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Abstract

This paper deals with numerical approximation of the two dimensional Poincaré equa-
tion that arises as a model for internal wave motion in enclosed containers. Inspired by
the hyperbolicity of the equation we propose a discretisation particularly suited for this
problem, which results in matrices whose size varies linearly with the number of grid
points along the coordinate axes. Exact solutions are obtained, defined on a perturbed
boundary. Furthermore, the problem is seen to be ill-posed and there is need for a regu-
larisation scheme, which we base on a minimal-energy approach.
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1 Introduction

This paper deals with efficient numerical computation of internal wave phenomena in two
dimensional enclosed domains. In contrast to the usual surface waves, internal waves are a
type of wave that propagate through a fluid volume. The mechanisms enabling these waves
are either rotation or stratification. Efficient numerical models would be of use in various
areas of (geophysical) fluid mechanics. One may think of the rotating core of the earth, or
the oceans with their density stratification.

The governing equation can be conveniently expressed in terms of the stream function Ψ̃
(see [18]),

∂2Ψ̃(x,z)
∂x2 − λ2 ∂2Ψ̃(x,z)

∂z2 = 0 in Ω̃
Ψ̃(x, z) = 0 at ∂Ω̃.

(1)

In this equation λ ∈ R is a parameter corresponding to the frequency at which the waves are
forced. The stream function is defined by

(u(x, z), v(x, z)) ≡ (−∂Ψ̃(x, z)
∂z

,
∂Ψ̃(x, z)
∂x

),
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2 Numerical solution of the Poincaré equation

where (u(x, z), v(x, z)) is the velocity vector at a point (x, z). The fluid flows along stream-
lines, curves of constant magnitude of the stream function. The boundary ∂Ω̃ is a simple
closed curve in the (x, z) plane. As customary in fluid dynamics, the z-axis points upwards.

In a three dimensional setting one may derive the equation Ψxx + Ψyy − λ2Ψzz = 0, this
equation is commonly called the Poincaré equation, after [3] who recognised Poincaré as the
author who firstly described the equation in [20]. Although (1) is a reduction of the original
three dimensional problem, we will still refer to it as the Poincaré equation. Some authors
prefer the term ’wave equation’, but we like to stress the absence of a time-like coordinate.
This dramatically changes the nature of the problem, instead of an initial value problem we
have a boundary value problem.

In this paper we analyse the solvability of (1) in sections 2 and 4. Section 3 extends the
problem to non-zero values on the boundary. In section 5 we develop an efficient discretisa-
tion scheme. We continue in section 6 where we will show that the differential equation plus
boundary conditions constitute an ill-posed problem. We propose a regularisation procedure
for the discretised problem, based on minimisation of the energy (section 7), to obtain mean-
ingful solutions. We conclude by presenting some results of the numerical approximation and
regularisation, applied to a representative model geometry.

Previous work on numerical determination of internal waves include [4] and [13] who use
finite differences respectively finite element methods. Later attempts use the characteristics
of the differential equation, see for example [5], [6] or [7]. Recent works are that of [22] or [23],
who examine the special case of the spherical shell and [18] where a ray-tracing approach is
taken. The existence of wave attractors and ill-posedness of the problem is recognized.

Our approach is different, we allow a large class of polynomial domains. Furthermore, we
minimise an energy, which acts as a regularisation technique that deals with the ill-posedness
of the problem. Previously, authors relied on the inclusion of viscosity as a regularisation
technique. The algorithmical approach of [18] does not use regularisation to obtain smooth
functions, but instead it gives a recipe for obtaining function values at selected points. Also,
this method requires the determination of fundamental intervals (see section 2), for which
there is no general method available. We avoid the use of fundamental intervals. Finally, we
believe that in a three dimensional setting the use of a regularisation method is of even greater
importance. We expect the problem to be ill-posed to a higher degree, i.e. more sensitive to
disturbances in the relevant parameters, since the behaviour of characteristics is more com-
plex. Also, in principle our fundamental interval-free discretisation method can be generalised
to three dimensions. We no longer have a convenient separation of variables, but the principle
of discretisation on the boundary only, by considering the mapping of characteristics, is still
viable.

Another regularisation technique is inclusion of viscosity in the governing equations. In
a physical context this viscosity is a given parameter which is usually very small, which calls
for a fine mesh. When the discretisation is refined, there will be more solutions that can be
represented on the grid. The existence of many nearby solutions (nearby in parameter space)
will still render the problem ill posed, perhaps not formally, but certainly from a numerical
point of view. These issues will be addressed in the forthcoming paper [24]. Also the delicate
dependence of the solution on the shape of the boundary, even in idealised domains, calls
for a regularisation technique that is more sophisticated than a fixed viscosity. An energy
minimising regularisation procedure like we suggest may perform that function.

This preprint is an extended version of [25], this version includes appendices that were
not in the original paper.
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2 The Poincaré equation

In this section we will analyse the Poincaré problem and summarise some previous work.
Most importantly, the nature of the solution is seen to be highly dependent on the shape of
boundary. There may be no solution at all, or an infinite number of solutions. Furthermore,
almost every solution exhibits a fractal structure.

Let us first simplify the equations (1) by recognising the hyperbolic nature and introducing
characteristic coordinates (ξ, η) defined by

(ξ(x, z), η(x, z)) = Ξ(x, z) ≡ (x− λ−1z, x+ λ−1z).

This transforms the domain into Ω = ΞΩ̃ and it transforms (1) to

∂2Ψ(ξ,η)
∂ξ∂η = 0 on Ω,

Ψ(ξ, η) = 0 at ∂Ω.
(2)

The solvability of (1) is different from (2), there are differing smoothness requirements on
solutions. We will however be concerned with the latter equation and will not address the
issue whether solutions of (2) are also solutions to (1). Let us now define a class of domains.

Definition 1 (Characteristically convex domains). We call a domain Ω characteristi-
cally convex, or convex with respect to the characteristics, if every line in the ξ or in the η
direction intersects the boundary ∂Ω in at most two points.

Note that convexity in the usual sense can be expressed by asking that every line inter-
sects the boundary in at most two points. In this light characteristic convexity is a weaker
constraint, every convex domain is characteristically convex. We can now state the following
theorem.

Theorem 1. Every solution of the Poincaré equation (2) on a characteristically convex do-
main Ω is of the form Ψ(ξ, η) = F(ξ) + G(η).

Proof. Choose the origin somewhere in Ω and integrate∫ ξ

0

∫ η

0

∂2Ψ(r, s)
∂r∂s

dr ds = 0.

This yields
Ψ(ξ, η)−Ψ(ξ, 0)−Ψ(0, η) + Ψ(0, 0) = F̃(ξ) + G̃(η),

for arbitrary G̃ and F̃ . The integration can be carried out, since by characteristic convexity
the rectangle (0, ξ) × (0, η) is in Ω if the origin and (ξ, η) are in Ω. If F̃(ξ) and G̃(η) are
arbitrary then also F(ξ) = F̃(ξ) + Ψ(ξ, 0)−Ψ(0, 0) and G(η) = G̃(η) + Ψ(0, η) are arbitrary
and we have

Ψ(ξ, η) = F(ξ) + G(η).

Let c(t) : [0, L] → ∂Ω be a piecewise Ck, globally continuous, parametrisation of the
boundary,

∂Ω = {(ξ(t), η(t))|(ξ(t), η(t)) = c(t), 0 ≤ t < L, c(0) = c(L)},
where L is the total Euclidean length of ∂Ω. We consider domains with the following prop-
erties
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• We only allow simply connected, domains Ω, with closed boundary ∂Ω as described
above, that are convex with respect to the characteristics.

• Segments of the boundary are not allowed to be parallel to the coordinate axes, i.e. the
sets {t|c′(t)T e1 = 0} and {t|c′(t)T e2 = 0} have measure zero within ∂Ω.

Next we define the vertices of the domain,

Definition 2 (Corners). If limt↑a c
′(t) 6= limt↓a c

′(t) we call the point c(a) a corner point or
vertex. Define the characteristic rectangle R = (ξ−, ξ+) × (η−, η+) as the smallest rectangle
containing Ω. We call the four points Ω̄ ∩ R̄ the extreme vertices.

The solution to the Poincaré equation can be extended to the characteristic rectangle.

Theorem 2 (Extension of the solution). Every solution to the Poincaré equation on
Ω̄ = Ω ∪ ∂Ω is extendible to R̄ = [ξ−, ξ+]× [η−, η+].

Proof. For every point (ξ, η) ∈ R̄ \ Ω̄ it is possible to find ξ′ and η′ such that (ξ′, η) ∈ Ω̄
and (ξ, η′) ∈ Ω̄. These points are inside the domain and we have Ψ(ξ′, η) = F(ξ′) + G(η)
and Ψ(ξ, η′) = F(ξ) + G(η′). Thus F(ξ) and G(η) exist and can be used to define Ψ(ξ, η) =
F(ξ) + G(η).

We have one extra constraint from the physics of the internal wave problem. The boundary
condition Ψ = 0 comes from the fact that there should be no flow through the boundary,
expressed by (u, v) · n = 0 where n is the outward unit normal to the boundary. At a corner
point the normal is not defined, but physically the no-flow condition dictates that (u, v) = 0.
We will add this as an extra constraint. In terms of the stream function this becomes

∇Ψ = 0 at a corner point. (3)

Since we extended the domain to R̄ the gradient operator is well defined except for the at
most four extreme vertices where we may use one sided derivatives for F or G.
We know that the stream function Ψ may be scaled, multiplicatively, by any constant, thereby
scaling the velocities. We do not care about the difference between Ψ and cΨ, and we normalise
the stream function as

‖Ψ‖2L2(Ω) =
∫

Ω
Ψ2(ξ, η) dξ dη =< F + G,F + G >L2(Ω)= 1. (4)

This constraint also rules out the trivial solution Ψ = 0, and by boundary conditions the
constant solution Ψ = c. Furthermore, we want a unique representation of Ψ in terms of F
and G. Suppose there is another pair F̃ , G̃, for which

F + G = F̃ + G̃ =⇒ F − F̃ = G̃ − G.

