given by
the following expressions:

rG
j = Vj+1(I − TjTj

†)e1 and rG
j = Vj+1(I − T jT

†
j)e1.

Since we have that T k = Tk −Ek, we can apply standard perturbation theory for the
least squares problem. For example, with Theorem 19.1 in [21] we can show that∣∣‖rG

k‖2 − ‖r
G
k‖2
∣∣ ≤ ‖rG

k − rG
k‖2 ≤ (1 + 2‖A‖2‖A−1‖2)‖Ek‖2.

This shows that if ‖rG
k‖2 = O(ε) all the ηj should be about ε in order to retain the

speed of convergence of the exact method. This simple argument is not sufficient for
explaining the fast convergence of the inexact method with the relaxation strategy
(3.3) and some more work is necessary. By generalizing Theorem 19.1 in [21], we get
the following theorem.

Theorem 7.1. Let Wk ≡ ÂkVk and let Pk be the skew projection along Vk on
span(Wk):

Pk = Wk(V∗
k Wk)−1V∗

k = Vk+1T kT
−1

k V∗
k .

Then, we have for the inexact FOM method

‖rF
k − rF

k‖2 ≤ ‖I−Pk‖2‖A‖2‖T †
k‖2

k−1∑
j=0

ηj(‖rG
j ‖2 + ‖rF

k‖2).

For the inexact GMRES method we have that

‖rG
k − rG

k‖2 ≤ ‖A‖2‖T
†
k‖2

k−1∑
j=0

ηj(‖rG
j ‖2 + ‖rG

k‖2).

Proof. We proof the first statement.

‖rF
k − rF

k‖2 = ‖T kT
−1

k e1 − TkT−1
k e1‖2

= ‖[(T k − Tk)− T kT
−1

k (T k − Tk)]T−1
k e1‖2

= ‖(Ek − T kT
−1

k Ek)T−1
k e1‖2 = ‖(I−Pk)F̃kT−1

k e1‖2

≤
k−1∑
j=0

‖(I−Pk )̃fj‖2 |e∗j+1T
−1
k e1|

≤ ‖I−Pk‖2‖A‖2 ‖T †k‖2
k−1∑
j=0

ηj(‖rG
j ‖2 + ‖rF

k‖2).
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Where, in the last line we have used Lemma 3.1. This proves the first statement.
For the proof for inexact GMRES, we define Qk as the orthogonal projection onto

span(Wk), then

Qk = Wk(W∗
kWk)−1W∗

k = Vk+1T kT
†
kV

∗
k+1.

We have that

‖rG
k − rG

k‖2 = ‖T kT
†
ke1 − TkT †

ke1‖2
= ‖T kT

†
k(I − TkT †k)e1 − (I − T kT

†
k)TkT †

ke1‖2
≤ ‖T kT

†
k(I − TkT †k)‖2 ‖(I − TkT †

k)e1‖2 + ‖(I − T kT
†
k)Ek T †

ke1‖2
≤ ‖(I − T kT

†
k)Ek T †

k‖2 ‖r
G
k‖2 + ‖(I − T kT

†
k)Ek T †

ke1‖2
= ‖(I−Qk)F̃k T †

k‖2 ‖r
G
k‖2 + ‖(I−Qk)F̃k T †

ke1‖2

≤ ‖F̃k‖2‖T †
k‖2 ‖r

G
k‖2 +

k∑
j=0

‖̃fj‖2 |e∗j+1T
†
ke1|

≤ ‖A‖2 ‖T †
k‖2

k−1∑
j=0

ηj(‖rG
j ‖2 + ‖rG

k‖2).

Here we used Lemma 3.1 and the identities (I − T kT
†
k)Tk = −(I − T kT

†
k)Ek and

‖T kT
†
k(I − TkT †k)‖2 = ‖(I − T kT

†
k)TkT †

k‖2, which, for example, can be found in [28].

This theorem shows that for special perturbations, the relaxation strategy also
preserves the convergence speed of the exact method until the norm of the residuals
becomes in the order of the required residual precision. Of course, this does not
explain the often good results with relaxed GMRES that is observed, for example, in
the experiments in [2]. However, this theorem is difficult to extend to more general
perturbations, since the Hessenberg reduction is not forward stable, see [31]. This
means that small perturbations in the matrix-vector product can drastically change
the resulting Hessenberg matrix. We emphasize that this does not necessarily imply a
severe loss of convergence speed for general perturbations but only that the usefulness
of the analytical approach taken here is limited. Nevertheless, small perturbations of
the matrix-vector product can indeed delay convergence (but they seem to have not
a big impact on the stagnation level). We illustrate this by the following experiment
with inexact FOM. (Notice that the convergence of the computed residuals of inexact
FOM and GMRES are related, see (7.3).)

