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Abstract

There are classes of linear problems for which the matrix-vector product is a time
consuming operation because an expensive approximation method is required to compute
it to a given accuracy. In recent years different authors have investigated the use of, what
is called, relaxation strategies for various Krylov subspace methods. These relaxation
strategies aim to minimize the amount of work that is spent in the computation of the
matrix-vector product without compromising the accuracy of the method or the conver-
gence speed too much. In order to achieve this goal, the accuracy of the matrix-vector
product is decreased when the iterative process comes closer to the solution. In this pa-
per we show that a further significant reduction in computing time can be obtained by
combining a relaxation strategy with the nesting of inexact Krylov methods. Flexible
Krylov subspace methods allow variable preconditioning and therefore can be used in the
outer most loop of our overall method. We analyze for several flexible Krylov methods
strategies for controlling the accuracy of both the inexact matrix-vector products and of
the inner iterations. The results of our analysis will be illustrated with an example that
models global ocean circulation.

1 Introduction

There are classes of linear problems for which the matrix-vector product is a time consuming
operation because an expensive approximation method is required to compute it to a given
accuracy. Examples of such type of problems include simulations in quantum chromodynam-
ics [21], electromagnetic applications [5, 16] and the solution of Schur complement systems
[3, 19, 27]. Obviously, the more accurate the matrix-vector product is approximated the
more expensive or time consuming the overall process becomes. In previous technical reports
different authors [2, 3, 19, 22] have investigated the use of relaxation strategies for Krylov sub-
space methods for linear systems. The goal of these relaxation strategies is, given a required
residual precision ε, to minimize the amount of work that is spent in the computation of the
matrix-vector product. From a practical point of view this means that these strategies try to
allow the error in the product to be as large as possible without compromising the accuracy
of the method or its convergence speed too much (with respect to ε).

In [22] we derived relaxation strategies for various Krylov subspace solvers by bounding
the gap between the true residual and the computed residual. This approach confirmed the
empirical observations by Bouras et al. [2, 3] that a very accurate matrix-vector product is
necessary in the initial phase but the precision can be relaxed as soon as the methods starts
converging. Even though the work that is spent in the final iterations is very small, the
gain of a relaxation strategy for practical problems is often modest compared to using a fixed
tolerance. One of the reasons is the often slow convergence of Krylov subspace methods in the
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early iterations: we are required to compute matrix-vector products to full accuracy despite
the slow progress of the method at this point.

In this report we focus on the drawbacks and advantages of relaxation strategies for
practical problems. After reviewing the main points of the effect of inexact matrix-vector
products on Krylov methods in Section 2, we discuss in Section 3 the computational gain of
using a relaxation strategy. We argue that this is often modest for practical instances. As
an alternative strategy we propose to precondition an inexact Krylov subspace methods by
another inexact Krylov subspace method set to a larger tolerance. We discuss several choices
for the outer iteration in Section 4. Our observations are illustrated for a Schur complement
problem that stems from an ocean circulation model for steady barotropic flow as described
in [25].

2 Relaxation strategies for inexact Krylov subspace methods

The central problem in this report is to find a vector x′ that approximately satisfies the
equation

Ax = b such that ‖b−Ax′‖2 < ε, (2.1)

for some user specified, predefined value of ε. Without loss of generality we assume that
the vector b is of unit length. An important class of iterative solvers for linear systems are
Krylov subspace solvers in which in each step only basic linear algebra operations are required
including the matrix-vector product. In an inexact Krylov subspace method, instead of the
exact matrix-vector product, we have available some device that computes an approximation
Aη(v) to the matrix-vector product Av to a relative precision η as

Aη(v) = Av + g with ‖g‖2 ≤ η‖A‖2‖v‖2.

For obvious reasons we assume here that the computation of this vector becomes more costly
when the relative precision η is picked smaller. We now summarize and discuss some known
results that we need in the remainder of this paper concerning relaxation strategies and on
the impact of inexact matrix-vector products on Krylov subspace solvers in general.

Bouras and Frayssé reported various numerical results for GMRES in [2] with a relative
precision for the matrix-vector product in step j + 1 that was essentially given by

ηj =
ε

‖rj‖2
. (2.2)

The vector rj is the last computed residual vector in GMRES. An interesting property of
this empirical choice for ηj is that it requires very accurate matrix-vector products in the
beginning of the process, and the precision is relaxed as soon as the method starts converging,
that is when the residuals become increasingly smaller. This justifies the term relaxation
strategy. For an impressive list of numerical experiments they observe that the GMRES
method with tolerance (2.2) converges roughly as fast as the unperturbed version, despite
the, sometimes large, perturbations. Furthermore, the norm of the true residual (‖b−Axj‖2)
seemed to stagnate around a value of O(ε). Two recent publications [22] and [19] analyze these
remarkable observations. In [22] Van den Eshof and Sleijpen explained them by bounding
the gap between the true and the recursively computed residual and, separately, studying the
convergence of the computed residuals. We will review the main observations from this paper
now. To this purpose we will use a slightly different but more straightforward approach.
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In Krylov subspace methods the Krylov subspace is expanded by applying the matrix-
vector product to some vector zj in step j+ 1. The vectors zj for j = 0, . . . , k− 1 necessarily
form a basis for the Krylov subspace Kk defined as the span of {b,Ab, . . . ,Ak−1b}. (Notice
that in this paper we assume that the starting vector of the iterative methods is the zero
vector.) The choice of this basis plays an important role in the sensitivity of Krylov methods
for perturbations on the matrix-vector product. Other quantities of interests are the iterates,
xj , and the residuals, rj = b −Axj . In general the following relation can be identified that
links together the quantities of interest:

AZk = Rk+1Sk and xk = ZkS
−1
k e1, (2.3)

with Sk being a (k + 1) × k upper Hessenberg matrix and Sk the k × k upper block of Sk.
Throughout this paper capital letters are used to group together vectors which are denoted
with lower case characters with a subscript that refers to the index of the column (starting
with zero for the first column). Hence, Rkej+1 = rj .

In case the matrix-vector product in the Krylov method is approximated to some relative
precision ηj in step j + 1, we assume that (2.3) becomes

AZk + Fk = Rk+1Sk and xk = ZkS
−1
k e1. (2.4)

The vector fj is the j + 1-th column of Fk and it contains the error in the matrix-vector
product in step j + 1 and we, therefore, have that ‖fj‖2 ≤ ηj‖A‖2‖zj‖2. It can be easily
checked that this assumption is appropriate for all inexact Krylov methods that we consider
in this paper. (Notice that we assume that there are no roundoff errors.) The perturbation
Fk in (2.4) causes that rk is not a residual for the vector xk defined by the second relation.
Similarly to the work in [22] it follows from (2.4) that the norm of the residual gap, that is
the distance between the true residual, b −Axk, and the computed residual, rk, is bounded
by

‖rk − (b−Axk)‖2 = ‖FkS
−1
k e1‖2 ≤

k−1∑
j=0

ηj‖A‖2‖zj‖2|e∗j+1S
−1
k e1|. (2.5)

The idea of analyzing the residual gap is not uncommon in theoretical analyses of the attain-
able accuracy of iterative methods in the finite precision context, see e.g., [20]. It is based on
the frequent observation that the computed residuals eventually become many orders of mag-
nitude smaller than machine precision and, therefore, the attainable precision is determined
by the size of the residual gap. A similar technique can be used for inexact Krylov methods:
if we terminate as soon as ‖rk‖2 is of order ε, then the size of the gap determines the precision
of the inexact process. In [22] strategies for choosing the ηj are derived by bounding each
summand of the sum in (2.5) on a small, appropriate multiple of ε which reduces the problem
to bounding the elements of the vector |S−1

k e1|. Because it is known that xk = ZkS
−1
k e1,

the size of the elements of this vector do not only depend on the optimality properties of the
iterates (i.e., how xk is chosen from Kk) but also on the choice of the basis given by the zj .