Since ξ and η may be independently varied, we have that F = F̃ + c and G = G̃ − c for an
arbitrary constant c. In order to have a unique constant we normalise

< F , 1 >L2([ξ−,ξ+])= 0. (5)
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The Poincaré problem is now reduced to finding F and G for which

F(ξ) + G(η) = 0 at ∂Ω,
F ′(ξ) = G′(η) = 0 at a corner point,
< F , 1 >L2(Ω) = 0,
< F + G,F + G >L2(Ω) = 1,

(6)

with F ∈ C1 : [ξ−, ξ+]→ R and G ∈ C1 : [η−, η+]→ R.
We will show that the first requirement in (6) induces a map from the boundary to itself.
This was firstly noted by [14] and later constructively applied in [18]. This can be observed
by considering function values G(η1) = −F(ξ1) at a boundary point (ξ1, η1). When tracing
a line in the ξ-direction a new boundary intersection (ξ2, η2) is found. Of course η2 = η1

and we find F(ξ2) = −G(η2) = −G(η1) = F(ξ1). Carrying through with this procedure we
find that one function value on the boundary determines function values at boundary points
(ξ1, η1), . . . , (ξn, ηn). Much work has been done in studying the Poincaré problem by viewing
the above construct as a dynamical system. We will review the main results on existence of
solutions in the case that the boundary satisfies the assumption of characteristic convexity.
In this case we can follow ([14]) and introduce the following homeomorphisms:

• T+ assigns to a boundary point the unique boundary point with the same η-coordinate,
with the exception that the top and bottom extremal vertices are mapped onto them-
selves.

• T− assigns to a boundary point the unique boundary point with the same ξ-coordinate,
with the exception that the left and right extremal vertices are mapped onto themselves.

• F = T− ◦ T+ : ∂Ω→ ∂Ω.

Note that F is an orientation preserving map. We now define an orbit as

O(P ) ≡ {P, T+P, FP, (T+ ◦ F )P, F 2P, . . .}, where P ∈ ∂Ω.

Let S(P ) ≡ c−1(P )|[0,L) be the coordinate (by arc length distance) of a point P on ∂Ω. By
characteristic convexity of the boundary, we can lift the homeomorphism F to a continuous
increasing function f : R→ R such that

f(s+ L) = f(s) + L, s ∈ R,

and
S(FP ) = f(S(P ))( mod L), P ∈ ∂Ω.

If we now set fk(s) = f(fk−1(s)) where f1(s) = f(s) we can define the rotation number α(F )
of F by

α(F ) ≡ lim
n→∞

fn(s)
n
∈ [0, L).

The rotation number can be shown to exist and to be independent of s ([8]). A classical
theorem due to ([14]) is

Theorem 3. The homeomorphism F has three separate types of behaviour in a characteris-
tically convex domain
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A. We have α(F ) = m/n for some m,n ∈ N and Fn = I. This case is often called a
resonance, or modal solution.

B. We have α(F ) = m/n for some m,n ∈ N , but Fn 6= I. The dynamical system defined
by F has a finite number of attracting fixed points. We call solutions of the Poincaré
equation in this case wave attractors.

C. α(F ) ∈ R \ Q, then F k has no fixed point for any k. There is only one orbit that fills
the entire boundary. This is the ergodic case.

Note that for a given α(F ) the values of n and m are not unique in the first two cases.
Multiples km and kn of m and n will yield the same rotation number and will not change the
solution type. The solvability of the problem (2) depends on the case in which the rotation
number falls. This delicate dependence on the rotation number, and thus on the geometry
of the domain, makes the problem ill-posed. This will be of concern when considering a
numerical approximation technique. To proceed, we need the concept of fundamental interval
([18], [15]). The fundamental interval can be defined as the set M ⊂ ∂Ω for which every
orbit has at most one point in M and all orbits that have a point in M constitute the entire
boundary. The following definition by [17] gives a more constructive approach:

Definition 3 (Fundamental interval). Denote by (P,Q)∂Ω the open set of points in between
P and Q (using anti clockwise orientation) on the boundary. Set (P,Q]∂Ω ≡ (P,Q)∂Ω ∪ Q,
[P,Q)∂Ω ≡ (P,Q)∂Ω ∪P and [P,Q]∂Ω ≡ (P,Q)∂Ω ∪Q∪P . Denote the vertices by P0, . . . , P3,
with P0 the uppermost extreme vertex and P1, . . . , P3 the rest of the vertices in anti clockwise
order. Now define, for the same n as used in Theorem (3), in the case A, the following

• for n even: P ∗ as the point from the finite set O(P1) ∩ (P0, P1]∂Ω such that O(P1) ∩
(P0, P

∗)∂Ω = ∅,

• for n odd: P ∗ as the point from the finite set O(P2) ∩ (P0, P1]∂Ω such that O(P2) ∩
(P0, P

∗)∂Ω = ∅.

The fundamental interval 1 is then given by M = [P0, P
∗). Define Mξ and Mη by orthogonal

projection of M on the ξ and η axis.

In order to clarify the above definition an example has been constructed in Figure 1. It was
proved for the resonant case that the fundamental interval must be supplied with boundary
conditions (for either F or G) in order to obtain an unique solution. It is likely that the
concept of the fundamental interval is also useful in the case (B), the attractor regime. In
[18] a procedure is suggested for several geometries. In the following we will work with the
assumption that the fundamental intervals also exist in the wave attractor case.

When in the following discussion we speak of Dirichlet boundary conditions, we mean
choosing a function h(ξ) and setting F(ξ) = h(ξ) on Mξ. This implies the value for G on
Mη by the boundary condition F(ξ) + G(η) = 0. The solvability of (2), together with this
additional boundary condition, is different for the three cases in Theorem 3. Some results are
summarised in the following theorem.

Theorem 4 (Solvability in L2). The solvability of the Poincaré problem (2) in L2(Ω) is
dependent on the cases, and the value of n, from Theorem 3 as follows

1In [17] the fundamental interval is called generating set.
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P1

P2

P3

P∗

M

ξ

η

P0P0

P1

P2

P3
P∗

M

η

ξ

Figure 1. This figure clarifies the fundamental interval as introduced in Definition 3. At the right is
shown a geometry with n = 5, which is easiest to see by following the closed orbit (solid line). Of course
one may also consider the dashed and dotted lines that connect O(P1) = O(P0), respectively O(P2) = O(P3).
Keep in mind that T+P0 = P0, T−P1 = P1, etc. The orbit O(P2) is indicated by circles. The left picture is a
case where n = 2. In both pictures the set M = [P0, P

∗) is the fundamental interval.

A. If Dirichlet data h(ξ) for F(ξ) are supplied on Mξ, then we have an unique solution
([15], Theorem 6). In this case there exist piecewise Ck coordinate transforms ξ → p(ξ)
and η → q(η) that transform the domain to a rotated rectangle ([16], [17]). In (x, z)
coordinates this corresponds to a non-rotated rectangle for which the solutions are known.
The solutions on the original domain are then found using inverse coordinate transforms.

B. According to ([9], Theorem 2, Remark 2) the problem is solvable.

C. From ([9], Theorem 5, Remark 5) there exists only the trivial solution in this case.

The conclusions in this theorem can be extended to the situation where an inhomogeneous
term f(ξ, η,Ψ) is added to (2). The conclusions do have to be modified, for example, solutions
are possible in the case (C) if there exists a C(α) > 0 such that |α −m/n| ≥ C(α)/n2, for
any rational number m/n where α is the rotation number ([9]).

3 Boundary forcing

The Poincaré problem as posed before describes free vibrations, i.e. eigenmodes of the system.
In this case however the term ’eigenmode’ may be inappropriate since the spectrum often has
continuous parts, or the spectrum might be dense in an interval. The spectral properties of
the Poincaré problem are more extensively investigated in [21].

We present two approaches for selecting relevant solutions from the infinitude of possi-
bilities. Firstly we present an energy minimizing regularisation procedure for the Poincaré
equation

Ψxx − λ2Ψzz = 0 in Ω
Ψ = 0 at ∂Ω.

(7)

This leads to a minimisation problem of the form

xτ = argmin
(
‖Ax‖22 + τ2‖Lx‖22

)
,

where A discretises the Poincaré problem and L measures the energy of the system. Sections
5 and 6 deal with this regularisation problem.
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One may also hold the view that the eigenmodes that occur in nature are determined
by some kind of forcing. The simplest case is a forcing operating on the boundary of the
domain only. Examples include tidal forcing on ocean surfaces or some mechanical forcing.
The problem to be solved is in this case

Ψxx − λ2Ψzz = 0 in Ω,
Ψ = h(ξ, η) at ∂Ω,

(8)

leading to a minimisation problem of the form

xτ = argmin
(
‖Ax− b‖22 + τ2‖Lx‖22

)
, (9)

where b is the discrete discretised right hand side h. Note that any solution of (7) may
be arbitrarily added to a solution of the forced problem. In section 2 it was shown that
the characteristics lead to functional relationships between F and G. The forced problem
similarly yields functional dependencies, involving the function h. We add a bar to solutions
of the forced problem from here on. In terms of F̃ and Ḡ the problem reads

F̄ + Ḡ = h(ξ, η), at ∂Ω. (10)

The restrictions on G and Ḡ induced by the characteristic connecting (ξ1, η1) with (ξ1, η2)
look like

Ḡ(η1)− Ḡ(η2) = h(ξ1, η1)− h(ξ1, η2) for forced problem,
G(η1)− G(η2) = 0 for the unforced problem,

(11)

and we see that indeed G + Ḡ solves the forced problem. The only open question is the role
of the fundamental interval and the manner in which the fractal nature of solutions presents
itself to us in the forced setting. In the homogeneous problem we would, for example, conclude
from (11) that G(η1) must be equal to G(η2). Further analysis, as sketched above, revealed
that there exist fundamental intervals where it is necessary and sufficient to prescribe G (or
F). Any homogeneous solution that we add to the forced problem will have fundamental
intervals and associated fractal structure. Working out the functional relations for the forced
problem reveals that

F̄i + Ḡi = h2i

F̄i + Ḡi+1 = h2i+1,
(12)

where Fi = F(ξi), Gi = G(ηi) and the hi are the function h, evaluated at the points visited
while tracing the characteristics. For Fi and Gi this implies

Ḡi+1 = Ḡi + h2i+1 − h2i,

F̄i+1 = F̄i + h2i+2 − h2i+1

for the relation between the function values separated by one step. Suppose we know F̄0, Ḡ0,
we may then solve the recursion and obtain

Ḡi = Ḡ0 +
2i−1∑
j=0

(−1)j+1hj

F̄i = F̄0 +
2i∑

j=1

(−1)jhj ,
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which tells us that boundary values are alternately added and subtracted from the initial
values G0 and F0. This behaviour was noted before in [1]. Note that by adding together
the expressions we recover (12), as required. If the prescribed function h is non zero in the
neighbourhood of the attractor, then the limit for i→∞ is likely to be non-existent. Just like
in the unforced case we have fundamental intervals where values of F̄ or Ḡ may be arbitrarily
prescribed. The forced problem is still under determined and sensitive to the shape of the
domain, thus it is still an ill-posed problem.

