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Abstract

We consider the solution of the linear system

(ATA + σI)xσ = ATb,

for various real values of σ. This family of shifted systems arises, for example, in Tikhonov
regularization and computations in lattice quantum chromodynamics. For each single shift
σ this system can be solved using the conjugate gradient method for least squares problems
(CGLS). In literature various implementations of the, so-called, multishift CGLS methods
have been proposed. These methods are mathematically equivalent to applying the CGLS
method to each shifted system separately but they solve all systems simultaneously and
require only two matrix-vector products (one by A and one by AT) and two inner products
per iteration step. Unfortunately, numerical experiments show that, due to roundoff
errors, in some cases these implementations of the multishift CGLS method can only
attain an accuracy that depends on the square of condition number of the matrix A.
In this paper we will argue that, in the multishift CGLS method, the impact on the
attainable accuracy of rounding errors in the Lanczos part of the method is independent
of the effect of roundoff errors made in the construction of the iterates. By making suitable
design choices for both parts, we derive a new (and efficient) implementation that tries to
remove the limitation of previous proposals. A partial roundoff error analysis and various
numerical experiments show promising results.

Key words: Tikhonov regularization , iterative methods , accuracy , finite precision arithmetic ,
shifted systems

1 Introduction

In various scientific computations the problem arises to compute solutions to

(A + σI)xσ = b, (1)

for various values of σ. The matrix I denotes the identity matrix. Krylov subspace methods
are iterative solution methods for solving linear systems. These methods, with zero initial
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guess, are characterized by the fact that they construct their approximations in step j from
the so-called j dimensional Krylov subspace defined as Kj(A,b) ≡ span{b,Ab . . . ,Aj−1b}.
An important property of Krylov subspaces is that they are shift invariant, that is Kj(A,b) =
Kj(A + σI,b). By exploiting this property, Equation (1) can be solved for various values of
the shift σ by constructing a basis for the Krylov subspace only once. This observation has
led to many efficient implementations of known Krylov subspace methods that can handle
multiple shifts simultaneously. We refer the interested reader for further information and
applications to [4, 6, 9, 11, 18, 8, 23, 10, 24]. The multishift variants, in general, require the
number of matrix-vector products and inner products of the original method applied to a
single system and for the solution of each additional shifted system only a few extra vector
updates are needed.

In this paper we focus on the numerical solution of the system

(ATA + σI)xσ = ATb, (2)

for various real values of σ ≥ 0. The solution of this family of systems plays an important role
in Tikhonov regularization [8] and in the computation of the overlap operator in simulations
in quantum chromodynamics [20]. Despite the fact that this system is sensitive to the effects
of using computer arithmetic, since ATA + σI can be ill conditioned, there is overwhelming
numerical evidence that accurate solutions to this shifted system can be obtained by applying
a sufficient number of iterations of the CGLS method, a variant of the CG method designed
for solving least squares problems. Unfortunately, previously proposed implementations of
multishift-type for solving (2), i.e., multishift CGLS methods, can in some cases only achieve
a final precision for the shifted systems that depends on the square of the condition num-
ber of the matrix due to roundoff errors. In the present paper, we will demonstrate this
with a numerical example (cf. Section 6.2). The main goal of this paper is to derive a new
implementation that tries to overcome this limitation.

The use of computer arithmetic affects the standard CGLS method in two ways: it alters
the convergence properties of the method, and restricts the accuracy of the method that can
eventually be achieved. This is also the case for the multishift versions of the CGLS method.
In this paper we mainly focus on the second aspect. Our implementation tries to improve pre-
vious proposals in this area.The ultimately attainable accuracy of CG-type methods is often
investigated, e.g., [14, 3], by considering the residual gap which is defined as the difference be-
tween the recursively computed approximation to the residual and the unknown true residual.
For the CGLS method this is fairly straightforward. For the multishift variants the situation
is more complicated and in order to understand the influence of finite precision arithmetic on
the attainable accuracy of the multishift CGLS method, we will discriminate between round-
ing errors made in the construction of the basis for the Krylov subspace (i.e., the Lanczos
part) and in the computation of the approximate solution vector from the Krylov subspace
(the inversion part). The subdivision into a Lanczos and inversion part is not immediately
visible in the standard implementations of the CGLS method and is also not reflected by the
analysis of the attainable accuracy through an inspection of the residual gap. We stress that
in the multishift context these two parts are necessarily independent and it is a priori not
clear if it is even possible to develop a multishift version of the CGLS method that is able to
obtain approximations with similar precisions as a direct application of the CGLS method to
each system separately. In this paper we propose an implementation of the multishift CGLS
method by making suitable design choices for the implementation of the Lanczos part and
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for the computation of the iterates for the shifted systems. Confidence in the success of our
method will be given by a partial rounding error analysis (for the important situations that
σ = 0 and σ →∞) and, partially, by numerical experiments.

This paper has the following structure. In Section 2 we review the CG method and
its variant for least squares problems (CGLS) and we discuss some well-known results on
their attainable accuracy. An abstract formulation of the multishift CGLS method is given
in Section 3. The implementation of the ‘Lanczos part’ is the subject of Section 4. We
review an important result by Paige on the finite precision behavior of this method. As an
alternative for computing an orthogonal basis for the Krylov subspace, we propose to use
the CGLS recurrences for computing an orthogonal basis for the Krylov subspace. Section 5
deals with the influence of rounding errors made in the ‘alternative’ Lanczos method on the
attainable accuracy of the multishift CGLS method. The topic of Section 6 is the accurate
computation of the iterates for the shifted systems. Finally, we show by several numerical
experiments that, if both main ingredients are chosen properly, we can achieve high accuracy
for the shifted systems.

2 Conjugate gradient methods

In this section we review two variants of the conjugate gradient method from the paper of
Hestenes and Stiefel [17] and some of their properties. The conjugate gradient method is an
iterative solution method for solving linear systems when the matrix A is symmetric positive
definite. In this method the iterates, xj and their corresponding residuals, rj = b−Axj , are
computed for j = 1, . . . , k using the recurrence relations

rj = rj−1 − αj−1cj−1, cj−1 = Apj−1, pj = rj + βj−1pj−1, (3)

with the coefficients given by

αj−1 =
φj−1

pT
j−1cj−1

, βj−1 =
φj

φj−1
, φj = ‖rj‖2,

and, initially, p0 = r0 = b. (Norms in this paper are Euclidean.) The approximate solution
then follows using the recurrence

xj = xj−1 + αj−1pj−1, with x0 = 0. (4)