We study the size of the elements of S−1
k e1 by assuming exact matrix-vector products for

the moment, i.e., (2.3) holds. This problem was studied in related formulation in [19, 22].
We first have to introduce some notation. Let M and N be Hermitian, positive definite, n
dimensional matrices. We define

δM→N ≡ max
y6=0

‖y‖M

‖y‖N
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method M N δI→M δM→N δN→A∗A

ORTHORES I A 1
√
‖A−1‖2

√
‖A−1‖2

GMRES I A∗A 1 ‖A−1‖2 1

CG A A
√
‖A−1‖2 1

√
‖A−1‖2

CR A A∗A
√
‖A−1‖2

√
‖A−1‖2 1

Table 1: Values for various Krylov subspace methods assuming that M = M∗ > 0 and
N = N∗ > 0.

which gives the following norm equivalence

(δN→M)−1‖y‖N ≤ ‖y‖M ≤ δM→N‖y‖N. (2.6)

We furthermore define the inner product <z,y>M≡ z∗My and assume that Zk is an M-
orthogonal basis. Now we have for all x̃j ∈ Kj

|e∗j+1S
−1
k e1|‖zj‖2

M = | <zj ,xk>M | = | <zj ,xk − x̃j>M | ≤ ‖xk − x̃j‖M‖zj‖M. (2.7)

Here we have made use of the fact that <zj , x̃j>M= 0. We define xMR
j as the approximation

from the space Kj that minimizes the error in A∗A-norm, or, equivalently, minimizes the
2-norm of the residual rMR

j = b−AxMR
j . With this definition and (2.7) we get the bound

‖A‖2‖zj‖2|e∗j+1S
−1
k e1| ≤ ‖A‖2

‖zj‖2

‖zj‖M

(
‖x− xMR

j ‖M + ‖x− xk‖M

)
(2.8)

≤ ‖A‖2 δI→M δM→A∗A

(
‖rMR

j ‖2 + ‖rk‖2

)
. (2.9)

This simple argument shows that, if the inexact Krylov subspace method is terminated as
soon as ‖rk‖2 ≤ ε, then the size of the residual gap is essentially bounded by the norm of the
minimal residuals times some constant.

If the particular Krylov subspace methods minimizes the error in N-norm for some N,
then we can even remove the ‖rk‖2 term in (2.9). In this case we have that ‖x − x̃j‖2

N =
‖xk − x̃j‖2

N + ‖xk − x‖2
N. Using this we get

‖xk − x̃j‖M ≤ δM→N‖xk − x̃j‖N ≤ δM→N‖x− x̃j‖N ≤ δM→N δN→A∗A‖rMR
j ‖2,

which leads to the bound

‖A‖2‖zj‖2|e∗j+1S
−1
k e1| ≤ ‖A‖2 δI→M δM→N δN→A∗A‖rMR

j ‖2. (2.10)

For several well-known Krylov subspace methods we have summarized the relevant quantities
in Table 1. Substituting these values into (2.10) finally shows, for all methods mentioned in
the table, that

‖A‖2‖zj‖2|e∗j+1S
−1
k e1| ≤ ‖A‖2‖A−1‖2‖rMR

j ‖2. (2.11)

Recall that this bound holds for exact matrix-vector products only. For most methods in case
of perturbed matrix-vector products, i.e., we are in the situation of (2.4), analogous results
can be derived by interpreting the vector S−1

k e1 as constructed by an exact process applied
to a Hessenberg matrix with starting vector e1 which then proves the bound that is given in
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[22, 19] for the inexact GMRES method. We notice that the norm of the minimal residual
approximation can often be cheaply computed in a Krylov method from available information.
Finally, we remark that there can be advantages of relaxing on the N-norm of the error if
this quantity is available. We have not followed this direction.

From our discussion it is clear that the optimality properties of the iterates can simplify
the bound (2.9) somewhat. Since we terminate as soon as ‖rk‖2 ≤ ε, it follows that the impact
of the choice of the optimality properties (i.e., the N-norm) for the iterates is small. (However,
it can be large during some iteration steps of the iterative process.) This is comparable with
the conclusions in [13] for the impact of rounding errors on the attainable accuracy of Krylov
methods. A more important factor in the sensitivity for approximate matrix-vector products
is the conditioning of the basis z0,. . .,zk−1 which is determined by the choice of the matrix
M. For example, if M = A and A is indefinite then the basis can be ill conditioned and this
might result in the necessity of very accurate matrix-vector products to achieve the required
precision, see [22] for analysis and examples. It is important to realize that this is caused by
the choice for the solution method and is not part of the problem to be solved itself.

Despite the recent efforts, the theoretical understanding of the effect of perturbations
of the matrix-vector products is still not complete. Specially concerning the effect of the
perturbations on the convergence speed. (Practical experience with these strategies is however
very promising.) We stress that this aspect can be cheaply monitored during the iteration
process whereas the residual gap can only be computed using an expensive matrix-vector
product.

3 Practical aspects of relaxation

We try to get some insight into the expected gain of using a relaxation strategy. For the
problems that we have in mind the matrix-vector product is often approximated with an
iterative solver that converges linearly. An example is the computation of the matrix sign
function in quantum chromodynamics with a Chebyshev series, see [21]. Therefore, we use
− log(η) as a model for the amount of work for computing the matrix-vector product with
a relative accuracy of η. It is also reasonable to assume that in every step the cost of the
matrix-vector product dominates the other costs.

With this simple assumption, we have that the cost for k steps inexact GMRES with a
fixed tolerance ηj = ε and a relaxed tolerance as in (2.2) are respectively given by

Cf = −
k−1∑
j=0

log(ε), Cr = −
k−1∑
j=0

(log(ε)− log(‖rj‖2)) . (3.1)

It is standard practice to visualize the convergence history of iterative solvers by making a
log-plot of the norms of the residuals versus the iteration number. Equation (3.1) shows that
the cost of using the relaxation strategy is approximately proportional to the area between
the convergence curve and the constant line ε whereas for the fixed strategy the cost is
(approximately) proportional to the size of the area between the lines ‖r0‖2 and ε. We give
a simple illustration in Figure 1 for a matrix from the Matrix Market [1].