4 Structure of solutions

Except for the classification of solutions into attractors and resonances we can get further
information by viewing the Poincaré equation as a Hamiltonian system. Choose any closed
curve (ξ(t), η(t)) ∈ R. Denote the derivative with respect to time by a dot. Take the stream
function as the Hamiltonian,then

Ψ̇(ξ, η) = F ′(ξ)ξ̇ + G′(η)η̇, (13)

At curves {(ξ(t), η(t))|Ψ̇ = 0} the stream function Ψ is constant. Since ∂Ψ
∂ξ = F ′ and ∂Ψ

∂η = G′
we see from (13) that this is the case when(

ξ̇
η̇

)
=

(
G′(η)
−F ′(ξ)

)
(14)

This system is in Hamiltonian form. We proceed by linearising F and G around (ξ, η) = (0, 0),
giving

F ′(ξ) = F ′(0) + ξF ′′(0) +O(ξ2),
G′(η) = G′(0) + ηG′′(0) +O(η2).

We suppose that F and G are non-degenerate at the origin, i.e. F(0)′′ 6= 0 and G(0)′′ 6= 0.
The system (14) is now transformed to(

ξ̇
η̇

)
=

(
0 G′′(0)

−F ′′(0) 0

) (
ξ
η

)
+

(
G′(0)
−F ′(0)

)
+

(
O(η2)
O(ξ2).

)
The coordinates may be shifted, (x, y) = (ξ + a, η + b) to make the problem homogeneous.
The choices a = −F ′(0)/F ′′(0) and b = G′(0)/G′′(0) lead to(

ẋ
ẏ

)
= A

(
x
y

)
+

(
O(y2)
O(x2)

)
, whereA =

(
0 G′′(0)

−F ′′(0) 0

)
.

The eigenvalues of A are λ1,2 = ±
√
−F ′′(0)G′′(0) which makes the level set of Ψ(x, y) either

of saddle or of center type. We call points where ∇Ψ = 0 critical points, this happens for
example at corner points. At these points we have potentially a local extremum for Ψ and
the shift is a = b = 0.
However, if the origin is not critical, but degenerate (F ′′(0) = G′′(0) = 0), then it is easy to
see that

ξ = G′(0)t+ tO(η2) + c1,

η = −F ′(0)t+ tO(ξ2) + c2,
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for arbitrary constants c1 and c2. Close to the chosen origin the level sets of Ψ are approxi-
mately straight lines. If we have

F ′(0) = G′(0) = 0 and F ′′(0) = 0 or G′′(0) = 0, (15)

then we need to look at higher order expansions. We will not consider this situation here.
We summarise the results,

• Suppose Ψ(0, 0) = c and F ′′G′′ < 0, then the level set of Ψ = c is a hyperbola close to
the critical point where ∇Ψ = 0, this is a saddle point.

• Suppose Ψ(0, 0) = c and F ′′G′′ = 0, then the level set of Ψ = c is a curve with slope
F ′(0)/G′(0) at the origin which is not a critical point.

• Suppose Ψ(0, 0) = c and F ′′G′′ > 0, then the level set of Ψ = c is an ellipse around the
extremum where ∇Ψ = 0. This extremum can only occur in the interior of the domain.

All results are valid for (ξ, η) ∈ R, which excludes the extreme vertices. The invariance of G
and F along, respectively, the ξ and η coordinate axes leads to the following theorems.

Lemma 1. If we are not in the case (15), then every corner point is a saddle point, including
the extreme vertices if they are corner points.

Proof. Every corner point is a critical point, since ∇Ψ = 0 by (3). Take one sided derivatives
at the extreme vertices. Center points are excluded since we are on the boundary. Since we
are not in the case (15) the only option is a saddle point.

Now, let l(P ) be a tangent vector to the boundary at a point P ∈ ∂Ω, let l be multi valued
at corner points.

Theorem 5. If a point P at the boundary is a saddle point, then the points in the sequences
(T+P, T−T+P, . . .) and (T−P, T+T−P, . . .) are also saddles. If a sequence has a finite number
of distinct members, then the final point Q is such that lT (T−Q)e2 = 0 or lT (T+Q)e1 = 0.

Proof. If P is a saddle then F ′ = 0 and F ′′ 6= 0. At the boundary point D = T−(P ) this also
holds. Furthermore, at this point ∇Ψ(D) · l(P ) = 0. If the η component of l(D) is not zero,
it must be the case that G′ = 0. We thus have ∇Ψ = 0, the point is a critical point. Since
center points cannot exist on the boundary the point must be a saddle. If the η component
of l(D) were zero the procedure stops. If not, then we continue with the boundary point with
the same η coordinate as D.

Theorem 6. The points (ξ1, η1) and (ξ2, η2) in R are critical points if and only if (ξ1, η2)
and (ξ2, η1) are critical points in R.

Proof. Again, use the invariance of F and G in the η and ξ directions to find that ∇Ψ = 0 at
(ξ1, η2) and (ξ2, η1) and that F ′′G′′ 6= 0 at these points.

How these results help us is perhaps best demonstrated by some examples.
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Example 1 (The circle ξ2 + η2 = 1). The simplest solution would be one center in the
middle. The extremal points with the same ξ and η coordinates have lT e1 = 0 or lT e2 = 0 and
thus need not be saddle points. If we allow two critical points at the boundary, they must be at
opposite extremal points or we have four critical points by Theorem 6. Of each saddle, one of
the branches is part of the boundary, while the other branch crosses the bounday. Connecting
each saddle to itself yields a critical point on the boundary that makes the boundary non-
smooth. Therefore, the two zero level set curves that point into the circle must be connected.
The circle is now divided in two cells, a center point must be inside each cell. One may
continue in this fashion to obtain more possibilities. These solutions correspond topologically
to the solutions given by [2].

Example 2 (The rotated rectangle). Consider a rectangle of width a and length 2a,
rotated over 45 degrees. By Theorem 5 the saddles at the corner points induce saddles at
the midpoints of the long sides of the rectangle. By Theorem 6 two critical points must exist
inside the domain. They can be centers, giving rise to a pattern with two cells. They can not
be saddles, the stable and unstable manifold would have no option but forming homoclinic
connections. Inside the loop there have to be centers which in turn induce saddles on the
boundary. This cannot be done without violating the flow directions.
By placing extra saddles on the boundary and centers in the domain one obtains j× 2j cells,
in accordance with the theory ([18]).

5 Discretisation

In this section we will develop a discretisation for equation (10). The discretisation will be
posed in the (ξ, η)-coordinate frame, since here the Poincaré equation becomes separable.
Approximations F̃ and G̃ of F and G will be sought in the the spaces Vξ ⊂ H1([ξ−, ξ+]) and
Vη ⊂ H1([η−, η+]), spanned by piecewise polynomial basis functions φi(ξ) respectively ψj(η).
In this basis we can write

F̃(ξ) =
∑n

i=1 fiφi(ξ) ∈ Vξ,

G̃(η) =
∑m

j=1 gjψj(η) ∈ Vη.
(16)

We now define our approximation Ψ̃ to Ψ by

Ψ̃(ξ, η) = F̃(ξ) + G̃(η). (17)

We propose a Galerkin orthogonality condition of the system (10) and try to find F̃ and G̃
such that the residual H = F + G − h is orthogonal to all test functions v1 ∈ Vξ and v2 ∈ Vη

on the boundary ∂Ω. First define on ∂Ω the line integral

(u, v) =
∫

∂Ω
uv dl.

The orthogonality relation becomes

(H, v) = (F̃ + G̃, v)− (h, v) = 0, ∀v ∈ V,

where V = {w(ξ) + v(η)|w ∈ Vξ, v ∈ Vη}. Equivalently, the orthogonality relation can be
written

(F̃ , v1) + (G̃, v1) = (h, v1) ∀v1 ∈ Vξ,

(F̃ , v2) + (G̃, v2) = (h, v2) ∀v2 ∈ Vη.
(18)
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Figure 2. This figure shows a sample geometry in the left panel. To the right is a plot of the non
zero elements of the matrix A. The geometry stands out clearly in the blocks A2 and AT

2 (see (20)). The
sub-matrices A1 and A3 are tri-diagonal since standard piecewise linear basis functions were used.

We have to test against all functions in Vξ and Vη, we choose the basis functions φi and ψj .
This yields ∑n

i=1 fi(φi, φj) +
∑m

i=1 gi(ψi, φj) = (h, φj), j = 1, . . . , n∑n
i=1 fi(φi, ψj) +

∑m
i=1 gi(ψi, ψj) = (h, ψj), j = 1, . . . ,m.

(19)

After choosing suitable spaces Vξ and Vη we can work out the integrations in (19). This results
in a matrix vector equation which we need to solve for f = (f1, . . . , fn)T and g = (g1, . . . , gm)T :(

A1 A2

AT
2 A3

) (
f
g

)
= A

(
f
g

)
=

(
h1

h2

)
. (20)

After discretisation, the dimension of the matrix A will be much smaller than the dimension
that would have been obtained by using, for example, standard finite element or finite dif-
ference methods on (6). For a resolution of m × n grid points we will only require matrices
of dimension m+ n, whereas standard methods yield a dimension of order mn. It is nice to
see that the nonzero pattern of A2 mimics the shape of the boundary. This is clear, since
if (A2)ij 6= 0 then the intersection of the supports of φi and ψj contain the boundary. The
sub-matrices A1 and A3 are banded since only the supports of ψi−N , . . . ψi+N overlap the
support of ψi, with N depending on the specific basis functions used. See Figure 2 for an
example.

The calculation of the matrix A is detailed in Appendix A, for the case of piecewise linear
functions and a polygonal domain Ω.
The constraint < F , 1 >L2([ξ−,ξ+])= 0 is easily discretised as

(
n∑

i=1

eTi )f = 0.

We will express this in matrix form as Cx = 0, with C ∈ R2(n+m) and x the concatenation of
the vectors f and g. The constraint ‖Ψ‖L2(Ω) = 1 can be discretised as ‖Nx‖22 = 1. We do
not need N explicitly, since if we have a solution x with ‖Nx‖ = 1, then there is a constant c
such that ‖cx‖22 = 1. The precise value of c is immaterial, as long as the norm of the solution
is fixed at some value, therefore we fix the norm using

‖x‖22 = 1. (21)
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Finally, we need to discretise the constraint at corner points; ∇Ψ = 0. We use finite differences
as follows

F̃ ′(ξi) =

{
fi+1−fi

ξi+1−ξi
if ξi = ξ−,

fi−fi−1

ξi−ξi−1
otherwise.