In practice nonzero starting vectors are sometimes used but, for future convenience, we
will assume that the initial guess, x0, is zero here. A key characterization of the CG method is
that its iterates, xj , minimize the error in the energy norm (that is an A-weighted norm) over
all approximations from the j-th Krylov subspace Kj(A,b), see e.g., [17]. As a consequence
of this, the residuals ri for i = 0, . . . , j − 1 form an orthogonal basis for Kj(A,b). Another
useful property is the fact that αirT

j pi ≥ 0 for all i ≥ 0, which follows from Equation (5.2) in
[17] and the positivity of the αi. As a consequence we have, in combination with (4), that

‖xj‖ ≤ ‖xj+1‖ and ‖xi − xj‖ ≤ ‖xi‖ for 0 ≤ j ≤ i. (5)

In the following proposition we summarize an important result, due to Greenbaum, that helps
to provide insight into the attainable accuracy of the standard conjugate gradient method.
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Proposition 2.1 (Greenbaum [14]) The difference between the true residual b−Axk and
the computed residual rk satisfies

‖(b−Axk)− rk‖
‖A‖‖x‖

≤ ε (k + 1 + (1 + c+ k(10 + 2c))Θk) +O(ε2),

with
Θk = max

j≤k

‖xj‖
‖x‖

,

ε is the unit roundoff, which for double precision computations is in the order of 10−16 and c
is a constant that depends on the error in the matrix-vector product.

The quantity Θk is difficult to bound in computer arithmetic. However, in exact arithmetic
it immediately follows from (5) that Θk ≤ 1. The argument to bound this quantity used in
[14] depends on the fact that, also in exact arithmetic, the errors for the CG method are in
Euclidean norm monotonically decreasing [17, Theorem 6.3] and, therefore,

‖xk − x‖ ≤ ‖x0 − x‖ = ‖x‖ ⇒ Θk ≤ 2. (6)

Unfortunately, the argument for proving the reduction of the error in Euclidean norm in [17]
uses the orthogonality of the residuals which is in general lost in finite precision computations.
However, using a relation of the CG method with an exact CG method applied to a larger
matrix and specific right-hand side, the author argues in [14, Section 3.1] that (6) might also
hold approximately in the finite precision context.

The relevance of Proposition 2.1 for explaining the attainable precision of the conjugate
gradient method depends on the numerical observation that, in practical computations, the
computed vector rk converges to zero or, at least, stagnates when its norm is many orders
of magnitude smaller than the machine precision ε. With these assumptions it, therefore,
follows from Proposition 2.1 that for the iterate, xk, we essentially have for sufficiently large
k that

‖b−Axk‖ ≤ εO(k) ‖A‖‖x‖, (7)

which implies the following bound on the relative error:

‖x− xk‖/‖x‖ ≤ εO(k) ‖A‖‖A−1‖.

For least squares problems the CG method can be directly applied to the normal equations.
Nevertheless, it is common practice to use an alternative, but mathematically equivalent,
variation of CG, known as CGLS, in this case [17, Section 10]. For j = 1, . . . , k this method
is defined by the following recurrence relations:

zj = zj−1 − αj−1cj−1, cj−1 = Apj−1, rj = ATzj , pj = rj + βj−1pj−1, (8)

with
αj−1 ≡

φj−1

cT
j−1cj−1

, βj−1 ≡
φj

φj−1
, φj ≡ ‖rj‖2, (9)

and z0 = b, r0 = p0 = ATz0, and xk is computed as in (4).
The advantage of this method, compared to applying CG directly to the normal equations,

is that, here the least squares residuals, zj = b −Axj , are directly available. Furthermore,
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it was shown in [14, Section 3.3] and [3], with similar arguments as used in the proof of
Proposition 2.1 for CG, that recurring the residuals for the least squares problem, zj , improves
the attainable accuracy of the method. For future convenience, we state here a result from
[3].

Proposition 2.2 (Björck, Elfving and Strakoš [3]) The difference between the true least
squares residual, b−Axk, and the computed least squares residual, zk, satisfies

‖(b−Axk)− zk‖
‖A‖‖x‖

≤ ε (k + 1 + (1 + c+ k(10 + 2c))Θk) + ε(k + 1)
‖z‖

‖A‖‖x‖
+O(ε2)

with
Θk = max

j≤k

‖xj‖
‖x‖

,

c is a constant that depends on the error in the matrix-vector product with A and z = b−Ax.

Again, to apply this result, the authors have to bound Θk, which can be accomplished
with similar heuristics as used for the CG method. Assuming, furthermore, that the CGLS
method is terminated at a point such that ‖zk − z‖ ≈ dε‖A‖‖x‖, the authors conclude that
the CGLS method is eventually expected to achieve an approximate solution that is as good
as any forward stable method for solving the least squares problem. We return to this in
more detail in Section 5.2.

The damped least squares problem (2) is equivalent to the least squares problem

min
xσ

‖
[

A√
σI

]
xσ −

[
b
0

]
‖. (10)

Hence, the shifted system can be solved, for one shift, by applying the CGLS method to
this augmented matrix and right-hand side. However, due to the special structure of this
matrix and right-hand side some computational work can be saved in the CGLS method,
see, for example, Algorithm 6 in [8]. For convenience of the reader the resulting algorithm is
summarized in Alg. 1.

3 An abstract formulation of the multishift CGLS method

In the previous section, we reviewed the celebrated conjugate gradient least squares method
from [17]. In exact arithmetic, a mathematical equivalent method can be obtained based on
the Lanczos method, e.g., [12, Chapter 9], applied to the matrix ATA with starting vector
ATb. This method constructs an orthonormal basis for the Krylov subspace Kk(ATA,ATb).
After k iterations, the process can be summarized by the Lanczos relation:

(ATA)Vk = VkTk + δk−1vke
T
k = Vk+1Tk, (11)

where the columns v0, . . . ,vk of Vk+1, form an orthonormal basis for Kk+1(ATA,ATb) and the
symmetric k×k tridiagonal matrix Tk collects the coefficients computed during the execution
of the Lanczos algorithm. It is often convenient to include also δk−1 into one k + 1 by k
tridiagonal matrix Tk by adding an additional row, eT

kδk−1, to Tk. The vector ek denotes the
k-th standard basis vector, i.e., (ek)j = 0 for all j 6= k and (ek)k = 1. Furthermore, ~1 is the
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z0 = b, r0 = ATz0, p0 = r0, x0 = 0, φ0 = ‖r0‖2

for j = 1, . . . k

cj−1 = Apj−1

αj−1 = φj−1/(‖cj−1‖2 + σ‖pj−1‖2)
xj = xj−1 + αj−1pj−1

zj = zj−1 − αj−1cj−1

rj = ATzj − σxj

φj = ‖rj‖2, βj−1 = φj/φj−1

pj = rj + βj−1pj−1

Algorithm 1. CGLS implementation for solving (2).

vector with all components one and, similarly, ~0 is the vector with all components zero. The
dimension of these vectors should be apparent from the context. The approximation in step
k for the corresponding CG process is equal to

xk = VkT
−1
k e1

√
φ0, with φ0 ≡ rT

0r0, (12)

and the vector r0 = ATb is the initial residual. The Equations (11) and (12) together give us
an abstract formulation of the CGLS method.