To interpret the obtained estimates let us assume that ‖rj‖2 = αjβ
for some 0 < α < 1

and β > 0. Then the number of required iterations is approximately k = (log(ε)/ log(α))1/β

and we get the following estimate for the ratio of the cost of both strategies, assuming that
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Figure 1: Convergence history GMRES for the matrix GRE115 from the Matrix Market where
the dark grey area is proportional to the expected cost of the inexact Krylov subspace method
under the assumption that the convergence curve is not different for the inexact method. Left
picture: using a fixed accuracy of ε = 10−8. Right picture: using the relaxation strategy (2.2).
The light grey area in the right picture is proportional to the expected saving.

there is no change in convergence behavior,

Cr/Cf ≈
∫ k

0
log(ε/αxβ

)dx/
∫ k

0
log(ε)dx =

β

1 + β
.

This shows that if convergence is linear (β = 1) then the improvement is about a factor two.
In case inexact GMRES converges superlinearly, which means that the residual decrease in
the beginning is much smaller than at the final iterations (i.e., β > 1), then the advantage
of relaxed GMRES becomes smaller. Superlinear convergence is, fortunately, often observed
in convergence plots of the GMRES method in practical applications and if we use in this
case a relaxed tolerance for the matrix-vector product then a lot of effort is spent in the first
few iterations, despite the fact that progress is slow at this stage. It is tempting to reduce
the accuracy in the first few iterations. However, as is reasonably well understood from the
previous section, this does not work.

We derived relaxation strategies by bounding the norm of each summand in (2.5) by ε.
Since the number of summands corresponds to the number of iterations, the accumulation of
the errors can be considerable if the number of iterations to reach the required precision is
large. This problem can be compensated by working with a smaller tolerance on the matrix-
vector products which is the approach taken by Simoncini and Szyld [19]. Of course, this
comes at some cost.

The two sketched drawbacks of relaxed GMRES are also relevant for other relaxed Krylov
subspace methods. In the next section we try to reduce the effect of both problems.

4 Nested inexact Krylov subspace method

In order to reduce the number of necessary iterations of the inexact Krylov method, we
propose the idea of ‘preconditioning’ the inexact Krylov subspace method by another inexact
Krylov subspace method set to the larger tolerance of ξj in step j + 1. The idea behind
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reducing the number of iterations is to keep the number of highly accurate matrix-vector
products small and, furthermore, to reduce the effect of the accumulation of errors as we
discussed in the previous section. We will frequently refer to the inexact Krylov method and
its variable preconditioner as the outer iteration and inner iteration respectively. Methods
that can be used for the outer iteration are the so-called flexible methods. These are methods
that are specially designed for dealing with variable preconditioning, e.g., [11, 18, 23] which
we combine with an approximate matrix-vector product.

We discuss a few choices for the outer iteration in the remainder of this section. For this
purpose, we need the following notation: when an inexact Krylov subspace method is used
for solving the linear system Az = y with a relative residual precision of at least ξ, we will
write

z = Pξ(y), where z such that ‖y−Az‖2 ≤ ξ‖y‖2.

Notice that this is a so-called flexible preconditioner that may change every step depending
not only on ξ but also on y.

In our nested algorithm the necessary ‘new’ information about the true matrix is intro-
duced in the outer iteration and the accuracy of the matrix-vector products in the inner
iteration is only modest. A drawback of this method is that in general nesting Krylov sub-
space methods affects, usually negatively, the efficiency with respect to the total number of
matrix-vector products (the ‘convergence speed’). The goal is to make a trade-off between
choosing the ξj small (leading to a small k in this case) and thereby avoiding the computa-
tion of many accurate matrix-vector products in the outer iteration and, on the other hand,
keeping the ξj large which is expected to reduce the total number of matrix-vector products
necessary (since the optimality of the outer iteration becomes more effective). This issue is
discussed in more detail in Section 4.4.

4.1 The outer iteration: Richardson iteration

The nested inexact Krylov subspace method with Richardson iteration as outer iteration is,
for j = 1, 2, . . . , k, defined by the following recurrences

zj−1 = Pξj−1
(rj−1)

xj = xj−1 + zj−1

rj = rj−1 −Aηj−1(zj−1).
(4.1)

It can be easily checked that this method fits into our general relation (2.3):

AZk + Fk = Rk+1Sk, and xk = ZkS
−1
k e1, (4.2)

with Sk lower bidiagonal with one on its diagonal and minus one on its subdiagonal. Therefore,
S−1

k e1 = ~1 and using, furthermore, the estimate ‖zj‖2 ≤ ‖A−1‖2‖rj‖2(1 + ξj), we find with
(2.5) the following bound on the norm of the residual gap:

‖rk − (b−Axk)‖2 ≤ ‖A‖2

k−1∑
j=0

ηj‖zj‖2 ≤ ‖A‖2‖A−1‖2

k−1∑
j=0

ηj‖rj‖2(1 + ξj).

This suggests to pick the tolerance ηj equal to ε/‖rj‖2 in step j + 1 which is consistent with
the in [22] proposed strategy for inexact Richardson iteration in the unpreconditioned case.
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This version of Richardson iteration uses recursively computed residuals which is essential
for a relaxation strategy to be feasible as discussed in [22]. We can alternatively compute the
residuals directly, i.e., the residuals are instead computed as

rj = b−Aηj (xj). (4.3)

To derive a suitable strategy for choosing the ηj for this version we can exploit that, with (4.3),
there is no propagation of errors throughout the process. Deriving a strategy by bounding
the residual gap is therefore for this method not very useful. We have that

‖b−Axj‖2 = ‖b−A(xj−1 + zj−1)‖2

≤ ‖rj−1 − (b−Axj−1)‖2 + ‖rj−1 −Azj−1‖2

≤ ηj−1‖A‖2‖xj−1‖2 + ξj−1‖rj−1‖2.

This suggests to pick ηj = ξj‖rj‖2 such that we, roughly, have that

‖b−Axj‖2 . ‖A‖2‖A−1‖2 ξj−1‖rj−1‖2.

In other words, the precision of the matrix-vector product is chosen equal to the current
residual precision times the expected residual reduction. This latter version of Richardson
iteration can viewed as making periodic restarts of the Krylov subspace method used in the
inner iteration. This gives relations with strategies for dealing with approximate matrix-
vector products that have been proposed in literature. These connections are discussed in
Section 4.5.

The total work that is spent in the outer iteration on the matrix-vector products is for
both versions of Richardson iteration approximately the same. The difference is that we work
with an increasingly tighter tolerance in the outer loop for the latter strategy whereas for the
first discussed version of Richardson iteration we relax the tolerance more in the later iteration
steps. An advantage of the use of the directly computed residuals is that there is no ‘memory’
in the iterative method and the precision ε has not to be decided a priori. Furthermore, there
is no accumulation of errors (so the error is independent of the number of iterations). For
this reason using directly computed residuals can be necessary in some applications, see e.g.,
[9] where the authors discuss the approximate solution of infinite dimensional systems. On
the other hand, the advantage of the recursively computed residual is that we do not have
to estimate the residual reduction in the coming step. (Notice that this is not precisely ξj−1

in practice.) Finally, the recursively computed residual is an essential ingredient of optimal
methods like, for example, flexible GMRES [18] and GMRESR [23].