The derivative of G̃(η) is defined accordingly. We write a matrix vector equation,

Px = 0. (22)

Rows of P express that fi = fi−1 (or fi = fi+1 at ξi = ξ−) or gj = gj−1 (or the exception
gj = gj+1 at ηj = η−) if (ξi, ηj) is a corner point.
Note that solutions to the discretised problem are exact solutions to the Poincaré equation,
since they are of the form F(ξ) + G(η). If the residual is non-zero, then the zero level set
of this solution will not coincide with the boundary ∂Ω. We obtain an exact solution on
a modified boundary. Unfortunately the perturbation of the zero level set of F + G is not
necessarily small, even though F + G is small on ∂Ω. The boundary might ’fold open’ if the
zero level set was at a saddle point and follows nearby level sets in the discretised case.

6 Ill-Posedness and uniqueness

After discretisation of the Poincaré equation with Ψ = 0 at the boundary, the problem
reduces to solving Ax = 0. The ill-posedness of the Poincaré equation is reflected in the
matrix A. It has singular values rapidly decreasing towards zero. There are many singular
values close to zero, their number increasing with increasing grid size. To these singular values
correspond singular vectors that are close to the null space of A in the sense that the residual
‖Av‖22 is small for such a singular vector v. We exclude the trivial solution and we pose the
problem as a minimisation of ‖Ax‖22. There is a large sensitivity of the solution x to small
perturbations in the matrix A. This is the discrete analogue of the delicate dependence of the
solution to changes in the boundary. We will find solutions close to solutions from the infinite
dimensional solution space of the Poincaré equation, yet we cannot control which discrete
vectors x we obtain. The specific vectors found are dependent on the discretisation. When
the discretisation is slightly changed, for example by adding some grid points, completely
different valid solutions may emerge (see Fig. 3).

Typically, continuous ill-posed problems have no gaps in their spectrum. The discretised
problem tends to inherit this property, and a truncation of the singular values in order to
decide what does or does not belong to the kernel of A becomes infeasible, since there is no
clear cutoff point.
Also, we know that there is a delicate dependence of the solvability on the rotation number
of the domain. Slight changes in the parameter λ might change the nature of the solution.
We anticipate the possibility of contamination of the numerical null space by unwanted com-
ponents of solutions corresponding to nearby values of λ.
We use a regularisation method that in some sense relaxes the requirement that F + G = 0
at the boundary. We find solutions where F + G is small at the boundary. Equivalently we
can say that we solve the Poincaré equation on a domain that is slightly perturbed from Ω,
the level curve of Ψ = 0 is likely to be close to ∂Ω. Instead of asking that F + G be zero
at boundary we try to minimise this quantity, while at the same time we try to obtain a
smooth solution by minimising the energy. The balance between these two goals is tuned
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Figure 3. This figure illustrates that a small change in the discretisation can have substantial effects on
the solution. Plotted are the approximations to F and G. The panel to the left has 200 grid points in both
the ξ and η direction, the right panel has one grid point less in both direction. The two solutions are quite
different.

using a regularisation parameter. This parameter is picked using a tool called the L-curve
(see e.g. [10]), which we discuss in section 6.1. The important point is that a small value of
the regularisation parameter indicates that little smoothing was required, the value of λ is
probably very close to a resonance. If in contrast the value is rather high, then we must be
far away from a resonance. Maybe we are in the attractor case where high energy is induced
by the fractal structure, or maybe the chosen value of λ does not yield solutions at all. Vi-
sual inspection of the solutions and interpretation of the L-curve usually gives information on
these issues.
There exists the freedom to specify boundary conditions on the fundamental interval, which
has not been incorporated in our method of discretisation and solution. We will rely on our
numerical method to fill the fundamental interval. The first reason for this is that funda-
mental intervals are a property of the specific geometry under consideration and need to be
established whenever a new geometry is considered. A second reason is that fundamental
intervals are not unique. If M is a fundamental interval, then any F kM is also a valid funda-
mental interval. The question arises to which interval Dirichlet boundary conditions should
be applied. The interval that contains the largest number of grid points would be a sensible
choice, yet it is not clear if the solution is now unique in any numerical sense.
We will assume that the state possessing minimal kinetic energy is the physically relevant
solution. Additionally the buoyancy energy could be included, we will not do this for ease of
presentation. One can think of the energy as an ordering principle of the solution space. We
define the total kinetic energy operator T̄ : C1(Ω)→ R in the (x, y) system by

T̄ Ψ̄ =
∫

Ω̄
∇Ψ̃ · ∇Ψ̃ dx dy,

which is, in characteristic coordinates

TΨ =
∫

Ω

[
(
∂

∂η
+

∂

∂ξ
)2 + λ2(

∂

∂η
− ∂

∂ξ
)2

]
Ψ2 1

2λ
dξdη

=
1
2λ

∫
Ω
(1 + λ2)

[
(F ′)2 + (G′)2

]
+ (1− λ2)F ′G′ dξ dη.
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We can eliminate the cross term by using partial integration in the form∫
Ω
(∂iu)v dA =

∫
Ω
(∂iv)udA+

∫
∂Ω
uvni dl,

where ∂i is the i-th partial derivative and ni the i-th component of the normal to the boundary.
For the cross term we can write either∫

Ω
F ′G′ dA =

∫
∂Ω
G′Fn1 dl or

∫
Ω
F ′G′ dA =

∫
∂Ω
F ′Gn2 dl.

For their sum we have
2

∫
Ω
F ′G′ dA =

∫
∂Ω
F ′Gn2 + G′Fn1 dl,

and since n = ±(F ′,G′), and F+G = 0 at the boundary, the integral equals zero. The energy
is now simply

TΨ =
(1 + λ2)

2λ

∫
Ω
(F ′(ξ))2 + (G′(η))2 dξ dη. (23)

Note that the energy is zero if the solution Ψ is constant. These solutions are excluded by
(4), which also makes sure that the stream function can not be scaled to get arbitrarily small
energy. We also incorporate the corner constraint (3). We formulate a minimisation problem:

minimise TΨ, in Ω, and
minimise Ψ, at ∂Ω, subject to
Ψ(ξ, η) = F(ξ) + G(η) in Ω
< F , 1 >L2([ξ−,ξ+])= 0,
‖Ψ‖L2(Ω) = 1,
F ′ = G′ = 0 at a corner point.

As we saw in section 5 this will lead to,

minimise ‖Lx‖22 energy minimisation,
minimise ‖Ax‖22 function minimisation at the boundary,
subject to Cx = 0 linear ’unique representation’ constraint,
and ‖x‖2 = 1 normalisation,
and Px = 0 linear ’corner point’ constraint.

(24)

The calculation of the matrix L is given in Appendix B. By analysing the singular value
decomposition of a matrix corresponding to an ill-posed problem one can conclude that so-
lutions corresponding to small singular values have many sign changes, and therefore possess
high frequency components (see [12] and the corresponding manual, which is also a good
introduction to regularisation techniques). Some smoothing will be required. The smoothing
is in the energy matrix L which contains discretisations of derivatives. If we have sufficient
minimisation of the energy, the solution will be smooth. However, ‖Ax‖22 and ‖Lx‖22 cannot
be minimised simultaneously. Also, by ill-posedness, there might exist a matrix close to A
with much better properties in the sense that the energy ‖Lx‖22 is much lower while the resid-
ual ‖Ax‖22 is only slightly higher. Taking these considerations into account we propose to
balance the residual ‖Ax‖22 and energy ‖Lx‖22 using a parameter τ . The regularised solution
xτ is then defined as

xτ = argmin(‖Ax‖22 + τ2‖Lx‖22), with ‖x‖22 = 1, Cx = Px = 0, (25)
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The L-curve approach requires the solution of (25) for a range of parameters τ . In practice
we choose for τ the numbers from the sequence 10k, 10k−1, . . . , 0 with k approximately -10 or
-15 (depending on the resolution of the grid). For lack of a better method of incorporating
the Px = Cx = 0 constraint we add them to the matrix A with a very large multiplicative
factor a,

xτ = argmin(‖

 A
aP
aC

x‖22 + τ2‖Lx‖22). (26)

In this way the constraints will certainly be satisfied, or the residual will become very large.
Note that the value of a depends on the magnitude of the elements of A, which makes it
dependent on the grid resolution. Solving the minimisation problem (26) is then equivalent
to finding the normalised singular vector corresponding to the smallest singular value of

B =


A
aP
aC
τL

 (27)

In this way the constraints will certainly be satisfied, or the residual ‖A′‖22 will become very
large.

6.1 The L-Curve

The choice of the value of the parameter τ is made using the L-curve. This is a continuous
curve parametrised by τ and given by {(x(τ), y(τ))|x(τ) = ‖Axτ‖22, y(τ) = ‖Lxτ‖22} where xτ

solves (26). The typical shape is that of an ’L’, as shown in Figure 4. This is an idealisation,
in reality the L-curve will often be much less pronounced. The ideal value of τ is found in
the ’elbow’ of the curve. Increasing τ would lead to a larger residual with only a slightly
smaller energy (and thus a little gain in smoothness). Decreasing τ would lead to a slightly
smaller residual, while the energy becomes very large, and we have less smoothness. In our
experiments (see Section 8) we often find L-curves which have a less sharp corner, the ideal
value of τ is not directly clear. Also, it might happen that the L-curve is not ’L’ shaped at all.
In these cases the curve can still be interpreted, and give us information on the solution. For
example some curves start horizontal, only to go down for very large values of τ . A mostly
flat curve tells us that the value of the regularisation parameter is insubstantial, the solution
has the same energy for every reasonable τ . The specific geometry under consideration did
not give us an ill-posed problem. This happens often in the resonant case.

7 Energy minimisation

In this section we will show that, in the presence of attractors, the energy diverges. Nev-
ertheless, we argue that the total energy is still a useful quantity. We can give qualitative
descriptions of the solutions that minimise the energy. These solutions will turn out to be
continuous and differentiable, which shows that minimising the energy is a useful idea. Firstly
we clarify the procedure by a one dimensional model.
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Figure 4. This figure shows a schematic L-curve parametrised by τ . On the horizontal axis is the residual,

representing the accuracy of the solution. On the vertical axis is the energy, representing the smoothness of
the solution.