It follows from (11) that the Lanczos relation for the shifted system reads

(ATA + σI)Vk = Vk(Tk + σI) + δk−1vke
T
k . (13)

This shows that, if the Lanczos relation is known for one system, the iterates of the CGLS
method for the damped least squares problem (10) can be directly computed from this relation
and are, in fact, equal to

xσ
k = Vk(Tk + σI)−1e1

√
φ0, with φ0 ≡ rT

0r0. (14)

A multishift CGLS method constructs the orthonormal basis once and at the same time
computes (14) for the required values of σ, of course without storing all Lanczos vectors.
Since there are many, mathematically equivalent, ways to compute the Lanczos vectors and
tridiagonal matrix Tk and just as many ways to compute the vectors in (14), the number
of possible implementations is countless. Two specific implementations are presented in [18]
and [8]. However, as discussed in the introduction, the obtainable precision of the computed
iterates for these implementations can be limited. We propose a new (and efficient) implemen-
tation by choosing a suitable algorithm for the Lanczos part and for computing the iterates
(14) and we will discuss the relationship of previously proposed multishift CG-type methods
to our implementation in the course of this paper.

4 The implementation for the Lanczos part

As discussed in the previous section, the first key ingredient of a multishift CGLS method
is the construction of an orthonormal, or orthogonal, basis for the Krylov subspaces and
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the tridiagonal matrix containing the orthogonalization coefficients. The obvious choice is
to apply the standard Lanczos method, e.g., [12, Algorithm 9.2.1] to the matrix ATA with
starting vector ATb. It is not difficult to see that this is not an optimal choice in the context of
solving least squares problem. We will give detailed arguments in Section 5 when we discuss
the impact of rounding errors in the Lanczos part on the attainable accuracy of the multishift
CGLS method.

It is well known that the coupled two-term recurrences of the CG method can be used
as an alternative to the application of the Lanczos method for constructing an orthonormal
basis for the Krylov subspace, see [7, 1]. Numerical experiments in these papers showed
that alternative recurrences could in some cases considerably improve the robustness of the
methods. In a similar spirit, the recurrences in (8) can be used to build an orthonormal basis
for the Krylov subspace Kj(ATA,ATb). In this section we consider the use of the CGLS
recurrences as alternative Lanczos-type method which we will refer to as the CGLS-Lanczos
method.

First, a little remark about notational conventions: with Rk we denote the n × k ma-
trix with columns r0, . . . , rk−1. Similarly, other capitals will be used to group together the
corresponding vectors. Now, the relations in (8) can be summarized by the following matrix
formulations

Zk+1Jk = Ck∆k, Ck = APk, Rk+1 = ATZk+1, PkUk = Rk,

where

Uk ≡


1 −β0

1 −β1

. . . . . .
. . . −βk−2

1

 , ∆k ≡


α0

α1

. . .
. . .

αk−1

 ,

and Jk is k+ 1× k lower bidiagonal matrix with 1 and −1 on, respectively, the diagonal and
sub-diagonal. Substitution yields the residual relation:

(ATA)Rk = Rk+1Sk, with Sk ≡ Jk∆
−1
k Uk. (15)

Apart from some difference in scaling, this is precisely the Lanczos relation given in (11).
We can obtain the quantities of the Lanczos method in its standard form by using a simple
diagonal scaling Ψk with diagonal elements ψ0, . . . , ψk−1 where ψj = φ

1/2
j , which shows that

(11) holds with

Vk = RkΨ−1
k , Tk = ΨkSkΨ−1

k = LT
k∆−1

k Lk with Lk = ΨkUkΨ−1
k . (16)

Since the φj are available in the CGLS method, the recurrences in (8) can be used as an
alternative to applying the Lanczos method to ATA with starting vector ATb at virtually the
same cost.1

We have argued that the CGLS recurrences can be used as an alternative to the standard
Lanczos method and, therefore, the iterates for the shifted systems can be computed using

1Notice that the vectors vj (i.e., the columns of Vk) are plus or minus the Lanczos vectors of the standard
Lanczos method.
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(14) with the quantities given in (16). An, equivalent, alternative that avoids the scaling in
(16), is to directly compute

xσ
k = Rk(Sk + σI)−1e1,

with Sk defined as the upper k × k block of Sk given in (15).

4.1 Perturbed Lanczos relations in computer arithmetic

In finite precision computations, the computed Lanczos vectors Vk and tridiagonal matrix
Tk do not satisfy the Lanczos relation exactly. For the standard Lanczos method, Paige [21]
proved that, instead, the computed quantities now satisfy a perturbed Lanczos relation. In
this section we give an analogous result for the CGLS-Lanczos method which we need in the
remainder of this paper.

We assume the standard rules for floating point arithmetic with machine precision ε, see,
e.g., [12, Section 2.4.2],

fl[a ◦ b] = (a ◦ b)(1 + ε′) with |ε′| ≤ ε. (17)

Here, a and b are floating point numbers and ◦ stands for any basic operation like addi-
tion, subtraction, multiplication and division. Furthermore, we assume that the errors in the
matrix-vector product of A and AT with some vector y (of appropriate length) are, respec-
tively, bounded by

ε c ‖A‖ ‖y‖ and ε c′ ‖AT‖ ‖y‖.
With this notation, the result of Paige, for a certain implementation of the Lanczos

method, applied to the matrix ATA and starting vector ATb is summarized by the following
proposition.

Proposition 4.1 (Paige [21]) The Lanczos method in computer arithmetic results in a per-
turbed Lanczos relation

(ATA)Vk = Vk+1Tk + Fk, (18)

where, ignoring higher order terms,

‖Fk‖F ≤ ε(6 + c+ c′)
√
k‖A‖2.

We now turn our attention to CGLS-Lanczos, the alternative Lanczos type method dis-
cussed in the previous section. Let f c

j denote the perturbation in the computation of cj caused
by the use of computer arithmetic and assume similar notation for the other perturbations.
Using the standard model for floating point arithmetic we get (cf. (8) and the initialization
computations assuming that all quantities in step minus one have length zero)

‖f z
j ‖ ≤ ε (‖zj−1‖+ 2‖αj−1cj−1‖) +O(ε2) ≤ ε (3‖zj−1‖+ 2‖zj‖) +O(ε2) (19)

‖f c
j ‖ ≤ ε c ‖A‖ ‖pj‖ (20)

‖f r
j ‖ ≤ ε c′ ‖AT‖ ‖zj‖ (21)

‖f p
j ‖ ≤ ε

(
‖rj‖+ 2‖βj−1pj−1‖

)
+O(ε2) ≤ ε

(
3‖rj‖+ 2‖pj‖

)
+O(ε2). (22)

Combining this with the notation from the previous section, we find that the quantities com-
puted by the CGLS recurrences in finite precision arithmetic satisfy the perturbed relations
given by

Zk+1Jk = Ck∆k + Fz
k, Ck = APk + Fc

k, Rk+1 = ATZk+1 + Fr
k+1, PkUk = Rk + Fp

k.
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Finally, a straightforward sequence of substitutions and multiplications with suitable matrices
yields a perturbed relation which is summarized by the following lemma.