4.2 The outer iteration: flexible GMRES

The flexible GMRES method by Saad [18] is a variant of the GMRES method that can
deal with variable preconditioning. It constructs an orthogonal basis Vk for AZk where
zj = Pξj

(vj) which, with inexact matrix-vector product, can be summarized by the relations

AZk + Fk = Vk+1T k, xk = ZkT
†
ke1 and rk = Vk+1(I − T kT

†
k)e1. (4.4)

With some small effort these relations can be transformed into our general relations given in
(2.4). We will not give the details here. In order to bound the norm of the gap we can also
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use the relations (4.4) directly as in [22, Section 7]. This shows that

‖rk − (b−Axk)‖2 = ‖FkT
†
ke1‖2 ≤ ‖A‖2‖A−1‖2‖T †

k‖2

k−1∑
j=0

ηj‖rj‖2(1 + ξj),

where we, moreover, have used [22, Lemma 3.1] and the estimate for the ‖zj‖2 as mentioned
in the previous section. As for the standard inexact GMRES method analyzed in [22, 19],
the norm of T †

k is difficult to bound a priori. In the exact case (i.e., ηj = 0 for all j), we have,
with σmin(B) denoting the smallest singular value of the matrix B, for small enough precisions
ξj :

σmin(T k) = σmin(Vk + (AZk −Vk)) ≥ 1−
√
kmax

j
ξj .

For this reason we assume that ‖T †
k‖2 is bounded by a modest constant in the remainder of

this section. This indicates that the relaxation strategy for inexact GMRES given by (2.2) is
also useful in the flexible context and leads to

‖rk − (b−Axk)‖2 ≤ kε‖A‖2‖A−1‖2‖T †
k‖2(1 + max

j
ξj).

A notable difference with Richardson iteration described in the previous section is that,
in flexible GMRES, the preconditioner is applied to multiples of the residuals of the corre-
sponding Galerkin approximations (also referred to as the approximations from the associated
flexible FOM process). For this reason the residual reduction of flexible GMRES can be less
than ξj in step j + 1 if the residual of the corresponding Galerkin approximations is large.
This observation is due to Vuik [26] and is not difficult to understand in case of exact matrix-
vector products: if we define α ≡ e∗j+1(I − T jT

−1
j )e1, then, using the optimality of flexible

GMRES, we find with yj+1 ≡ [(T−1
j e1)T, α]T that

‖rj+1‖2 ≤ ‖b−AZj+1yj+1‖2 = ‖b−AZjT
−1
j e1 −Azj+1α‖2

= ‖(vj+1 −Azj+1)α‖2 ≤ ξjα.
(4.5)

These type of results can be found in [26]. It shows that in case the associated FOM process
suffers from near breakdowns, i.e., its residuals are very large, flexible GMRES might not be
a suitable choice. However, if we have that ξj = ξ for all j and ξ is small enough this is
no serious problem as the following lemma demonstrates for the case of exact matrix-vector
products. We mention that for Richardson iteration, with exact matrix-vector products, we
have that ‖rk‖2 ≤

∏k−1
i=0 ξi.

Lemma 4.1. Let ξj = ξ < 1/2 and ηj = 0 for all j. Then,

‖rk‖2
2 ≤ ξ−2k 1

β

((
1 + β

2

)k+1

−
(

1− β

2

)k+1
)

with β ≡
√

1− 4ξ2.

Proof. We have that

1
‖rk+1‖2

2

≥ 1
ξ2

1
α2

=
1
ξ2

(
1

‖rk‖2
2

− 1
‖rk−1‖2

2

)
, (4.6)

where for the last equation we have used a well-known relation due to Brown [4], see also [22].
We define γk = ξ2k/‖rk‖2

2. From (4.6) it follows that γk+1 ≥ γk − ξ2γk−1 and γ0 = γ1 = 1.
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Furthermore, we introduce the quantity ρk that satisfies the recursion ρk+1 = ρk − ξ2ρk−1

with ρ0 = ρ1 = 1. Our first step is to show that for all k we have that 0 ≤ ρk ≤ γk. If ξ ≤ 1/2
then there exist constants α, β ∈ [0, 1] such that α+ β = 1 and αβ = ξ2. Hence,

(γk+1 − αγk) ≥ β(γk − αγk−1), γ1 − αγ0 = ρ1 − αρ0 = 1− α ≥ 0
(ρk+1 − αρk) = β(ρk − αρk−1).

This shows by induction that (γk − αγk−1) ≥ (ρk − αρk−1) ≥ 0. Hence, γk ≥ αγk−1 + (ρk −
αρk−1). Again with induction, we find that γk ≥ αρk−1 + (ρk − αρk−1) = ρk ≥ 0. The proof
is concluded by solving the recursion for the ρk using standard techniques.

This lemma demonstrates that ξ−k‖rk‖2 approaches a value smaller than or equal to one
for ξ going to zero and, therefore, the disadvantage of flexible GMRES that the residual
reduction can be much less than ξ does not play an important role in our context where we
work with a constantly modest value of ξ. For a numerical illustration of this observation we
refer the reader to our numerical experiments in Section 5.

4.3 The outer iteration: GMRESR

The GMRESR method of Van der Vorst and Vuik [23] is another variant of GMRES that
allows for flexible preconditioning. The authors propose for the inner iteration (or, in other
words, as flexible preconditioner) to use a few steps of the GMRES method. This makes
this method also very interesting as outer iteration method in our context and we consider
this option in this section. In the GMRESR method the flexible preconditioner is directly
applied to the last computed residual. This means that we have zj = Pξj

(rj). The GMRESR
method minimizes the residual by constructing its iterates as a suitable linear combination of
all previously computed vectors zj . Therefore, a simple argument shows that this guarantees
in the exact case a residual reduction of at least ξj in step j + 1 which can be an advantage
over the use of flexible GMRES.

We now discuss the matrix formulation of the GMRESR method with inexact matrix-
vector product. In the inexact GMRESR method, in every step decompositions are updated
such that

AZk + Fk = CkBk, Zk = UkBk, with C∗
kCk = Ik and Bk upper triangular. (4.7)

In the second part of the iteration step, the residual and iterate are updated as follows

xk = xk−1 + uk−1(c∗k−1rk−1), rk = rk−1 − ck−1(c∗k−1rk−1). (4.8)

Notice that, in contrast to a standard implementation of GMRESR, we assumed here that
the vectors cj are normalized which is not an essential restriction. The last two relations can
be expressed by the matrix relations

CkDk = Rk+1Jk and UkDk = Xk+1Jk,

where Dk ≡ diag(c∗0r0, . . . , c∗k−1rk−1), Jk is the (k + 1) × k matrix with one on its diagonal
and minus one on its subdiagonal and Jk is the upper k × k block of Jk. Substituting all
relations and using that DkJ

−1
k e1 = Dk

~1 = C∗
kr0 (since c∗jrj = c∗jr0), we find that

AZk + Fk = Rk+1(JkD
−1
k Bk) and xk = Uk(C∗

kr0) = Zk(JkD
−1
k Bk)−1e1.
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This shows that GMRESR with inexact matrix-vector product fits into the general framework
of this paper given by (2.4). The residual gap is therefore determined by the elements of the
vector S−1

k e1, see (2.5). For this vector we have that

S−1
k e1 = B−1

k DkJ
−1
k e1 = B−1

k C∗
kr0 = (AZk + Fk)†r0.