7.1 A one dimensional example

As we will show later, there are features of the minimal energy solution to the hyperbolic
equation that can be predicted. The generic two dimensional case is rather complicated, for
this reason this section will give a two dimensional example that reduces to a one dimensional
model. The model will however exhibit the features that are also found in the full two
dimensional case. Some steps may seem rather trivial, yet they closely follow the more
complicated steps in the two dimensional case treated in Appendix C. Consider the wave
equation Ψxx − λ2Ψzz = 0 on a domain Ω with Ψ = 0 at the boundary ∂Ω. We also set the
normalisation constraint < Ψ,Ψ >= 1. The Poincaré equation is separable in any rectangle,
for illustration we use the square domain Ω = [0, 1]2. In this case the Poincaré equation with
the conditions stated above can be reduced to

fxx(x)
f(x)

= λ2 gzz(z)
g(z)

, in Ω, (28)

g(0) = g(1) = f(0) = f(1) = 0, (29)∫ 1

0
f2(x) dx

∫ 1

0
g2(z) dz = 1. (30)

We would like to find the solution that minimises the energy

E =
∫

Ω
∇Ψ · ∇Ψ dxdy

=
∫ 1

0
(fx)2 dx

∫ 1

0
g2 dy +

∫ 1

0
f2 dx

∫ 1

0
(gy)2 dy.

Use the normalisation constraint (30) to see that minimising E is equivalent to minimising∫ 1
0 (fx)2 dx∫ 1
0 f

2 dx
+

∫ 1
0 (gy)2 dy∫ 1
0 g

2 dy
.

Now this is really two separate minimisation problems, one for f(x) and one for g(y). We
will concentrate on the function f and put δ =

∫ 1
0 (gy)2 dy. Since we can vary x and y
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independently we can suppose the right hand side of (28) equals γ2. The simplified model
now reads

fxx(x) = γ2f(x),
‖f(x)‖2L2(Ω) = δ,

f(0) = f(1) = 0.
(31)

We need to find the solution that minimises

Ẽ = δ

∫ 1

0
(fx)2 dx

The differential equation plus boundary conditions (31) is solved by

f(x) =
∞∑

k=0

ak sin(γkx),

with γk = kπ. By (30) the (ai) ∈ `2 are subject to the constraint
∑∞

i=0 a
2
i 6= 0. Consequently

the trivial solution is excluded, yet there are still infinitely many solutions. In order to pick
one solution out of the infinite set of degenerate solutions we minimise the energy. Write the
energy as

Ẽ = δ

∫ 1

0
(fx)2 dx =< f,−δ d

2

dx2
f >L2([0,1]),

The Courant-Fischer theorem now gives us that the minimum of Ẽ is given by the eigen-
function belonging to the smallest eigenvalue of the operator L = −δ d2

dx2 , i.e. the function f
corresponding to the smallest eigenvalue µ that solves

fxx(x) = −µ
δ
f(x). (32)

This equation is of the same form as our differential equation (31), which is unfortunate from
a didactical point of view: in the full two dimensional model the situation is less trivial, and
the Courant-Fisher theorem is a useful tool. The eigenvalue problem (32) has solution

f(x) = α cos(
√
µ

δ
x) + β sin(

√
µ

δ
x).

From boundary conditions (29) we see that α must be zero and µ is quantised as µk = δk2π2

with k = 1, 2, 3, . . ., zero is excluded since the trivial solution is excluded. The eigenfunction
f belonging to µk is then given by

f(x) = βk sin(kπx).

The constant βk is found by solving
∫ 1
0 f

2(x) dx = 1/d and we have a unique solution for given
k. Considering solutions that belong to µ1, µ2, . . . we see that the energy orders the solutions
by decreasing smoothness (in the sense of number of oscillations). The energy therefore has
a regularising property.
Furthermore we see that we find continuous and differentiable solutions ’for free’, without
explicitly enforcing these properties. These features carry over to the two dimensional situ-
ation. However, when dealing with the two dimensional hyperbolic equation in an arbitrary
non-rectangular domain we have two additional issues
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• The domain is arbitrary and we no longer have Ψ(x, y) = f(x)g(y). However in char-
acteristic coordinates we do know Ψ(ξ, η) = F(ξ) + G(η).

• Attractors will occur and the fractal behaviour of the solution introduces high energies.

Nonetheless, it will be shown that energy minimisation still leads to smooth regularised so-
lutions. We will first give a one-dimensional analogue of the energy in the presence of an
attractor and consider the general situation in Appendix C.

7.2 Behaviour near an attractor

Close to the attractor features of the solution are repeated at increasingly smaller scales. This
makes the energy blow up, but we argue that we nonetheless still have a valid minimisation
problem. We consider a one dimensional model. For an arbitrary function f ∈ H1([0, 1])
define:

Ψ(x) =
∞∑
i=0

fi(x),

fi(x) =

{
f( x−αi

αi+1−αi
), for x ∈ [αi, αi+1],

0 otherwise.

Here [α0, α1] models the fundamental interval, with α2, α3, . . . iterates of its endpoints under
the mapping T , as defined in section 2. Usually the contents of an iterate of the fundamental
interval is mirrored and scaled by the action of the mapping. We will not model the mirroring
effect here, but suppose that an interval [αi, αi+1] contains both the original function and its
mirrored copy. The differences αi+1 − αi are steadily decreasing and there is an ’attractor’
at limi→∞ αi = α. The functions fi are scaled and translated copies of f , this models the
replication of the fundamental interval towards the attractor. The energy on the interval
[α0, αN ] is modeled by

T ([α0, αN )] =
∫ αN

α0

(Ψx)2 dx

=
∫ 1

0
f ′(x)2 dx

N∑
i=0

1
αi+1 − αi

.

Here we used the disjoint supports of fi in order to write the square of sums as a sum of
squares. There are two ways in which the energy may become infinite. Firstly the derivative
of the function f itself may not be square integrable, but such functions do not minimise
the energy. Secondly the sum in the second factor diverges, but for every finite value of the
number of steps towards the attractor N , the expression is finite. Moreover, minimisation of
the energy yields the same function f independently of N . Therefore this function f may also
be considered a solution for N →∞. Thus, even though we have a diverging total energy it
is still useful for minimisation purposes.
From a numerical point of view, we propose that discrete solutions on a grid can be compared
to the continuous solution on [α0, αN ] for finite N . Equivalently one can say we always
keep a finite distance to the attractor. The fine scale structure which causes the energy to
diverge close to the attractor at limit point α is simply replaced with one basis function in the
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discretisation. Since solutions are independent of N our numerical solutions will correspond
to solutions of the continuous system. In this way it makes sense to minimise the energy
on a fixed grid, however the energy of discrete solutions will increase with increasing grid
resolution in the presence of attractors.

7.3 The two dimensional case

In the two dimensional case the calculation is more tedious, we will only state the results of
the calculation here and give the technical details in Appendix C. Before giving the solution
we introduce some notation. The αi and βi variables give ξ and η coordinates of the iterates
of the fundamental interval. The index i counts the number of iterates towards the attractor
and k ≤ K counts the fundamental intervals. The index l ≤ L takes care of the possibility
that iterates of endpoints of a fundamental interval may approach a limit cycle with period
L. For fixed k and l the sequence αl,k

i approaches one fixed point of the attractor from one
side, ∩i(α

l,k
i , αl,k

i+1) = ∅ and ∪i[α
l,k
i , αl,k

i+1] has no holes. The general solution can be described
using wavenumber-like numbers (m,n) and arbitrary constants Ak,l

n and Bk,l
m . It is given by

Ψm,n(ξ, η) = Fn(ξ) + Gm(η),

with

Fn =
N∑

i=0

K∑
k=0

J∑
l=0

Al,k
n I

ξ∈[αl,k
i ,αl,k

i+1]
cos(nπ

ξ − αl,k
i

∆αl,k
i

),

Gm = −
M∑
i=0

K∑
k=0

J∑
l=0

Bl,k
m I

η∈[βl,k
i ,βl,k

i+1]
cos(mπ

η − βl,k
i

∆βl,k
i

),

(33)

where I denotes the indicator function. The above formulas describe a solution which is
built from arbitrary Fourier expansions on the fundamental intervals, which are reproduced
in smaller scales towards the attractor. Note that Ak,l

n can not all be zero. The numbers
N,M determine the size of neighborhoods of the attractors that we leave out of the domain.
For N,M → ∞ we face a diverging energy, the above solutions are not valid. However, for
every large finite values N,M we do have the solutions given above. With increasing N,M
the solution does not change, except it’s domain of definition grows, towards the attractor.
For more details we refer to Appendix C.
Some words on the space in which the functions F and G live are in order. In section 2
we proposed F ∈ L2([ξ−, ξ+]) and G ∈ L2([η−, η+]), giving also Ψ ∈ L2(Ω). The solution is
discontinuous at the attractor, this follows easily from the definition of continuity and the fact
that attractors are limit cycles of the transformation F . Theorem 4 established that solutions
exist, and thus that the discontinuity is square integrable. In this section we need to calculate
an energy, the suitable space would seem to be H1(Ω). However, in this space the energy
diverges when we insist on solving on the entire domain Ω (i.e. N,M → ∞). The proper
space seems to be H1(Ω \ (A∪B), where A consists of a neighborhood of the attractors. The
set A is in our approach left out of the domain by using finite N and M as shown above. It
could also be the case that F(ξ) or G(η) are discontinuous. The set B consists of horizontal
and vertical lines corresponding to these discontinuities. This is only possible if N,M →∞ in
(33), and we do not need to worry about excluding B from the domain since we only consider
finite values.
It is important to realise that A and B are completely different in nature. Attractors are a
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feature of the problem, but we know how to deal with this. Discontinuities in F and G away
from the attractor will not occur because the minimising functions (33) are automatically
continuous.

7.4 Minimal energy of the discretised system

Consider the behaviour of the solution to the discrete system. When piecewise smooth basis
functions are used, then across the attractor there will be a piecewise smooth approximation
of the self similar structure. We suggest that this discrete system corresponds, to good
approximation, to solving the continuous system where we only minimise the energy on the
domain given by a finite number of iterates of the fundamental interval. This corresponds
to taking N and M to be finite numbers. We have now taken away the contributions to
the energy that caused it to diverge, and have in effect removed a small strip around the
attractors. Still we know that the minimal energy solution we find is independent of the
values of M and N , if M >> 1 and N >> 1. If the grid has sufficient resolution, then
we will find a meaningful solution to the Poincaré equation. The energy will increase with
decreasing grid size, yet for a fixed grid we can safely minimise the energy. If differences
between calculated solutions on grids of increasingly higher resolution become smaller, then
we can have confidence that we are converging towards a minimal energy solution of the
continuous problem.