Lemma 4.1 The CGLS recurrences given in (8) in finite precision computations lead to a
perturbed relation of the form

(ATA)Rk = Rk+1Sk + Fk,

where Sk is given by (15) and the perturbation is of the form

Fk ≡ −(ATA)Fp
k −AT(Fc

k + Fz
k∆

−1
k )Uk − Fr

k+1Sk.

Upper bounds on the norms of the columns of the perturbations on the right are given by
(19)-(22).

This lemma does not explicitly provide a bound on the norm of the perturbation as in
Proposition 4.1 for the standard Lanczos method. We note that the norm of this perturbation
can be much larger than the norm of the perturbation term for the standard Lanczos method
(taking into account difference in scaling). This can be explained from the fact that ‖pj‖/‖rj‖
can become very large which typically occurs when the matrix A has very small isolated
eigenvalues. However, the perturbation term in Lemma 4.1 has an interesting structure. In
the next section we will exploit this special structure to investigate the attainable accuracy
of the multishift CGLS method based on CGLS-Lanczos.

Finally, we conclude this section by giving, for future use, an explicit expression for the
iterate in step k of the CGLS method. Assuming that no roundoff errors are made in (4),
this approximation is given by

xCGLS
k = Pk∆kJ

−1
k e1 = (RkU

−1
k + Fp

kU
−1
k )∆kJ

−1
k e1 = RkS

−1
k e1 + Fp

kS
−1
k e1. (23)

The first expression follows from (4) and the fact that J−1
k e1 = ~1.

5 The impact of errors in the Lanczos part on multishift CGLS

We discuss the effects that rounding errors in the Lanczos part have on the attainable accuracy
of the multishift CGLS method. The first choice that we mentioned for the Lanczos part was
an application of the standard Lanczos method applied to the matrix ATA and starting vector
ATb. This is not a very good choice as will be argued using the same line of arguments as
given in [3, Section 4.2] to explain the failure of the LSCG method. The main observation is
that we have to startup the Lanczos method by computing ATb to obtain the first Lanczos
vector. Since the vector b does not appear in the Lanczos part, it follows that the multishift
CGLS method based on the standard Lanczos method at best computes a solution to

(ATA + σI)x̃σ = ATb + f, where ‖f‖ ≤ εc′‖A‖‖b‖.

This shows that, in the nearly consistent case and σ = 0, the forward error is, at best, much
less than optimal. For more details on this argument consult [3, Section 4.2].

We now focus on the alternative Lanczos procedure, CGLS-Lanczos. We assume that the
multishift iterates are computed as

xσ
k = Rk(Sk + σI)−1e1,
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where Sk is defined as in (15) and, moreover, for the moment no rounding errors are consid-
ered in the computation of this vector, i.e., xσ

k is assumed to be computed exactly. In the
multishift CGLS method the iterates are computed independently of the Lanczos part. As a
consequence, this will generate additional sources of errors that are not present in the CGLS
method while having impact on the attainable accuracy.

At this point, we warn the reader for some unconventional notation. If we apply a matrix
with k columns to an `-vector with ` ≤ k, then we assume the vector to be expanded with
zeros if necessary (we do the same with other operations and equalities). In the case ` > k,
the matrix is assumed to be applied to the first k elements of the vector and the remaining
elements are assumed to be unchanged by the operation.

For future convenience we define

(γσ
k )−1 ≡ −(eT

k+1Skek) e
T
k (Sk + σI)−1e1,

and we note that

ek+1/γ
σ
k − (e1 − Sk(Sk + σI)−1e1) = −σ(Sk + σI)−1e1.

Using this relation and the relations given in Section 4.1, the true residual, corresponding to
the normal equations, can be written as

ATb− (ATA + σI)xσ
k = (ATb− r0) + r0 − (ATA + σI)Rk(Sk + σI)−1e1

= −Fr
k+1e1 + rk/γ

σ
k − Fk(Sk + σI)−1e1

= −Fr
k+1e1 + Fr

k+1ek+1/γ
σ
k + ATzk/γ

σ
k − Fk(Sk + σI)−1e1.

We plug in the expression for the perturbation term given by Lemma 4.1 and we arrive at
our main relation:

ATb− (ATA + σI)xσ
k = ATzk/γ

σ
k + ATw(1)

k + w(2)
k + ATAw(3)

k (24)

with
w(1)

k = (Fc
k + Fz

k∆
−1
k )Uk(Sk + σI)−1e1, w(2)

k = −σFr
k+1(Sk + σI)−1e1,

w(3)
k = Fp

k(Sk + σI)−1e1.

This expression plays a similar role in this section as Proposition 2.2 plays for the analysis
of the attainable accuracy of the CGLS method. It shows that, if the vector zk eventually
approaches z, and, therefore, the first term becomes very small, then the true residual corre-
sponding to (2) stagnates at a level determined by the three w-vectors in (24). To be more
precise, we assume that we terminate, at an iteration step k, such that

‖zk − z‖
‖A‖‖x‖

≤ dε, (25)

for some constant d. Although there is no rigorous proof that this condition, eventually,
always can be achieved, there is according to [3] “overwhelming experimental evidence” to
justify this assumption, see also the numerical experiments in [3].

The attained forward error is given by multiplying the expression for the true residual
(24) from the left with (ATA + σI)−1. This gives

‖xσ − xσ
k‖ ≤ ‖(ATA + σI)−1ATzk‖/|γσ

k |+ ‖(ATA + σI)−1AT‖ ‖w(1)
k ‖+

‖(ATA + σI)−1‖ ‖w(2)
k ‖+ ‖(ATA + σI)−1ATA‖ ‖w(3)

k ‖.
(26)
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We stress that the exploitation of the special structure of the perturbation in Lemma 4.1 has
played an important role in the derivation of this expression. We can get a similar expression
for the least squares residual by multiplying from the left by A(ATA + σI)−1. In the next
section we bound the size of these w-vectors for the important case that σ = 0 (notice that
already for this simple case multishift CGLS based on the standard Lanczos method fails). In
Section 5.2 we combine these bounds with (26) and compare the attainable accuracy of the
CGLS method and the multishift CGLS method based on the CGLS-Lanczos method. We
will, furthermore, discuss the situation of more general σ.