The matrix A ∈ R100×100 is lower bidiagonal with diagonal elements (A)j,j = j
and has ones on its lower bidiagonal. For the the right-hand side we have taken
b = e1. It easily follows for this example that Tn = A and the corresponding vector
~γj with ~γ∗j Tj = ~0∗ and ~γ∗j e1 = 1 is given by γj = (−1)jj!. Therefore we have
that ‖rF

j‖2 = 1/j!. Figure 7.1 shows the convergence history of inexact FOM with
ηj = ε = 10−12. Although, the accuracy requirement is achieved (as expected), for the
inexact method many more iterations are necessary to reach the required precision.
An explanation is offered by the fact that the right-hand side is mainly oriented in
the direction of a few eigenvectors of A and the errors in the matrix-vector product
introduce components in directions for which convergence is slow. We mention that
convergence of GMRES for this system for general right-hand sides is much slower
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Fig. 7.1: Convergence inexact FOM with ηj = ε = 10−12: true residual (—), computed residual
(- ·) and 1/j! (dotted) as a function of j.

than for the right-hand side taken in this example. We must, however, emphasize that
this example is academic since also in finite precision computations the convergence
can be much slower than the exact expression for the residuals suggests.

8. Numerical experiments. In this section we conduct an experiment with
inexact CG and it’s variants from Section 6. For experiments with inexact GMRES
we refer the reader to [2]. All experiments are done in Matlab.

The linear system comes from the computation of quark propagators using Wilson
fermions in quantum chromodynamics. The matrix DW is CONF6.0-0.00l4x4.2000
from the Matrix Market. This matrix is complex valued and contains 3072 unknowns.
The matrix has the following property, e.g., [7], Γ5 DW = D∗

W Γ5 with Γ5 ≡ I⊗(γ5⊗
I3) and

γ5 ≡


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

The Hermitian matrix A is now given by A = Γ5 DW . This matrix is highly indefinite.
For the right-hand side we have taken a complex random vector of unit length. To
simulate an inexact matrix-vector product we have added in step j of CG, a random
complex vector. We have not taken into account the norm of A in our experiments.

Figure 8.1 shows the results for inexact CG, Orthores and Rutishauser’s variant
when a residual precision of O(ε) is required with ε = 10−8. The left picture shows
the results for a constant precision (ηj = ε) and the right picture for the relaxation
strategy from Section 6.4 (ηj = ε/ρj).

For ηj = 10−8 we see that the three-term recurrence is superior to the coupled
two-term recurrence. This can be explained by our analysis and the large residuals in
the initial steps. This advantage remains if we apply the relaxation strategy from Sec-
tion 6.4 (although we lose some additional digits compared to the constant precision
case).
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Fig. 8.1: True residuals CG (solid), Orthores (- ·), Rutishauser’s variant (dots), ηj (dotted) as
a function of j. In both pictures ε = 10−8. Left picture: ηj = ε. Right picture: ηj = ε/ρj .

9. Conclusions and outlook. In this paper we have investigated the effect of
approximately computed matrix-vector products on the convergence and accuracy of
various Krylov subspace methods. This analysis was used to derive suitable relax-
ation strategies for these methods. Our results provide insights into the mechanisms
behind the successful results with the relaxation strategies of Bouras et al. in [2, 3].
Furthermore, it was shown that for the Conjugate Gradient method the three-term
recurrence can offer advantages over the standard coupled two-term recurrence in case
the matrix is indefinite and suffers from large intermediate residuals or peaks in the
convergence curve. This was illustrated in Section 8.

For methods like Richardson iteration and Chebyshev iteration it is necessary
that the residuals are computed in an incremental matter in order for a relaxation
strategy to be possible. We illustrated, by the example of CG versus Orthores for
indefinite problems, that it is the underlying way the Krylov subspace is constructed
that is of importance. By comparing inexact FOM and inexact GMRES we saw
that the optimality properties of the residuals are not of influence on the attainable
accuracy in the end. Therefore, a relaxation strategy for GMRES should also work
for FOM, since the Krylov subspace is constructed in the same matter, i.e., using
inexact Arnoldi.