8 Results

This section will give some solutions of the Poincaré equation using the discretisation from
section 5 and the regularisation procedure outlined in section 6. Firstly, we consider the case
where the stream function is zero on the entire boundary, i.e. the unforced setting. Next
we apply a non-zero boundary condition for the stream function and find that the scenario
sketched in section 3 indeed occurs.

8.1 Free oscillations

We will discuss the trapezoid, a rectangle with one sloping side as shown in (x, z) coordinates
in Figure 10. This geometry is interesting since it is a simple geometry in which attractors
exist. The complex distribution of attractor regimes separated by modal solutions (a mani-
festation of the ill-posed nature of the problem) is extensively described in [19]. For λ = 0.75
we are in the attractor case, indeed figure 10 (as later discussed) clearly shows features that
reproduce in increasingly smaller scales towards a limit cycle. The behaviour of the dynamical
system induced by F was investigated by a raytracing technique, which enables us to find the
values of λ where the various attractors exist.
We take 300 grid points in both the ξ and η direction and plot L-curves of the first four
solutions. This means that we plot the L-curves of the first few solutions that minimise
(26) best. This simply amounts to calculating the four smallest singular values of the ma-
trix (27). The curves are approximated by taking a sequence of values for τ , we choose
{10j |j = −10,−9.8,−9.6, . . . ,−0.8,−1}. The L-curves are given in Figure 5, Figure 6 gives
enlargements of the parts of the curves where we pick the regularisation parameter.

We will discuss the solutions for the different L-curves and point to noteworthy features
of the solutions.
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10−8 10−7 10−6 10−5 10−4 10−3 10−2
10−5

10−4

10−3

10−2

10−1

||Ax||2
2

||L
x|

| 22

L−Curve

1e−101
1e−101

1e−101

1e−101

1e−09 0.0001310.000131

0.000131

0.0001
31

0.00136
0.00136

0.00136

0.001
36

0.0141
0.0141

0.0141

0.01
41

0.146
0.146

0.146

0.146

eig1
eig2
eig3
eig4

Figure 5. Four L-curves for the trapezoid. The ’elbows’ of the curves do not look very pronounced
when plotted in one picture. One would have expected a longer vertical ’leg’, instead we find an accumulation
point. A number of points on the curves have been calculated and labeled with the value of the regularisation
parameter τ and an index. Enlargements of relevant curves are presented in Figure 6.
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Figure 6. These four panels show the L-curves corresponding to the best four solutions. The indices of the
regularisation parameters are (in clockwise order): 26,31,31,31, corresponding to τ ≈ 10−5, 10−4, 10−4, 10−4.
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Figure 7. This figure shows the functions F and G and a plot of Ψ = F + G, in the (ξ, η) coordinate
frame. Darker colors indicate higher values, gray is at the zero level.

The ’plateau’ solution

From the bottom curve of Figure 5, the top-left curve of Figure 6, representing the min-
imising solution, we choose a value of τ ≈ 10−5. We plot the functions F and G and their
sum in Figure 7. We observe a solution with a large step at the attractor, featuring small
oscillations. Two questions come to mind, firstly if such a solution is allowed. Secondly if the
small oscillations are a numerical artifact (reminiscent of the Gibbs phenomenon) or a real
feature of the solutions. The latter question is answered by observing the structure of the
oscillations: they are mapped towards the attractor like the oscillations in figures 8 and 11.
We conclude that the structure is ’mixed in’ from another solution, the regularisation is not
perfect. The question of the validity is more complicated. The solution is of the form (33),
with large coefficients for the constant term and very small coefficients for other terms. In the
domain outside of the attractor the values F plus G cancel, while inside of the attractor they
add up to a nonzero value. Physically this represents a solution where (almost) all energy is
located at the attractor. A problem is that the analytical analogue of this solution is not from
the space H1(Ω), the energy would be infinite. As argued in section 7 we ought to compare
discrete solutions in Ω to analytical solutions in Ω minus a neighborhood of the attractor, and
in this sense the solution is valid. In [24] it is shown that this type of solution is also found
upon inclusion of a viscous (dissipative) term in the Poincaré equation. This is an indication
that this might also physically be a relevant solution. The experiment described in [19] is a
case in point, the existence of a wave attractor was established, but no evidence of fractal
structure was found.

Wavenumber 1 solution

The next-best solution we find is shown in Figure 8, where we plot the solution corresponding
to τ ≈ 10−4 on the second curve (Figure 6). It clearly consists of one empty fundamental
interval plus one fundamental interval with half a cosine. Referring to (33) we call this a
wavenumber 1 solution for this fundamental interval. We will now demonstrate the effect of
over- and under-regularisation by picking inappropriate values of τ . The result of this prac-
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Figure 8. This figure shows the functions F and G and a plot of Ψ = F + G, in the (ξ, η) coordinate
frame. One fundamental interval shows a smooth function (half the period of a cosine), the other one is zero.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

ξ

Function F, 302 points

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.1

−0.05

0

0.05

0.1

η

Function G, 302 points

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

ξ

Function F, 302 points

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.1

−0.05

0

0.05

0.1

η

Function G, 302 points

Figure 9. These graphs show what happens if one regularises improperly. In the left panel a value of
τ ≈ 3×10−3 was chosen, yielding a smooth but inaccurate solution. The extrema are too flat. The right panel
corresponds to τ ≈ 10−5, the residual is smaller but the energy is higher. We see cusps appearing, giving a
discontinuity in the derivative.
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Figure 10. This figure shows the addition of the smoothest solutions found on each of the fundamental
intervals. The grid resolution is 300 grid points in the ξ and η directions. Shown is the stream function Ψ̃, in
the (x, z) frame. Darker colors indicate higher values, gray is at the zero level. The attractor, and the fractal
structure are nicely visible.

tice is shown in Figure 9. Other experiments have revealed even more sensitive dependence
of the solution on the choice of the regularisation parameter. When the grid has sufficient
resolution one may also observe oscillations that are introduced or suppressed when changing
the regularisation parameter. These observations are ultimately the justification for the use
of a regularisation procedure.

Combined solutions

Figure 5 shows the curves corresponding to the four best minimizing solutions. The top
two curves cross each other twice, which might seen strange at first sight, but there is no
reason why a under regularised nth best solution cannot have a higher energy than an over-
regularised (n+ 1)th best solution. The top-most crossover of the curves is in fact an artifact
of the way the L-curves are plotted. For each value of τ we store a column of coordinates
(‖Axτ‖22, ‖Lxτ‖22) in a matrix, we then plot the rows of this matrix. The right panel of Figure
5 shows that the eigenvalue curves and L-curves switch at index 35.
At eigenvalue curve three we find the solution where the empty fundamental interval has
switched places with the wavenumber 1 interval. If we add both solutions (see Figure 10),
then we fill both fundamental intervals and recover the solution that was presented in [18].

Wavenumber 2 solution
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Figure 11. In this figure, again one fundamental interval shows a smooth function, but now a cosine of
higher periodicity. The other interval is (almost) zero.

The solution we find, at τ ≈ 10−4, curve four of Figure 6, is a solution where again one of the
fundamental intervals is empty. The other one however is now filled with a complete period
of a cosine (Figure 11). We remark that the order in which we find solutions is not a priori
clear. In this case we first found both the ’wavenumber 1’ solutions, we could also have found
a ’wavenumber 2’ solution first. The exact order is dependent on the energy of the solution,
which is (among other things) determined by the sizes of the fundamental intervals.

We conclude that we find the solutions predicted by equation (33), where the Fn and Gm

parts are indeed decoupled. The regularisation scheme is indispensable in obtaining mean-
ingful solutions to the ill-posed Poincaré equation.

8.2 Boundary forcing

In this section we apply a boundary condition Ψ = 1 to the left side of the trapezoid. We have
to deal with equation (8), which leads to the regularisation problem (9). In contrast to the
unforced case, with zero right hand side b, this is a standard problem which may be tackled
using existing methods. We draw the L-curve and calculate solutions using the Regularization
Tools, described in [11]. In this section we focus on the piecewise constant solution, since we
learned in the previous section that this is energetically the preferred solution.

We calculate a solution at λ = 0.75, which is in the regime where the square attractor
lives. The number of grid points is 512 in both the ξ and η direction. The L-curve calculated
for this problem is shown in Fig. 12. This L-curve has a clearer optimal point than the curves
presented before, although it is still necessary to try a few values around the bend in the
curve before deciding on a ’best solution’. Results for the functions F and G are shown in
figure 13, where the effects of over-regularisation and under-regularisation are nicely visible.

Finally we present a figure of the complete solution Ψ(ξ, η) = F(ξ) + G(η) in figure 14.
The theoretically predicted behaviour (section 3) is clearly observed.
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Figure 13. These panels show the functions F and G for three different values of the regularisation
parameter. To the left we see under-regularisation, a value of τ = 5 × 10−4 was used, which is below the
optimum (see also Fig. 12). The graphs are clearly too smooth. A value of τ = 8×10−5 seems close to optimal
and yields the graphs in the middle panel. Note how the functions F and G have jumps of ±1 as predicted
in the theory. Over-regularisation is shown in the right panel, at τ = 1 × 10−5, the functions suffer from too
many sharp peaks.
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Figure 14. A plot of the stream function for the forced problem. At the vertical left boundary Ψ = 1 is
assigned, the remaining boundary has Ψ = 0. It is nicely visible how the characteristics ’pick up’ values of ±1
when visiting the side where Ψ = 1. Also, we clearly see focusing towards the attractor, where values of |Ψ|
get increasingly higher due to continued visits to the left boundary.
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Appendix A: Calculation of the matrix A

This appendix gives the calculation of the matrix A for the special case of a polygonal domain
Ω and piecewise linear basis functions. The aim is to develop a fast algorithm. We first make
some definitions, intended to facilitate the conversion from formula to Matlab code. For this
reason indices start at one. We try casting expressions in matrix-equation form to benefit
from Matlab’s coarse granularity. First of all we introduce the grid spacings

∆ξ = (ξ2, . . . , ξn)T − (ξ1, . . . , ξn−1)T ∈ Rn−1,

∆η = (η2, . . . , ηm)T − (η1, . . . , ηm−1)T ∈ Rm−1.