5.1 Bounding the size of the w-vectors for σ = 0

We bound the size of the vectors w(1)
k , w(2)

k and w(3)
k for the case of σ equal to zero. Since

Sk = Jk∆−1Uk and J−1
k e1 = ~1, the expression for the first w-vector can be rewritten to

w(1)
k = (Fc

k + Fz
k∆

−1
k )UkS

−1
k e1 = (Fc

k∆k + Fz
k)~1 =

k−1∑
j=0

(αjfcj + fzj ).

Therefore, the estimates in (19)-(22) lead to the following bounds on the w-vectors for σ = 0:

w(1)
k =

k−1∑
j=0

(αjfcj + fzj ) ⇒ ‖w(1)
k ‖ ≤ ε

k−1∑
j=0

(
c‖A‖‖αjpj‖+ 5‖zj‖

)
+O(ε2)

w(2)
k = 0 ⇒ ‖w(2)

k ‖ = 0

w(3)
k = Fp

kS
−1
k e1 ⇒ ‖w(3)

k ‖ ≤ ε

k−1∑
j=0

(
3‖rj‖+ 2‖pj‖

)
|eT

j+1S
−1
k e1|+O(ε2).

To further bound these quantities, it turns out to be convenient to use a relation with an
exact conjugate gradient process applied to the (k + 1) × (k + 1)-matrix A and right-hand
side b that generates the same matrix Sk (and therefore the same coefficients as in the CGLS
process). We define

Tk ≡ Ψk+1SkΨ
−1
k with Ψk ≡ diag(ψ0, . . . , ψk−1) and ψj ≡

(
ψ0

j−1∏
i=0

βi

)1/2

. (27)

The elements of the diagonal scaling Ψk are chosen such that the k × k upper block of Tk is
symmetric. The symmetric matrix A is now defined by taking its left part equal to Tk. The
(k + 1, k + 1)-element is arbitrary but we will assume that the matrix A is positive definite
which requires that the computed α-coefficients are all positive. The vector b equals ψ0e1.
It is interesting to notice that for the matrix A more advanced completions could have been
chosen (A is in this case of higher dimension). For example, Greenbaum [13] shows that the
matrix A can be completed such that the eigenvalues of A are in tiny clusters around the
eigenvalues of A. This gives important insight into the finite precision convergence behavior of
the conjugate gradient method. For our purposes the precise completion is not of importance
and we work with a simple k + 1-dimensional matrix.

It is not difficult to see that the exact conjugate gradient method applied to the matrix
A with right-hand side b, indeed, yields our computed matrix Sk. The vectors of this hypo-
thetical conjugate gradient process will be denoted with non-bold characters, in contrast to

11



the bold characters denoting the computed vectors in the CGLS-Lanczos method. So, for
example, rj = ej+1ψj and xj equals T−1

j e1ψ0 appended with k+1− j additional zeros, where
Tj is the upper j × j block of A. The following lemma gives some useful relations.

Lemma 5.1 We have that

‖rj‖2 = ψ2
j = ‖rj‖2(1 + (2n+ j)ε′) with |ε′| ≤ ε+O(ε2), (28)

and
‖pj‖ ≤

√
j + 1‖pj‖+O(ε). (29)

Proof. Let εi and ε′ denote variables such that |εi|, |ε′| ≤ ε + O(ε2) (where it precise
value varies). We have, using the standard model of floating point arithmetic (17),

φi = ‖ri‖2(1 + 2nε′) and βi =
φi+1

φi
(1 + ε′).

From this it follows that

‖rj‖2 = ψ2
j = φ0

j−1∏
i=0

βi = φ0

j−1∏
i=0

φi+1

φi
(1 + εi) = φj(1 + jε′) = ‖rj‖2(1 + (2n+ j)ε′).

For the second inequality we use that

‖pj‖ ≤ ‖rj‖+ βj‖pj−1‖+O(ε) ≤
(

1 +
‖rj‖
‖rj−1‖

‖pj−1‖
‖rj−1‖

)
‖rj‖+O(ε).

Recursive application of this estimate leads to

‖pj‖ ≤ ‖rj‖2
j∑

i=0

1
‖ri‖

+O(ε) ≤
√
j + 1‖rj‖2

(
j∑

i=0

1
‖ri‖2

)1/2

+O(ε).

Plugging the expression (28) into this expression we find (29). �

Now we continue with our original goal, which is to bound ‖w(1)
k ‖. We have that

‖αjpj‖ ≤
√
j + 1‖αjpj‖+O(ε) =

√
j + 1‖xj+1 − xj‖+O(ε) ≤

√
j + 1‖xj+1‖+O(ε).

where in the last inequality we have used (5). For the second quantity that appears in w(1)
k ,

Proposition 2.2 shows that

‖zj‖ = ‖b−AxCGLS
j ‖+ ‖(b−AxCGLS

j )− zj‖ ≤ ‖b‖+ ‖A‖‖xCGLS
j ‖+O(ε). (30)

Furthermore, by combining Lemma 5.1 and (23), it is not difficult to see that

‖xCGLS
j ‖ = ‖RjS

−1
j e1‖+O(ε) ≤

√
j + 1‖xj‖+O(ε).

All together we get the following upper bound:

‖w(1)
k ‖ ≤ ε

(
k3/2(c+ 5)‖A‖‖xk‖+ 5k‖b‖

)
+O(ε2). (31)

In order to estimate the size of the vector w(3)
k , the problem is reduced to bounding:(

3‖rj‖+ 2‖pj‖
)
|eT

j+1S
−1
k e1|+O(ε) ≤

√
j + 1 (3‖rj‖+ 2‖pj‖) |eT

j+1S
−1
k e1|+O(ε). (32)

For this purpose, the following lemma is of use.
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Lemma 5.2 Let j < k. We have that

‖rj‖ |eT
j+1S

−1
k e1| ≤ ‖xk‖ and ‖pj‖ |eT

j+1S
−1
k e1| ≤ ‖xk‖. (33)

Proof. First observe that ‖rj‖|eT
j+1S

−1
k e1| = |eT

j+1xk| and the first inequality follows.
From [17, Theorem 5.3] we know that ‖pj‖/‖rj‖ = ‖rj‖/ρj with ρj ≡ (

∑j
i=0 ‖ri‖−2)−1/2.