Studying the convergence of the inexact methods is a more difficult problem.
Stationary methods construct residual polynomials that are small everywhere on a
predefined interval. For these types of methods we could prove that, with our relax-
ation strategies, convergence is as fast as for the exact method. For GMRES and
CG this is a much more difficult problem. For the GMRES method we have given
some results in case the perturbations are of a special form. In future work we plan to
further study the effect of inexact matrix-vector products on optimal Krylov subspace
methods. And, in particular, the effect of increasing the error during the process.

As a side product of our work, we have shown that using the matrix formulations
of the Krylov subspace methods in some cases can simplify the analysis of the residual
gap, which is a problem that frequently occurs in analyses of the attainable accuracy
of subspace methods. In particular, for three-term recurrences insightful expressions
can be easily obtained like for the Chebyshev method and Orthores.

In future work we want to apply the observations in this paper to the simulation
of overlap fermions (as mentioned in the beginning of Section 3) and combine this
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with the work in [29] for the computation of the matrix sign function acting on a
vector. Furthermore, we plan to extend the analysis in this paper to a rounding error
analysis for the different variants of CG for indefinite Hermitian systems (and the
BiCG method) in order to understand the effect of the different types of breakdown
on the residual gap.

Postscript. After the submission of this paper the presentation in [25] resulted
in the paper [24]. We discuss some differences with this work. The analysis in [25]
mainly focuses on the inexact GMRES and inexact FOM method and is based on
showing that the true residuals satisfy a quasi-orthogonality condition of the form
‖U∗

k(b − Axk)‖ ≤ O(ε) for some matrix Uk. It is interesting to notice that the
quasi-orthogonality is equal to a projection of the residual gap. Therefore, in their
presentation, the authors in the end presented a result similar to our Lemma 3.1
to bound this quasi-orthogonality. Paper [24] considers a large number of practical
applications. Moreover, the approach taken in the analysis is very different. In the
present paper, we are interested in the convergence and stagnation level of the true
residuals which are indicators for the quality of the iterates. The basis of our analysis
is the splitting into a study of the residual gap, which is connected to the stagna-
tion level, and the convergence and stagnation of the computed residuals. In [24],
the authors consider two aspects of inexact Krylov subspace methods: the already
discussed quasi-orthogonality of the true residuals and the variational properties of
inexact GMRES and inexact FOM method. (This is equivalent to the observation in
Section 7 that the computed residuals in inexact GMRES and FOM are residuals of
an exact GMRES/FOM process applied to a ‘nearby’ matrix). There seems to be no
discussion in [24] about the direct consequence of quasi-orthogonality and the con-
served variational properties of the Krylov subspace method on the stagnation level
and convergence speed of the inexact method.
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them with a copy of the slides from [25]. We are thankful to the referees for their
constructive comments. Their remarks have helped us to improve the presentation of
this paper.

Appendix A. A technical result.
Lemma A.1. Let ∆k be the k by k matrix with zeros entries everywhere except at

the positions (j− 1, j) and (j, j− 1), where it has the value one and the (2, 1) element
is 2. Then

|e∗j∆2i
k ej | ≤ 2

(2i)!
(i!)2

for all i, j ≥ 1, j ≤ k.

Proof. Let RN and RZ be the space of vectors with indices in N and Z, respectively.
Consider the map ∆̃ on RZ given by ∆̃ej ≡ ej−1 +ej+1 for all j ∈ Z. Extend the map
∆k on Rk to the map ∆ on RN given by ∆ej ≡ ej−1 + ej+1 for j > 1 and ∆e1 ≡ 2e2.
Note that 0 ≤ e∗i ∆kej ≤ e∗i ∆ej for all i, j ∈ N: here we follow the convention that
∆kej = 0 if j > k. Consider the linear map P : RZ → RN defined by Pej+1 = e|j|+1.
One can easily check that P∆̃ej = ∆Pej for all j ∈ Z. Therefore, P∆̃ = ∆P, and,
for j ≥ 0, we have that

∆2iej+1 = ∆2iPej+1 = P(∆̃2iej+1) = P

(
2i∑

`=0

(2i)!
`!(2i− `)!

ej−2i+2`+1

)
.
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If i < j then |j − 2i + 2`| + 1 = j + 1 only if ` = i. Hence, if i < j we find that
e∗j+1∆

2i
k ej+1 ≤ e∗j+1∆

2iej+1 = 2i!
(i!)2 . If ` ≡ i− j ≥ 0 then |j − 2i + 2`|+ 1 = j + 1 and

e∗j+1∆
2i
k ej+1 ≤ e∗j+1∆

2iej+1 = 2i!
(i!)2 + 2i!

(i−j)!(i+j)! ≤ 2 2i!
(i!)2 .
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