The size of the elements of this vector are difficult to assess. In general small errors in the
matrix-vector product can have a considerable influence on the residual gap. This happens
if Azk + fk is for a large part contained in the span of the previously computed vectors, in
this case the resulting vector after the orthogonalization procedure is for a relatively large
part contaminated by the error in the matrix-vector product, i.e., ‖Auk− ck‖2 is large. Such
an unfortunate cancellation is also reflected by large elements in the vector S−1

k e1. We are
interested in the size of the residual gap and we will investigate the size of the elements of
the vector S−1

k e1 in the remainder of this section. We will restrict ourselves to the case of
exact matrix-vector products for simplicity. First we study the situation in which there is no
preconditioning, i.e., Pξ(y) = y for all y. Then GMRESR reduces to GCR [8].

If the matrix A is Hermitian positive definite then the residuals rj (= zj) form an orthog-
onal basis with respect to the A-inner product and, therefore, Rk is orthogonal with respect
to a well-defined inner product. Since GCR minimizes the residual, the iterate xk = RkS

−1
k e1

must be bounded in norm. Consequently, we do not expect that the elements of the vector
S−1

k e1 can be incidentally large due to a near breakdown (or in other words, the effect of
cancellation is expected to be limited). In fact, from (2.11) in Section 2 we have for the CR
method (or GCR applied to a Hermitian positive definite matrix) that

|e∗j+1S
−1
k e1| ≤ ‖A−1‖2.

Although we did not investigate the influence of the inexact matrix-vector products, this shows
that, for these type of matrices, we may expect good results using the relaxation strategy
given in (2.2).

For general matrices A, the situation is more problematic. In the appendix we prove the
following, reasonably sharp, estimate in this case:

|e∗j+1S
−1
k e1| ≤ ‖A−1‖2

(‖rF
j ‖2

‖rj‖2
+
‖rF

j+1‖2

‖rj‖2

‖rj+1‖2

‖rj‖2

)
, (4.9)

where the rF
j are the residuals of the corresponding FOM process. This shows that the

elements of the vector |S−1
k e1|might be large if the related FOM process has a near breakdown,

this is similar to the bounds on the residual gap for the CG method that we have seen in [22].
This is not surprising since both methods construct their iterates from an A-orthogonal basis
which can break down. The sensitivity in case of large FOM residuals can also be interpreted
differently: if the related FOM residual is large then GCR nearly stagnates which means that
the GCR residuals are close in two consecutive iterations which leads to cancellation in the
orthogonalization part.

We conclude that, although GCR residuals coincide with GMRES residuals in the exact
case, in contrast to GMRES, GCR suffers from FOM peaks (and even FOM peaks in the
next step). This shows, again, that it is the choice of the basis z0, . . . , zk−1 that essentially
determines the sensitivity of a Krylov method to approximate matrix-vector products.

In our application GMRESR is used in an outer iteration with variable preconditioning
which means that we work with a preconditioner that reduces the residual in step j + 1

11



with at least a factor ξj . If ξj = ξ for all j and ξ is small we expect that the situation is
not very different from the case of Richardson iteration in Section 4.1. The techniques from
Appendix A can not be applied in this case. Instead we have the following lemma.

Lemma 4.2. Let ξj = ξ for all j ∈ {0, k − 1}. Then,

|e∗j+1S
−1
k e1| ≤ (1− ξ)j−k.

Proof. We have in step j + 1 that Azj = rj + (Azj − rj) with ‖Azj − rj‖2 ≤ ξ‖rj‖2. Since,
C∗

jrj = ~0 we find for the diagonal elements |Bk|jj ≥ ‖rj−1‖2(1 − ξ) and for the off-diagonal
elements |Bk|ij ≤ ‖rj−1‖2ξ for i < j. We can use this to show that

|B−1
k | ≤ 1

1− ξ
diag(‖r0‖2, . . . , ‖rk−1‖2)−1B̃−1

k .

The matrix B̃k is upper triangular with one on its diagonal and −α in all its off-diagonal
entries with α ≡ ξ/(1 − ξ). It is not difficult to prove that (B̃−1

k )ij equals one for i = j and
equals α(1 + α)j−1−i for i < j (see also [15, Equation 8.3] ). The vector e∗j+1B̃

−1
k is zero in

the first j components and we can show that

‖B̃−∗
k ej+1‖1 = 1 + α

k−j−2∑
i=0

(1 + α)i = (1 + α)k−j−1 = (1− ξ)j+1−k.

The proof is completed as follows

|e∗j+1S
−1
k e1| ≤ |e∗j+1B

−1
k | |C∗

kr0| ≤ (1− ξ)j−k‖rj‖−1
2 max

i>j
|c∗i r0| ≤ (1− ξ)j−k.

We expect that we can safely use the relaxation strategy (2.2) for inexact GMRESR when
the preconditioner leads to a residual reduction in every step that is big enough. Notice that
this observation is the converse of our findings for flexible GMRES in the previous section.
There, we argued that a near breakdown of the associated FOM process results in a residual
reduction that can be less than what can be expected from the effort put into the inner
iteration. This is, however, not expected to be a problem if the residual reduction in every
step is big enough. Conversely, in GMRESR problems can occur with the accuracy of the
method in case of a near breakdown, however, if ξ is small enough in every step, this effect is
small. We conclude that the differences between both methods are small for ξ small enough.
See also our numerical experiments in Section 5.

4.4 The choice of the precisions ξj

Making general statements about the optimal sequence of tolerances ξj is difficult since this
requires detailed knowledge about the convergence behavior of Krylov subspace methods
including the case of variable preconditioners. Nevertheless, we want to provide some insight
into the problem of selecting the tolerances. To this purpose, we assume that the residual
reduction in each step of each inner iteration is constant. This is a reasonable assumption
for methods like Richardson iteration. Furthermore, the required residual precision is set to
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Figure 2: The grey area approximates the cost of the inner iteration when convergence in
inner iteration is linear.

ε = 10−l and the residual reduction in the outer iteration is assumed to be precisely ξj in step
j + 1. This means that the norm of the residual at the end of step j is equal to εj with

1 = ε0, ε1, . . . , εk = ε = 10−l, and εj =
j−1∏
i=0

ξi.

With these assumptions and following the same reasoning as in Section 3, we have that the cost
for the inner iteration is approximated by the grey area in Figure 2 when a standard relaxation
strategy is used in the inner iteration. In this example we have ξ0 = 10−2, ξ1 = 10−1,
ξ2 = 10−2, ξ3 = 10−3.

If we define εj = 10−tj (hence t0 = 0 and tk = l) and assume that the total number of
inner iterations is equal to m, then we have the following approximation to the cost:

C̃k =
m

2l

k∑
i=1

(ti − ti−1)2 +
k∑

i=0

ti, (4.10)

where the second term represents the cost of the matrix-vector products in the outer iteration
for Richardson with directly computed residuals, see Section 4.1.