The value ρj is essentially the norm of the minimal residual approximation corresponding
to the approximation xMR

j with only components in the first j elements of its vector, thus
ρj = ‖e1ψ0 −AxMR

j ‖. Now, write

‖rj‖2|eT
j+1S

−1
k e1| = ‖rj‖ |eT

j+1xk| = |rT
j xk| = |rT

j (xk − xMR
j )|

= |(xk − xj)TTk(xk − xMR
j )| ≤ ‖xk − xj‖ρj ≤ ‖xk‖ρj

and the second inequality in (33) follows. Here, we used that rj ⊥ xMR
j and the second

inequality in (5). �

Notice that the obvious estimates |eT
j+1xk| ≤ ‖xk‖ and ‖rj‖2 ≤ ‖Tk‖‖T−1

k ‖ ρ2
j could have

been used in the proof of the lemma. This would have given the crude bound

(‖rj‖/ρj) |eT
j+1xk| ≤ (‖Tk‖‖T−1

k ‖)1/2‖xk‖,

which is very similar to the estimate (9.13) in [25] for the CG method in finite precision
computations. Since it contains the term ‖T−1

k ‖1/2, it would not have been sufficient for our
purposes. In the proof we used the fact that a large value of ‖rj‖ is canceled against a smaller
j + 1-th elements in the vector xk.

Combining these expressions for all j < k, we finally find

‖w(3)
k ‖ ≤ εk3/25‖xk‖+O(ε2). (34)

5.2 The attainable accuracy of the multishift CGLS method

Using our bounds for the w-vectors and the expression for the true residual (24), we are now
in a position to give some discussion on the ultimately attainable accuracy of the multishift
CGLS method based on the CGLS-Lanczos method. Recall that we neglect, for the moment,
rounding errors made in the computation of the xσ

k .
The condition number for the least squares problem, e.g., [2, Section 1.4.3], can be written

as

κLS(A,b) ≡ κ(A)
(

1 + κ(A)
‖z‖

‖A‖‖x‖

)
,

where κ(A) is defined as ‖A‖‖A†‖ and A† denotes the pseudo-inverse of the matrix A given
by A† ≡ (ATA)−1AT. This means that if x̃ is computed using a (normwise) backward stable
method, the forward error is bounded by

‖x̃− x‖ . εκ(A)‖x‖+ εκ(A)2
‖z‖
‖A‖

. (35)

This provides us with some idea what we can expect.
In case of σ = 0, we have for the first term in (26) that

‖A†zk‖ = ‖A†(zk − z)‖ ≤ εdκ(A)‖x‖.
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Figure 1. Upper bounds, as a function of σ, on the quantities ‖(ATA+σI)−1AT‖ ‖w(1)
k ‖ (solid), ‖(ATA+

σI)−1‖ ‖w(2)
k ‖ (dash-dot), ‖(ATA + σI)−1ATA‖ ‖w(3)

k ‖ (dashed), and the expression on the right in (36)
(dotted). Left picture: HEAT(100). Right picture: URSELL(100).

To bound the contribution of w(1)
k and w(3)

k to the forward error we define

Θk ≡ ‖xk‖/‖x‖.

Although in exact arithmetic this expression does not exceed one, its finite precision value
is unknown. In the following we assume that this quantity is modest. We stress, however,
that the quantity ‖xj‖/‖x‖, as in Proposition 2.1, is argued to be bounded in finite precision
computations using similar assumptions.

Using (31), (34) and the fact that ‖b‖ ≤ ‖z‖+ ‖A‖ ‖x‖, we finally arrive at the following
result.

Lemma 5.3 Assume that (25) holds and let σ = 0. For the accuracy of the multishift CGLS
approximation, we have

‖x− xk‖ ≤ ε
(
κ(A)(d+ 5k + k3/2(c+ 5)Θk) + 5k3/2Θk

)
‖x‖+ ε5kκ(A)

‖z‖
‖A‖

+O(ε2),

and for the least squares residual:

‖(b−Axk)− z‖ ≤ ε(d+ 5k + k3/2(c+ 10)Θk)‖A‖‖x‖+ 5εk‖z‖+O(ε2).

Notice that the forward error appears to be smaller than the upper bound on the error of a
normwise backward stable method given in (35). However, as remarked in [3], the number of
iterations k to reach this state might also depend on the conditioning of the matrix A.

With a direct application of the CGLS method, it follows from (23) that xCGLS
k = xk+w(3)

k .
Therefore, the difference in attainable accuracy between the multishift CGLS method and a
direct application of the CGLS method is determined by the vector w(3)

k . Our analysis clearly
shows that this term is not expected to form an essential difference. In addition, it shows
that the residual gap for the CGLS method is not influenced by the third w-vector.

In the preceding, we restricted our attention to the zero shift case. The generalization
to the case of σ > 0 is not straightforward. We want to provide some, preliminary, insight

14



into using the CGLS-Lanczos method for the Lanczos part of the multishift CGLS method.
Perturbation analysis for the Tikhonov regularized problem can be found in [19, 15]. For
example, a straightforward argument in [19, Section 3] shows that, if x̃ is computed with
the matrix A and right-hand side b, with perturbations in the order of ε‖A‖ and ε‖b‖,
respectively, then the forward error of this approximate solution is bounded by

‖x̃− xσ‖ . ε‖(ATA + σI)−1AT‖(‖b‖+ ‖A‖‖xσ‖) + ε‖(ATA + σI)−1‖‖b−Axσ‖. (36)

Although, sharper estimates are possible, this estimate already provides us with some idea of
the upper bound on the error that can be expected.

If σ →∞, then we have:

(γσ
k )−1 → 0, w(1)

k → 0, w(2)
k → −Fr

ke1, w(3)
k → 0 (σ →∞),

which yields

‖xσ
k − xσ‖ ∼ σ−1ε‖(ATA + σI)−1Fr

ke1‖ . σ−1εc‖A‖‖b‖ (σ →∞).

Notice that only a perturbation of the right-hand side b of size ε‖b‖ leads to a forward error
of this size and, therefore, the error of the multishift CGLS method is as small as might be
expected.

In Figure 1 we have plotted upper bounds on the quantities in (26) for two very ill-
conditioned test problems from [16] for various values of σ. For this purpose, we ran the
CGLS-Lanczos method for 100 iterations and computed upper bounds on the perturbation
terms in Lemma 4.1 using the estimates given in (19)-(22) evaluated using the computed
quantities in the CGLS-Lanczos method. Furthermore, c = c′ = 1 and ε ≈ 10−16. Moreover,
as a reference we have included the expression on the right in (36). This picture shows the
behavior that we observed for all our test problems: for small σ the error is dominated by
the contribution of w(1)

k and for very large values of σ, the contribution of w(2)
k becomes

dominant. The upper bound on the contribution of w(2)
k increases for increasing σ until in

reaches it maximum value after which it appears to decay with a speed proportional to σ−1.
Unfortunately, we do not have precise expressions that bound these quantities for general σ
from above.