Denote the element wise product of matrices A and B by A · B. If the quotient of two
matrices is taken, element wise division is implied. We will also use the notation diag(A)
for the diagonal of a square matrix and diag(a) for the matrix with the vector a on it’s
diagonal. For square matrices we will also use lowerdiag(A) and upperdiag(A). Also introduce
1n =

∑n
i=1 ei. Furthermore we will need convenient abbreviations for appending zeros to

matrices and removing rows and columns. These are needed to incorporate the boundaries.

Definition 4. In the following the zero vector matches the size of the identity matrix Im−1.
The matrix A is m×n and the notation [A,B] signifies concatenation of B to the right of A.

Remove column 1, A[0, Im−1]T ≡ AI ′l ,
Remove column n, A[Im−1, 0]T ≡ AI ′r,
Remove row 1, [0, In−1]A ≡ I ′tA,
Remove row n, [In−1, 0]A ≡ I ′bA,
Append zeros left, A[0, Im] ≡ AIl,
Append zeros right, A[Im, 0] ≡ AIr,
Append zeros top, [0, In]TA ≡ ItA,
Append zeros bottom, [In, 0]TA ≡ IbA,

The basis functions will be split in ascending and descending parts, they are described by

φ−i (ξ) =

{
ξ−ξi−1

∆ξi−1
if ξ ∈ [ξi−1, ξi] and 2 ≤ i ≤ n,

0 otherwise.

φ+
i (ξ) =

{
ξi+1−ξ

∆ξi
if ξ ∈ [ξi, ξi+1] and 1 ≤ i ≤ n− 1,

0 otherwise.

ψ−j (η) =

{
η−ηj−1

∆ηj−1
if η ∈ [ηj−1, ηj ] and 2 ≤ j ≤ m,

0 otherwise.

ψ+
j (η) =

{
ηj+1−η

∆ηj
if η ∈ [ηj , ηj+1] and 1 ≤ j ≤ m− 1,

0 otherwise.

Now define the rectangles Rij and strips Pj and Si by

Rij = [αi, αi+1]× [βj , βj+1].

Suppose the polygonal domain Ω consists of segments Pi for 1 ≤ i ≤ l. It is now very conve-
nient to have grid points ξi and ηj for each corner of the boundary. In this way the intersection
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of a segment Pi of the boundary with Rij is also a segment. We now need parametrisations of
these segments in order to evaluate the integrations. Let the unit parametrisation of Rij ∩Pl

be given by

clij(t) =

{
(F ξ

ij + tDξ
ij , F

η
ij + tDη

ij) if Rij ∩ Pl 6= ∅,
0 otherwise.

Also define the lengths Ll
ij by

Ll
ij = ‖clij

′
(t)‖2 =

√
(Dl,η

ij )
2
+ (Dl,ξ

ij )
2
.

Given corner points (ξ̂1, η̂1), . . . , (ξ̂l, η̂l) of the domain and the grid points it is easy to calculate
the matrices Dk,ξ, Dk,η and Lk. See Algorithm 1 for this procedure. We now ready to proceed
with the calculation of the matrix A2

(A2)ij =
∫

∂Ω
φiψj dl

=
∫

∂Ω
φ−i ψ

−
j + φ−i ψ

+
j + φ+

i ψ
−
j + φ+

i ψ
+
j dl

=
∫ 1

0

l∑
k=1
i,j 6=1

Lk
i−1,j−1(φ

−
i ψ

−
j ) ◦ cki−1,j−1(t) +

l∑
k=1

i6=1,j 6=m

∫ 1

0
Lk

i−1,j(φ
−
i ψ

+
j ) ◦ cki−1,j(t)

+
l∑

k=1
i6=n,j 6=1

∫ 1

0
Lk

i,j−1(φ
+
i ψ

−
j ) ◦ cki,j−1(t) +

l∑
k=1

i6=n,j 6=m

∫ 1

0
Lk

i,j(φ
+
i ψ

+
j ) ◦ ckij(t) dt.
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Using the definition of the basis functions we obtain

(A2)ij =
l∑

k=1
i,j 6=1

Lk
i−1,j−1

6∆ξi−1∆ηj−1

{
6(F k,ξ

i−1,j−1 − ξi−1)(F
k,η
i−1,j−1 − ηj−1)

+3
[
Dk,ξ

i−1,j−1(F
k,η
i−1,j−1 − ηj−1) +Dk,η

i−1,j−1(F
k,ξ
i−1,j−1 − ξi−1)

]
+ 2Dk,ξ

i−1,j−1D
k,η
i−1,j−1

}
−

l∑
k=1

i6=1,j 6=m

Lk
i−1,j

6∆ξi−1∆ηj

{
6(F k,ξ

i−1,j − ξi−1)(F
k,η
i−1,j − ηj+1)

+3
[
Dk,ξ

i−1,j(F
k,η
i−1,j − ηj+1) +Dk,η

i−1,j(F
k,ξ
i−1,j − ξi−1)

]
+ 2Dk,ξ

i−1,jD
k,η
i−1,j

}
−

l∑
k=1

i6=n,j 6=1

Lk
i,j−1

6∆ξi∆ηj−1

{
6(F k,ξ

i,j−1 − ξi+1)(F
k,η
i,j−1 − ηj−1)

+3
[
Dk,ξ

i,j−1(F
k,η
i,j−1 − ηj−1) +Dk,η

i,j−1(F
k,ξ
i,j−1 − ξi+1)

]
+ 2Dk,ξ

i,j−1D
k,η
i,j−1

}
+

l∑
k=1

i6=n,j 6=m

Lk
i,j

6∆ξi∆ηj

{
6(F k,ξ

i,j − ξi+1)(F
k,η
i,j − ηj+1)

+3
[
Dk,ξ

i,j (F k,η
i,j − ηj+1) +Dk,η

i,j (F k,ξ
i,j − ξi+1)

]
+ 2Dk,ξ

i,j D
k,η
i,j

}
.

After some reordering, we write down the expression for A2

A2 =
l∑

k=1

It
Lk

∆ξ∆ηT
·
{

((F k,ξ − I ′bξ1T
m−1) +

1
2
Dk,ξ) · ((F k,η − 1n−1η

T I ′r) +
1
2
Dk,η)

}
Il

− Ib
Lk

∆ξ∆ηT
·
{

((F k,ξ − I ′bξ1T
m−1) +

1
2
Dk,ξ) · ((F k,η − 1n−1η

T I ′l) +
1
2
Dk,η)

}
Il

− It
Lk

∆ξ∆ηT
·
{

((F k,ξ − I ′tξ1T
m−1) +

1
2
Dk,ξ) · ((F k,η − 1n−1η

T I ′r) +
1
2
Dk,η)

}
Ir

+ Ib
Lk

∆ξ∆ηT
·
{

((F k,ξ − I ′tξ1T
m−1) +

1
2
Dk,ξ) · ((F k,η − 1n−1η

T I ′l) +
1
2
Dk,η)

}
Ir

+ (It − Ib)
Lk ·Dk,ξ ·Dk,η

12∆ξ∆ηT
(Ir − Il).
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Initialise c← 1
Find (i, j) for which (ξi, ηj) is start of segment
Initialise (ξ, η)← (ξi, ηj)
Initialise F ξ, F η, Dξ, Dη, L as empty matrices
While not end of line piece

(F ξ
ij , F

η
ij)← (ξ, η)

if c==1
if s < ∆ηj/(ξi+1 − ξ)

η ← η + s(ξi+1 − ξ)
ξ ← ξi+1

c← 2
else

ξ ← ξ + ∆ηj/s
η ← ηj+1

c← 1
else

if s < (ηj+1 − η)/∆ξi
η ← η + s∆ξ)
ξ ← ξi+1

c← 2
else

ξ ← ξ + (ηj+1 − η)/s
η ← ηj+1

c← 1
(Dξ

ij , D
η
ij)← (ξ, η)− (F ξ

ij , F
η
ij)

Lij ← ‖(Dξ
ij , D

η
ij)‖22

Algorithm 1. This algorithm finds all intersections of a boundary segment with rectangles Rij . We
consider the case of positive slope s. One starts at the beginning of a line segment and increments the ξ or η
coordinate. Depending on the size of Rij and s there are two cases (see figure 15) to consider, distinguished
by c = 1 or c = 2. While traversing the segment the matrices containing the parametrisation are built.
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Case1, segment starts at
the bottom of the rectangle

Case 2, the segment starts at
the left of the rectangle.

ξi

ξiξi ξi+1 ξi+1

ξi+1ξi+1ξi

ηj

ηj

ηj+1

ηj+1

Rij
Rij

Rij

Rij

Figure 15. The four ways in which a segment with positive slope can intersect the rectangle Rij

Next we turn to the matrix A1 containing integration of the φ basis functions.

(A1)ij =
∫

∂Ω
φiφj dl

=
∫

∂Ω
(φ+

i + φ−i )(φ+
j + φ−j ) dl

=
∫

∂Ω
φ+

i φ
+
j + φ+

i φ
−
j + φ−i φ

+
j + φ−i φ

−
j ) dl

Since basis function φi overlaps only φi−1 and φi+1 it follows that A1 is a tridiagonal matrix.

(A1)ii =
∫

∂Ω
φ+

i φ
+
i + φ−i φ

−
i dl

(A1)i,i−1 =
∫

∂Ω
φ−i φ

+
i−1 dl

(A1)i,i+1 =
∫

∂Ω
φ+

i φ
−
i+1 dl.

We now need a parametrisation c̃li(t) of {Pl ∩ [ξi, ξi+1]}. Fortunately we are only interested in
the first component which is simply ξi + t∆ξi. Another needed quantity, the total length of
the intersection of the strip with a boundary segment is also easy to obtain, as the row sum
of row i of the length matrix Lk

∫ 1

0
‖c̃k′i (t)‖22 dt =

m∑
j=1

eTi L
kej = L̃k

i .
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This gives

(A1)ii =
l∑

k=1
i6=n

∫ 1

0
(φ+

i φ
+
i ) ◦ c̃ki L̃k

i dt+
l∑

k=1
i6=1

∫ 1

0
(φ−i φ

−
i ) ◦ c̃ki−1L̃

k
i−1 dt

=
1
3

l∑
k=1
i6=n

L̃k
i +

1
3

l∑
k=1
i6=1

L̃k
i−1,

(A1)i,i−1 =
l∑

k=1
i6=1

∫ 1

0
(φ−i φ

+
i−1) ◦ c̃

k
i−1L̃

k
i−1 dt =

1
6

l∑
k=1
i6=1

L̃k
i−1,

(A1)i,i+1 =
l∑

k=1
i6=n

∫ 1

0
(φ+

i φ
−
i+1) ◦ c̃

k
i L̃

k
i dt =

1
6

l∑
k=1
i6=n

L̃k
i .