Lemma 4.3. For fixed k < 1
2(1 +

√
1 + 8m) the quantity C̃k in (4.10) is minimized by

ti =
l

2m
i(i− k) +

l

k
i for i ∈ {0, . . . , k}. (4.11)

Furthermore, the optimal value of k is given by the largest integer strictly smaller than 1
2(1 +√

1 + 8m).

Proof. Differentiating (4.10) with respect to ti (for i ∈ {1, . . . , k − 1}) and equating to zero
gives the equation

m

l
(−ti−1 + 2ti − ti+1) + 1 = 0.
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Using standard theory for solving recurrences we get that ti = l
2m i

2+αi+β for some constants
α and β. Using the boundary conditions t0 = 0 and tk = l we find the required expression.
It can be easily verified that if k < 1

2(1 +
√

1 + 8m) then all the ti in (4.11) are in the open
interval (0, l) and therefore are the optimal points. Furthermore, we have that the minimal
value of C̃k is smaller than the minimal value of C̃k−1 (to see this, pick for C̃k the tj equal to
the optimal points for C̃k−1 and choose the additional point equal to zero). Suppose that k′

is the largest integer strictly smaller than 1
2(1 +

√
1 + 8m) then the global minimum of C̃k′+1

defined by (4.11) is outside the bounding box and therefore the minimum is attained at the
boundary of the box (that is ti = 0 for one or more indices i). The minimal value of C̃k′

equals the minimal value of C̃k′+1. The optimal number of (nonzero) tolerances is given by
k = k′.

It is interesting to notice that in the common case that the number of inner iterations,
m, is large compared to the number of outer iterations k, we have for the optimal ti that
ti ≈ il/k. This implies that keeping ξj−1 constant is almost optimal.

The above analysis is for Richardson’s method with directly computed residuals as outer
iteration. The analysis for the case when relaxation is employed in the outer iteration is
completely analogous and yields the same results. The conclusion that ξj−1 constant is
almost optimal also holds for this case. For this reason we will use ξj = ξ in our numerical
experiments in Section 5.

4.5 Discussion

Some inexact methods proposed in literature have important connections with our nested
inexact Krylov subspace methods with Richardson iteration with directly computed residuals
in the outer iteration as described in Section 4.1. In that section we also mentioned that this
method can be interpreted as frequently restarting the inexact Krylov subspace method at
which point the required residual precision is decreased. Alternatively, it can be viewed as an
iterative refinement procedure. We discuss some related ideas that can be found in literature.

Golub and his co-workers [12] introduced the successive Lanczos method for the compu-
tation of eigenvectors with the Lanczos method. For this method, the user has to specify in
advance the tolerances εj and the precise number of iterations for each inner iteration (there
appears to be no automatic stopping condition for the inner iterations). At the beginning
of each cycle the computed approximation from the previous cycle is used as a starting vec-
tor. In the presented numerical experiments the method was not combined with a relaxation
strategy for the inner iterations (the possibility is mentioned).

For solving linear systems also related strategies have been applied. Hernández et al.
explored in [14] an algorithm very similar to our method in the context of Neuberger fermions,
e.g., [17]. They refer to this method as scheme (b). In their approach they also choose a
sequence of tolerances εj and first solve the linear system with a precision ε1 by working with
a fixed approximation to the matrix-vector product that has an error roughly proportional
to ε1. They use the resulting approximate solution as a starting vector for solving the linear
system with a precision ε2, and so on. In their j-th step they use a matrix-vector product that
has a relative precision of order εj . This is an essential difference with our proposal: due to
the good starting vector the relative residual reduction in the j-th step is only εj/εj−1 which
is a bounded quantity and, as we argued, this allows us to use a much cheaper matrix-vector
product, except only for the few matrix-vector products in the outer iteration.
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The first scheme that they suggest, scheme (a), is also clearly related. To explain this we
need to define two approximation to the matrix A,

A ≈ A1 = A2 + ∆A2,

where A1 is a fixed approximation with a relative precision of order ε and A2 a relative
precision of order ε′. Then they subsequently solve

A2x0 = b, A2x1 = b−∆A2x0, A1x2 = b,

where in the last step they use x1 as a starting vector. Solving the first two steps can be seen
as equivalent to two steps with ξ0 = ξ1 = ε′. The third step differs from our approach for the
same reason as indicated for scheme (b): we essentially work with a precision of ξ3 = ε/(ε′)2

for the matrix-vector product in this last step.
Giusti et al. recently proposed [10, Section 9], what they call, an adapted-precision in-

version algorithm for problems from quantum chromodynamics which they interpret as some
form of iterative refinement. This is essentially equal to the method proposed here with
Richardson iteration with directly computed residuals in the outer iterations. The authors
do not discuss specific choices for the precision of the matrix-vector product in the outer
iteration and use a fixed precision in the inner iteration.

Carpentieri [5] describes experiments with nested Krylov subspace methods that use in-
exact matrix-vector products. He uses flexible GMRES in the outer iteration and GMRES
in the inner iteration. The matrix-vector products, which are computed using a fast multi-
pole technique, are evaluated to a high precision in the outer iteration, whereas the matrix
vector-products in the inner iteration are evaluated to a lower, but fixed, precision. In the
numerical experiments that are described in the thesis no relaxation strategies are applied.

The use of inner iterations set to variable precisions in the context of flexible or variable
preconditioning was investigated by Dekker [7] for a problem from domain decomposition.

5 Numerical experiments

5.1 An example from global ocean circulation

In this section we present our, preliminary, experience with nesting inexact Krylov subspace
methods for solving Schur complement systems. The example comes from a finite element
discretization of a model that describes the steady barotropic flow in a homogeneous ocean
with constant depth and in nearly equilibrium as described in [25]. For convenience of the
reader we summarize here the main points. The model is described by the following set of
partial differential equations:

−r∇2ψ − β
∂ψ

∂x
− α∇2ζ = ∇× F in Ω

∇2ψ + ζ = 0,

in which ψ is the stream-function and ζ the vorticity. The domain Ω is the part of the world
that is covered by sea. The external force field F is equal to the wind stress τ divided by
product of the average water depth H and the water density ρ. The other parameters in these
equations are: the lateral viscosity α, the bottom friction r and the Coriolis parameter β.
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The above equations have to be complemented by a suitable set of boundary conditions.
On the boundary of a continent usually the no-slip condition is imposed, which means that
both the normal and the tangential flow are zero. The no-normal-flow boundary condition
implies that the stream-function is constant on each continent,

ψ = Ck on Γk, k = 1, . . . , ncon,

where ncon is the total number of continents. We can determine the unknown constants by
imposing that the water-level is continuous around each continent boundary Γk. This yields
for each continent an integral condition given by∮

Γk

α
∂ζ

∂n
ds = −

∮
Γk

F · s ds.

The no-tangential-flow condition is given in terms of the stream-function by

∂ψ

∂n
= 0 on Γk, k = 1, . . . , ncon.