6 The solution of the shifted systems

The second main component of the multishift CGLS method is the computation of the ap-
proximate solutions xσ

k as
xσ

k = Rk(Sk + σI)−1e1, (37)

or using the equivalent formulation given by (14).
We start this section by summarizing an approach that is used at several places in literature

in multishift versions of the (Bi-)CG method based on coupled two-term recurrences, which
also requires the computation (37), see [18, 10]. For more details consult these references.

An important observation is that the residuals for shifted systems are colinear for the CG
method, that is, there exist constants γσ

j such that rσ
j = rj/γ

σ
j . Writing out the three-term

recurrence of the residuals rσ
k (similar to (15)) and comparing terms reveals, with γσ

−1 = γσ
0 =

1, the three-term relation

γσ
j = (1 + αj−1σ)γσ

j−1 +
αj−1

αj−2
βj−2(γσ

j−1 − γσ
j−2), (38)
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and a recurrences for the iterates and search directions

xσ
j = xσ

j−1 + αj−1

(
γσ

j−1

γσ
j

)
pσ

j−1, pσ
j = rj/γ

σ
j + βj−1

(
γσ

j−1

γσ
j

)2

pσ
j−1,

with initially pσ
0 = r0 and xσ

0 = 0. Scaling pσ
j by γσ

j leads to a version with the same stability
properties:

xσ
j = xσ

j−1 +
αj−1

γσ
j

p̃σ
j−1, p̃σ

j = rj + βj−1

γσ
j−1

γσ
j

p̃σ
j−1. (39)

If a stable method is applied for computing the inverse in (37), then this leads to an
approximate solution that is usually sufficiently accurate when dealing with ordinary linear
systems. However, this might not be the case for normal equations, since then a dependence of
the attainable precision on the square of the condition number of A may have been introduced.
Therefore, a point of concern of the approach (38)-(39) is that it implicitly forms the ill-
conditioned tridiagonal matrix Sk (cf., (15)) in the computation of the γσ

j in (38). An example
of the failure of this algorithm in the multishift CGLS context is given at the end of this section
(§6.2).

6.1 An alternative implementation

The goal is to give an alternative algorithm which prevents the formation of the ill-conditioned
matrix Sk. In case the CGLS-Lanczos method is used for the Lanczos part, then it is clear
from (16), that also the LTDL factorization of Tk is directly available. The quotient-difference
algorithms introduced by Rutishauser [22], provide a means to construct an LTDL factoriza-
tion of the shifted matrix Tk +σI directly from the factors of Tk. These algorithms construct
the factors, Dσ

k and Lσ
k , in a step-by-step fashion such that

LT
k∆−1

k Lk + σI = (Lσ
k)TDσ

kL
σ
k ,

where Dσ
k is diagonal with diagonal elements dσ

0 , . . . , d
σ
k−1 and Lσ

k is upper bidiagonal with
diagonal elements one and upper diagonal elements lσ0 , . . . , l

σ
k−2. If we take the differential

form of the stationary qd transformation (dstqds) as presented in [5, Algorithm 4.2], then
we have, with tσ0 = σ, the following recurrence relations for computing the elements of the
factors Dσ

k and Lσ
k :

dσ
j−1 = tσj−1 + α−1

j−1, lσj−1 = −
√
βj−1

αj−1dσ
j−1

, tσj = σ − lσj−1

√
βj−1t

σ
j−1.

Just as for the conjugate gradient method, the construction of the vector xσ
k can be ac-

complished efficiently by introducing the auxiliary vectors pσ
j defined by the relation Pσ

k =
Vk(Lσ

k)−1. Starting with ξ0 = 1, pσ
0 = r0/

√
φ0, xσ

0 = 0, this gives

xσ
j = xσ

j−1 +
ξj−1

dσ
j−1

pσ
j−1, pσ

j = rj/
√
φj − lσj−1p

σ
j−1, ξj = −ξj−1l

σ
j−1.

A simple scaling of the pσ
j by

√
φj and denoting `σj ≡ αjd

σ
j and γσ

j ≡
√
φj/ξj leads to a

slightly more efficient, but equally stable, variant

`σj−1 = 1 + αj−1t
σ
j−1, tσj = σ +

βj−1

`σj−1

tσj−1, γσ
j = γσ

j−1`
σ
j−1. (40)
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z0 = b, r0 = ATz0, p0 = r0, φ0 = ‖r0‖2

xσ
0 = 0, tσ0 = σ

for j = 1, . . . k

The Lanczos part
cj−1 = Apj−1

αj−1 = φj−1/‖cj−1‖2

zj = zj−1 − αj−1cj−1

rj = ATzj

φj = ‖rj‖2, βj−1 = φj/φj−1

pj = rj + βj−1pj−1

The inversion part
`σj−1 = 1 + αj−1t

σ
j−1, t

σ
j = σ + (βj−1/`

σ
j−1)t

σ
j−1, γ

σ
j = γσ

j−1`
σ
j−1

xσ
j = xσ

j−1 + (αj−1/γ
σ
j )p̃σ

j−1

p̃σ
j = rj + (βj−1/`

σ
j−1)p̃

σ
j−1

Algorithm 2. Multishift CGLS implementation for solving families of the form (2).

xσ
j = xσ

j−1 +
αj−1

γσ
j

p̃σ
j−1, p̃σ

j = rj + βj−1
1

`σj−1

p̃σ
j−1. (41)

We have discussed the two components of our implementation of the multishift CGLS method
which consists of combining (40) and (41) with the CGLS recurrences in (8). The resulting
algorithm is summarized in Algorithm 2. Comparing (41) and (39) reveals that the search
directions p̃σ

j and the scalars γσ
j coincide (in exact arithmetic). So, the recursions (40) can

be seen as a reformulation of the equivalent recursion given in (38) which is hopefully more
stable. Therefore, the norm of the residual of the shifted system (for the normal equations)
is equal to ‖rj‖/|γσ

j | =
√
φj/|γσ

j |.
In Section 5.2, we addressed the influence of rounding errors in the Lanczos part on the

attainable accuracy of the multishift CGLS method based on the CGLS recurrences. We
now discuss the second main source of errors in the multishift method which is the difference
between xσ

k , computed using (40) and (41), and the exact expression Rk(Sk + σI)−1e1. In
[5, Section 4.3], Dhillon and Parlett present a roundoff error analysis of the dstqds algorithm
which shows that the outcome of this algorithm is relatively close to the outcome of an exact
transformation applied to factors relatively close to the original input. This is also expected
to hold for our scaled recursions (40). Alternatively, this stability can also be understood
by a close inspection of the recursions in (40): only elements are added with the same sign
and therefore the computed value of γσ

j is relatively close to the exact value (since there
is no cancellation). For this reason, we expect that the influence of rounding errors in our
recursion for the γσ

j is small. On the other hand, the three-term recurrence in (38) requires
the computation of (γσ

j−1−γσ
j−2) which may be sensitive to roundoff errors due to cancellation

in case the two quantities are relatively close.
Another issue is the impact of roundoff errors in the vector updates (41). The impact of
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Figure 2. Relative error as function of k for Alg. 1 (solid), Algorithm 6 from [8] (dashed), multishift
CGLS based on CGLS-Lanczos with (41) (dash-dot) and (39) (dotted) for two different shifts: σ = 10−8 (left)
and σ = 1 (right).

these errors can be analyzed in detail using the techniques in Section 5.1. If we define xσ
k as

the iterate computed in an exact conjugate gradient method applied to the matrix A + σI
with starting vector b, as defined in Section 5.1, then we can show, assuming that no roundoff
errors are made in (40), that

‖xσ
k −Rk(Sk + σI)−1e1‖ ≤ ε10k3/2‖xσ

k‖.

Here, we have used, essentially, the same technique as used for bounding the vector w(3)
k in

the case that σ = 0. Hence, we do not expect that rounding errors in the computation of
the vector xσ

k have a significant influence on the attainable accuracy of the multishift CGLS
method.

6.2 A numerical comparison

Numerical experiments suggest that a multishift CGLS method (based on the CGLS-Lanczos
method) combined with (38)-(39) for the inversion part, is often remarkably accurate and, in
most situations, as accurate as with our alternative given in Alg. 2. Nevertheless, there are
examples where differences are clear. We show this for two simple systems. The matrix A has
eigenvalues {1/250, 240, 241, . . . , 250} (n = 12), the orthonormal eigenvector basis is random
and the right-hand side has equal components in all eigenvector directions. The results for
solving the system (2) are presented in Figure 2 for σ = 10−8 and σ = 1. In this picture we
have also presented the results for Alg. 1 as a reference to the other methods. In this case
coupled recurrences (40) clearly give more accurate results than the three-term recurrence
(38) for σ = 10−8. For larger values of σ, and very small values, the differences become small.

The implementation of the multishift CGLS method presented in [8, Alg. 6] uses a variant
of the standard Lanczos method for the Lanczos part. This implementation is based on a
three-term recurrence for the least squares residuals and results in a tridiagonal matrix in
standard form. So, even if these changes in the Lanczos part are improving the attainable
accuracy of the method, the accuracy is expected to be limited by the inversion of the tridi-
agonal since the ill-conditioned tridiagonal is not given in factorized form. The dashed lines
in Figure 2 confirm this.
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7 Numerical experiments

In this section, we compare the attainable accuracy of the CGLS method for damped least
squares problems, Alg. 1, to the attainable accuracy of our version of the multishift CGLS
method, Alg. 2. The ‘exact’ solution, xσ, was computed using a singular value decomposition
of the matrix A and we report the relative error given by

‖xσ
k − xσ‖/‖xσ‖,

where xσ
k is the computed approximation with either method. The number of iterations, k,

was chosen such that the error for the particular method was minimal. The results for various
test problems from [16] are given in Table 1.

σ 10−8 10−4 1 104

HEAT(100)
Alg. 1 4.9(-13) 5.1(-15) 6.6(-16) 6.5(-16)
Alg. 2 4.8(-13) 5.2(-15) 6.1(-16) 7.0(-16)

URSELL(100)
Alg. 1 6.7(-14) 2.9(-15) 2.9(-16) 2.6(-16)
Alg. 2 8.7(-14) 3.3(-15) 2.5(-16) 2.7(-16)

FOXGOOD(100)
Alg. 1 2.2(-13) 3.0(-15) 3.7(-16) 6.7(-16)
Alg. 2 2.7(-13) 3.0(-15) 3.7(-16) 7.3(-16)

ILAPLACE(100)
Alg. 1 9.2(-13) 1.8(-14) 1.2(-15) 6.7(-16)
Alg. 2 8.4(-13) 1.8(-14) 1.3(-15) 6.0(-16)

Table 1. Attained relative errors for various problems and various choices for σ.

The results in this table confirm that the proposed implementation of the multishift CGLS
method achieves a comparable accuracy to applying the CGLS method directly to the regu-
larized system. However, there are a few interesting differences between both methods that
occur now and then and which are not apparent from this table. One property of Alg. 1 is
that, for large shifts, the method appears to have the tendency to diverge after reaching its
maximal precision. An interesting observation is that the multishift version of CGLS does
not have this behavior. This is illustrated in the left picture in Figure 3. The computational
costs per step are much lower for the multishift version of CGLS (no matrix-vector multipli-
cation, no inner products, less vector updates for solving the shifted problems) than the direct
application of the CGLS method. However, it is remarkable that, in addition, the multishift
version sometimes needs less iteration steps. An example of this is given in the right picture
in Figure 3.

8 Summary and outlook

In this paper we have proposed a new implementation of the multishift CGLS method for
solving families of damped least squares problems. This work was motivated by the observa-
tion that, in some cases, previous proposals can only attain a precision that depends on the
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Figure 3. The relative error (as a function of k) of Alg. 1 (solid) and Alg. 2 (dash-dot). Left: problem
FOXGOOD(100) with σ = 104. Right: HEAT(100) with σ = 10−8.

square of the condition number. The first key ingredient of our implementation is the use
of coupled recurrences for the construction of an orthogonal basis for the Krylov subspace.
We showed that this leads to a perturbed Lanczos-type relation with a perturbation that has
a desirable structure. The size of this perturbation can be relatively large compared to the
perturbation term of the standard Lanczos process. Nevertheless, using an extensive round-
ing error analysis for σ = 0, which exploits the special structure of the perturbation term,
we showed that this alternative Lanczos method is desirable in multishift CGLS methods. A
second advantage of the use of CGLS recurrences for the Lanczos part, is the fact that the
tridiagonal matrix is available in a factorized form. This is important information for the
second key ingredient: the construction of the iterates for the shifted systems. We showed,
by exploiting the factorized form of the tridiagonal using the stationary qd transformation,
that the iterates can be accurately and efficiently constructed.

In future work, we plan to extend our analysis for the Lanczos part to the situation of
more general σ. This should theoretically confirm also for more general σ the suitability
of the CGLS-Lanczos method for the Lanczos part. Another interesting extension of this
paper is to consider the implementation of the multishift CGLS method based on Lanczos
bidiagonalization e.g., [12, Section 9.3.3].

Furthermore, we believe that our analysis provides the key ingredients for analyzing the
advantages of coupled two-term recurrence Lanczos in the QMR method as experimentally
shown in [7]. In the QMR method there is also a clear separation of the Lanczos and inversion
part, as for the multishift CGLS method. It could also help to analyze the advantages of
alternative Lanczos methods in other applications, e.g., [1].
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