The equations are commonly expressed in spherical coordinates, which maps the physical
domain onto a rectangular domain with periodic boundary conditions

ψ(−π, θ) = ψ(π, θ), ζ(−π, θ) = ζ(π, θ), (5.1)

in which θ is the latitude. To fix the level of the stream-function (which is determined by the
above equations only up to an arbitrary constant) one can impose the slip condition ψ = ζ = 0
on the North Pole. An additional advantage of using this slip condition is that the singularity
at the North Pole, introduced by the use of spherical coordinates, is excluded.

The above equations are discretized with the method described in [25]. This gives the
following linear system of equations[

rL−C αL̃
−L̃

∗
M

] [
ψ
ζ

]
=
[

f
0

]
. (5.2)

In this expression the discrete counterparts of the continuous operators can be recognized,
these are

−∇2 → L, L̃, L̃
∗
, β

∂

∂x
→ C, 1 → M.

The matrices L, L̃, and L̃
∗

differ due to the incorporation of the no-normal-flow boundary
conditions. The mass matrix M is lumped and, therefore, a diagonal matrix.

The physical parameters are chosen as in Section 7.1 in [25] except for the viscosity
parameter α which is 105 in this experiment. We have given a contour plot of the stream-
function ψ in Figure 3 for these parameters. The precision is set to two degrees which results
in a matrix of dimension 26455.

5.2 The Schur complement systems

From equation (5.2) we can eliminate either ψ, which gives the Schur complement for ζ:

(M + αL̃
∗
(rL−C)−1L̃)ζ = L̃

∗
(rL−C)−1f, (5.3)
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Figure 3: Stream-function, contour/density plot.

or we can eliminate ζ, which gives the Schur complement for ψ:

((rL−C) + αL̃M−1L̃
∗
)ψ = f. (5.4)

The equation for the stream-function has the obvious advantage that, since M is diagonal and
hence trivially invertible, operations with the Schur complement matrix (rL−C)+αL̃M−1L̃

∗

are relatively cheap. This in contrast to the equation for the vorticity (5.3), where operations
with the Schur complement require the solution of a linear system with the matrix rL−C.

There are, however, reasons why it can be preferable to solve (5.3) instead of (5.4). The
Schur complement for the stream-function can be considerably worse conditioned than the
Schur complement for the vorticity, in particular if α is large, or if the mesh size h is small.
The ill-conditioning of the stream-function Schur complement is caused by the term L̃M−1L̃

∗
,

which is a discretized biharmonic operator, of which the condition number is O(h−4). In prac-
tice it is very difficult to derive effective preconditioners for this operator. On the other hand,
the diagonal matrix M turns out to be a very effective preconditioner for (5.3) and rL−C is
a discretized convection-diffusion operator for which also reasonably effective preconditioners
are readily available. The smaller number of iterations for solving (5.3) in combination with
the existence of preconditioners for the convection-diffusion operator may outweigh the extra
work for the more costly matrix-vector products. This will be illustrated with the numerical
experiments that are described below.

Another advantage of solving for the vorticity is that, since M is trivially invertible, we
can construct solutions ζ for various values of α by constructing the Krylov subspace only
once using ideas from the so-called class of multi-shift Krylov subspace methods, e.g., [6] and
[19, Section 10].

5.3 Numerical results for the vorticity Schur complement

If (5.3) is solved using a Krylov subspace method then a system with discrete convection-
diffusion operator rL − C has to be solved for every matrix-vector product with the Schur
complement. In our experiments this was done using Bi-CGSTAB with an incomplete LU
preconditioner [24]. The Bi-CGSTAB method was terminated when a relative residual preci-
sion was achieved of η. Note that it follows from the analysis in [19, Section 8] that this does
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Figure 4: Norm true residual as function of the total number of iterations Bi-CGSTAB for
the inexact GMRES method with fixed precision ε = 10−6 (+), relaxed GMRES method with
ε = 10−7 (squares) and relaxed flexible GMRES preconditioned with relaxed GMRES set to
a precision 0.1 (*) and the same for GMRESR in outer iteration (o).

not guarantee a relative error of η for the matrix-vector product and ideally an additional
factor should be taken into account.

We aim for a residual precision of about 10−5 and consider a few different approaches for
solving (5.3). In order to be able to make a fair comparison between different methods, for
all methods the parameter ε was empirically chosen such that the methods achieve about the
same accuracy. For the first method we have applied the inexact (full) GMRES method with
the relaxation strategy of Bouras and Frayssé (2.2). As a preconditioner we have used the
diagonal matrix M. This preconditioner corrects for the adverse scaling effects introduced by
the use of spherical coordinates and becomes increasingly more effective for smaller α. The
results for this strategy are plotted in Figure 4. On the horizontal axis the total number
of iterations with Bi-CGSTAB is given as a measure for the amount of work spent in the
matrix-vector product. The vertical axis gives the norm of the true residual. The number
of GMRES iterations is large for this problem, about 130, which limits the precision of the
inexact Krylov method because of the accumulation of the errors in the matrix-vector product.
For this reason we have chosen the empirical value ε = 10−7.

The convergence of GMRES is linear for the above example. The gain by applying the
relaxation strategy is about a factor of two: the number of iterations Bi-CGSTAB drops from
2000 to about 900. This experimentally observed gain is consistent with the theoretical predic-
tion for the gain that is presented in Section 3 (although the number of necessary Bi-CGSTAB
iterations is not proportional to − log(η)). As a consequence of the relaxation strategy, the
number of Bi-CGSTAB iterations drops from 38.5 for the initial GMRES iterations to 0.5 for
the last.

The alternative is to use the method from Section 4.2, that is, we precondition (inexact)
flexible GMRES with an inexact GMRES method set to a precision of ξ = 10−1. For the
GMRES methods in the outer and inner iteration we have both used the Bouras-Frayssé
relaxation strategy (2.2) with ε respectively given by 10−5 and 10−1. The results are given
in Figure 4 where every ‘*’ corresponds to the true residual in one step of flexible GMRES

18



j Tolerance (ηj−1) Bi-CGSTAB iterations ‖b−Axj‖2 ‖rj‖2

1 1.0 · 10−5 35.5 1.2 · 10−1 1.2 · 10−1

2 8.2 · 10−5 33.5 1.9 · 10−2 1.9 · 10−2

3 5.2 · 10−4 28.5 2.6 · 10−3 2.6 · 10−3

4 3.9 · 10−3 7 4.4 · 10−4 4.3 · 10−4

5 2.3 · 10−2 3 7.5 · 10−5 6.8 · 10−5

6 1.4 · 10−1 1 4.1 · 10−5 9.4 · 10−6

Table 2: Numerical values concerning the relaxation process of the outer loop of GMRESR
for iteration number j.

in the outer iteration. For the nested method only a few outer iterations are necessary and
therefore the residual gap is less contaminated by errors in the matrix-vector product which
results in a final precision of almost 10−5. The large number of matrix-vector products and
the accumulation of the errors now manifests itself in the inner iterations: we do not achieve a
residual reduction of 10−1 in every outer step. In this picture we have also included the results
for a nesting strategy with GMRESR in the outer iteration, the size of the true residuals is
indicated with ‘o’. The difference between the convergence of flexible GMRES and GMRESR
is very small, which confirms the remarks made at the end of the Subsections 4.2 and 4.3.

To further illustrate the relaxation process in the outer iteration we have tabulated in
Table 2 some interesting numerical values for the GMRESR-method. For the flexible GMRES
method we find very similar numbers, which we have not reported here. The table shows for
step j the used (approximate) tolerance for the matrix-vector product ηj−1, the number of Bi-
CGSTAB iterations to compute the matrix-vector product in step j of the outer iteration and
the norm of the true and computed residual at the end of step j (recall that b is normalized).
With discretization step sizes that are more relevant in practice, the norm of the true residual
will not be known during the process. The results in this table clearly illustrate that the
norm of the true residual stagnates, in contrast to the norm of the updated residual. Another
noteworthy observation is the sharp decrease in the number of Bi-CGSTAB iterations if the
required tolerance is relaxed from 5.2 · 10−4 to 3.9 · 10−3. This is explained by the typical
convergence behavior for Bi-CGSTAB that we observed for this example, which exhibits a
fast decrease of the residual norm during the first iterations followed by a phase of slow
convergence. The transition between fast and slow convergence is typically when the norm of
the scaled residual is O(10−3).

A direct consequence of this initial fast convergence behavior of Bi-CGSTAB is that half
a Bi-CGSTAB iteration (this is one application of the ILU-preconditioner and one matrix-
vector product) is sufficient to reduce the scaled residual norm to below 0.1, which is an upper
bound on the criterion for Bi-CGSTAB in the inner-loop. As a result, there is no practical
difference between using a relaxation strategy or a fixed precision for the inner-iteration in
this example.

5.4 Numerical results for the stream-function Schur complement

Although it is outside the scope of this paper we give, to underline the relevance of solving
(5.3) instead of (5.4), also numerical results for the iterative solution of the equation for the
stream-function. The solution technique we have used is Bi-CGSTAB in combination with
an ILU-preconditioner of rL − C. The system is solved to about the same precision (for
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the stream-function) as is reached if first the equation for the vorticity is solved with one of
the methods described above. The iterative solution of equation (5.4) requires about 1000
Bi-CGSTAB iterations.

If we take the number of Bi-CGSTAB iterations as measure for the amount of work we
can conclude that the relaxed inner-outer schemes for (5.3) are far more efficient than Bi-
CGSTAB for (5.4). Less than 200 Bi-CGSTAB iterations are needed for the relaxed nested
schemes for (5.3), while 5 times as many Bi-CGSTAB iterations are needed for solving (5.4).
The comparison gives only an indication, since it neglects the overhead for GMRESR (or
flexible GMRES), and the matrix-vector multiplications for solving (5.4) are more expensive.

6 Conclusions

In this paper we have analyzed strategies for controlling the accuracy of approximate matrix-
vector products in the context of nested Krylov methods. We have demonstrated the benefits
of nesting inexact Krylov subspace methods for a Schur complement system that occurs in
a model that describes global ocean circulation. As part of the multiplication of the Schur
complement with a vector, a linear system has to be solved, for which we used Bi-CGSTAB.
The reduction in the total number of Bi-CGSTAB iterations for the nested Krylov methods
flexible GMRES and GMRESR, is very large in comparison with normal GMRES. This can
(partly) be explained by the fact that the matrix-vector products in the inner iterations can
be evaluated to much lower precision than the ones in the outer loop.

Our approach in this paper was motivated by practical considerations and justified with
many theoretical results. Although it is reasonably well understood why a relaxation strategy
works, there still remain important questions to be answered. Among these we mention the
fact that it is not well known how the relaxation method influences the convergence.
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A Appendix

For convenience we assume in this appendix that a vector is appended with additional zeros
if this is necessary to make dimensions match. In this appendix we prove (4.9). In its proof
we need the Arnoldi relation

AVk = Vk+1T k, with Vke1 = b,

and the fact that the GCR residuals are equal to the GMRES residuals given our assumption
of exact arithmetic and matrix-vector products. Assume that T k has full rank and define the
vector ~γk = (γ0, . . . , γk)∗ ∈ Rk+1 such that ~γ∗kT k = ~0∗ and e∗1~γk = 1. It was shown in [22] that

rk = ‖~γk‖−2
2 Vk+1~γk and rF

k = γ−1
k Vk+1ek+1, (A.1)
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where rk and rF
k are, respectively, the residuals of the corresponding GMRES and FOM

process. The relation between the vector ~γk and the residuals can be expressed for the
residuals rj with j = 0, . . . , k − 1 by the relation

Rk = VkΥkΘ−2
k with Υkej+1 = ~γj and Θk = diag(‖~γ0‖2, . . . , ‖~γk−1‖2).

This gives us a QR-decomposition for the matrix Rk which we need in the following lemma.

Lemma A.1. For exact GCR without preconditioning we have that

S−1
k e1 = (ARk)†r0 = Θ2

kΥ
−1
k T †

ke1 and e∗j+1Θ
2
kΥ

−1
k =

‖~γj‖2
2

γj
e∗j+1 −

‖~γj‖2
2

γj+1
e∗j+2. (A.2)

If A = A∗ then

e∗j+1Θ
2
kΥ

−1
k =

‖~γj‖2
2

~γ∗j Tk~γj
~γ∗jT k (A.3)

Proof. As observed we have that ARk = AVkΥkΘ−2
k . This gives

(ARk)†r0 = (AVkΥkΘ−2
k )†r0 = Θ2

kΥ
−1
k (AVk)†r0 = Θ2

kΥ
−1
k T †

ke1.

The second equality in (A.2) follows using the observation that Υk = diag(~γk−1)J−1
k where

Jk is lower bidiagonal with −1 on its subdiagonal and 1 on its diagonal. The statement for
A = A∗ follows from the observation that in this case the minimal residuals form an A-
orthogonal basis, or equivalently, Υ∗

kTkΥ = ∆k where ∆k is diagonal with ∆j+1,j+1 = ~γ∗jTk~γj

and using that ~γ∗jTk = ~γ∗j T k.

Using this lemma we get for A = A∗ > 0:

|e∗j+1S
−1
k e1| = |

~γ∗jT kT
†
k~γj

~γ∗jTk~γj
| ≤ ‖A−1‖2.

This is equal to our already presented bound in Section 2 for CR. To bound the elements of
the vector T †

ke1 we can use the observation that the Hessenberg matrix T k is equal to the
generated Hessenberg matrix for an exact GMRES process applied to the matrix T k with
starting vector e1. Now we can use the presented bounds in Section 2 (or the equivalent ones
from [22, 19]). For general matrices A this gives

|e∗j+1S
−1
k e1| ≤ ‖T †

k‖2

(
‖~γj‖2

|γj |
+
‖~γj‖2

|γj+1|
‖~γj‖2

‖~γj+1‖2

)
≤ ‖A−1‖2

(‖rF
j ‖2

‖rj‖2
+
‖rF

j+1‖2

‖rj‖2

‖rj+1‖2

‖rj‖2

)
.

In the last inequality we have used (A.1).
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