We can compactly write the matrix A1 if we introduce the vector L̃k with components L̃k
i . in

this case

A1 =
1
6

l∑
k=1

tridiag(L̃k, 2L̃kIr + 2L̃kIl, L̃
k).

For A3 we have by a similar calculation

A3 =
1
6

l∑
k=1

tridiag(L̄k, 2L̄kIr + 2L̄kIl, L̄
k),

with L̄k
j

∑n
i=1 e

T
i L

kej .
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Appendix B: Calculation of the energy norm matrix

A measure of the total kinetic energy of the system will be used to regularise the solution.
We aim to solve

xτ = argmin{‖Ax‖22 + τ2‖Lx‖22},
for a range of parameters τ . This section describes the construction of the matrix L. It is
such that ‖Lx‖22 is the total kinetic energy of the discretised solution as defined by (23). Since
we minimise the energy, we can set λ = 1 without loss of generality.

The discretised solution is piecewise linear, which means that the derivatives are piecewise
constants given by

dF̃(ξ)
dξ

=
fi+1 − fi

∆ξi
≡ f ξ

i for ξ ∈ [ξi, ξi+1],

dG̃(η)
dη

=
gj+1 − gj

∆ηj
≡ gη

j for η ∈ [ηj , ηj+1].

Also define the vectors

f ξ = (f ξ
1 , . . . f

ξ
n−1)

T ,

gη = (gη
1 , . . . , g

η
m−1)

T ,

and write

f ξ = Ff = (
1

diag(∆ξ)
Il −

1
diag(∆ξ)

Ir)f with F ∈ Rn−1×n,

gη = Gg = (
1

diag(∆η)
Il −

1
diag(∆η)

Ir)g with G ∈ Rm−1×m.

A discretised measure for the energy is then

T̃ (Ω) =
m−1∑
j=1

n−1∑
i=1

Oij

[
(gη

j )2 + (f ξ
i )

2
]
,

where Oij is the area of Ω ∩Rij . We want to write the expression for the energy in the form

T̃ (Ω) = ‖Lx‖22 =
(
f
g

)T (
F T diag(O1m)F 0

0 GT diag(1T
nO)G

) (
f
g

)
.

It turns out that we do not need O explicitly, only its column and row sums. These are the
areas of the strips Pj and Si, defined by

Si = ([αi, αi+1]× [η+, η−]) ∩ Ω,
Pj = ([ξ+, ξ−]× [βj , βj+1]) ∩ Ω.

(34)

These area vectors, call h and v, are easily calculated using the matrices Dξ
ij and Dη

ij , which
we already have from Algorithm 1. Using these vectors we can write for the matrix L

L =
(√

diag(v)F 0
0

√
diag(h)G.

)
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Appendix C: Two dimensional energy minimisation

From (23) we have

T (Ω) = A

∫
Ω
(F ′(ξ))2 + (G′(η))2 dξdη (35)

where A = (1+λ2)
2λ ∈ R. In the following we assume that there exist J+1 fundamental intervals

at which F or G must be specified. The boundaries of the fundamental intervals are iterated
by the map F defined in section 2. Consider the projection of the iterates onto the ξ axis.
For a fundamental interval l these will approach a fixed point of certain period K, associated
with an attractor. We can reorder them to obtain for each fundamental interval K sequences
of coordinates, converging to the K fixed points. Let them occur as

αl,k
0 , αl,k

1 , . . . for the ξ coordinate, with lim
i→∞

αl,k
i = al,k,

βl,k
0 , βl,k

1 , . . . for the η coordinate, with lim
j→∞

βk,l
j = bl,k,

for l = 0, . . . , J, k = 0 . . .K. See Figure 16 for an example domain. The iterated fundamental
intervals cover the entire domain, except for the attractor:

∪i,l,k[α
l,k
i , αl,k

i+1) = [ξ−, ξ+] \ ∪l,k{al,k},

∪j,l,k[β
l,k
j , βl,k

j+1) = [η−, η+] \ {bl,k}.

Furthermore, fundamental intervals have the property that they do not overlap and also that
the above sequences define intervals that do not overlap. Mathematically this is expressed by

(∪k,iα
l1,k
i ) ∩ (∪k,iα

l2,k
i ) = ∅ for l1 6= l2,

(∪iα
l,k1
i ) ∩ (∪iα

l,k2
i ) = ∅ for k1 6= k2.

In order to avoid notational clutter the following discussion will be for one fundamental
interval and one sequence only. When we introduce a function or variable it is understood
that we need J times K functions and variables. Thus we write for the iterates

α0, α1, . . . for the ξ coordinate, with lim
i→∞

αi = a,

β0, β1, . . . for the η coordinate, with lim
j→∞

βj = b.

Define functions f, g : [0, 1] → R, these play the role of the arbitrary functions that must
be prescribed. We can define copies of the function f on [αi, αi+1] and g on [βj , βj+1],
these will be dilated and translated versions of the original function. The functions reverse
their orientation at every iteration2 , and copies f(x) and f(1 − x) alternate. We have for
fi : [αi, αi+1]→ R and gj : [βj , βj+1]→ R the expressions

fi(x) =

{
f(x−αi

∆αi
), if i is even,

f(αi+i−x
∆αi

), if i is odd,

gj(x) =

{
g(x−βj

∆βj
), if j is even,

g(βj+1−x
∆βj

), if j is odd,

(36)

2This effect can be observed by tracing a characteristic from the endpoint of the fundamental interval. By
construction this orbit will end in a corner point. Starting slightly to the left of this endpoint, one gets close
to the corner where it acts as a mirror and reflects the characteristic back to the right of the fundamental
interval.
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where ∆αi = αi+1 − αi, ∆βj = βj+1 − βj . When integrating the distinction is not needed
since ∫ αi+1

αi

f(
x− αi

∆αi
) dx =

∫ αi+1

αi

f(
αi+i − x

∆αi
) dx.

Fundamental intervals and their iterates can never overlap, thus in the end we can set the
functions F and G to be of the form

F(ξ) =
K∑

k=0

J∑
l=0

N(k,l)∑
i=0

fk,l
i (ξ),

G(η) =
K∑

k=0

J∑
l=0

M(k,l)∑
j=0

gk,l
j (η),

(37)

where M and N are integers depending on k and l. Note that at the attractor we have a
problem, the solution will become multi valued. This could be circumvented by defining f
and g on open intervals, but this would render the functions F and G undefined in an infinite
number of points. If f and g are continuous, then also F and G are continuous (at least for
finite M,N). The choice of M and N determines the support of F(ξ) + G(η) and we can use
this freedom to remove neighborhoods of attractors. For finite N,M we have left out a strip
around the attractor. To calculate the energy on the whole of Ω we let N and M approach
infinity.
We have to take care at x = αi and x = αi+1, the derivative of fi is not defined. We define
the derivative in such a way that F ′ = (

∑∞
i=0 fi)′ holds. Note that we have continuity at the

iterates of the endpoints of the fundamental interval since they reverse orientation at every
step. Because F ′ = G′ = 0 at a corner point, and also at every point reached from a corner
point by iterating the map F , we have that the derivative of F at the endpoints of iterates
of fundamental intervals is zero (boundaries of fundamental intervals always trace back to
corner points). Thus it holds that f ′(0) = f ′(1) = g′(0) = g′(1) = 0. We define

dfi(x)
dx =

{
0 if x = αi+1 or x = αi,

1
∆αi

f ′(x−αi
∆αi

) otherwise.

dgj(x)
dx =

{
0 if x = βj+1 or x = βj ,

1
∆βj

g′(x−βi

∆βj
) otherwise.

(38)

Now plug in the series (37) in the energy (35) to get

TNM (Ω) = A(
N∑

i=0

<
∂

∂ξ
fi,

∂

∂ξ
fi >L2(Ω) +

M∑
j=0

<
∂

∂η
gj
∂

∂η
gj >L2(Ω)), (39)

where the true energy is the limit T (Ω) = limN,M→∞ TNM (Ω). Now recall the definitions
(34). We will add superscripts k, l when needed. When those strips are transformed to [0, 1]
in their ξ coordinate (for Sij) or η coordinate (for Pij) we add a tilde. Under the assumption
that the domain is characteristically convex we have that the strips S̃i and P̃j are bounded
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β

β0

β1

β2

α

k = 0, l = 0 k = 0, l = 1

k = 0, l = 0

k = 0, l = 1

α0 α1

β0
β1
β2

α2 α

β

Figure 16. An example domain Ω. The endpoints of a fundamental interval, with (arbitrarily chosen)
index k = 0, indicated by the thick double arrow, have been iterated a small number of times. In this case the
fundamental interval induces two sequences in both the ξ and η direction, both with indices l = 0 and l = 1.
For i → ∞ these sequences approach the attractor (dashed line). The numbering of α and β is indicated,
except that k, l are not written as superscript. Only a few α and β coordinates were plotted for clarity. The
horizontal strip is P 0,1

1 , the vertical strip S0,0
1 .

by functions as follows

Lj(η) : [0, 1]→ R describes boundary at the left of P̃j ,

Rj(η) : [0, 1]→ R describes boundary at the right of P̃j ,

Ti(ξ) : [0, 1] :→ R describes boundary at the top of S̃i,

Bi(ξ) : [0, 1] :→ R describes boundary at the bottom of S̃i.

However, in the end we only need the total width and height at certain η and ξ coordinates.
For these functions we write

Wj(η) = Rj(η)− Lj(η),
Hi(ξ) = Ti(ξ)− Bi(ξ).

Now we have the tools to proceed with the calculation of the terms in (39),

<
∂

∂ξ
fi(ξ),

∂

∂ξ
fi(ξ) >L2(Ω)=

1
∆αi

< f ′(ξ),Hi(ξ)f ′(ξ) >L2([0,1]) .

We rewrite the equation using partial integration and get

< f ′(ξ),Hi(ξ)f ′(ξ) >L2([0,1]) =
[
(f2(ξ))′Hi(ξ)

]1

0

+ < f(ξ),−H′i(ξ)f ′(ξ)−Hi(ξ)f ′′(ξ) >L2([0,1]) .

The first term at the right hand side is zero by the corner point constraint. Perform a similar
calculation for the term involving G to find

TNM (Ω) =< f(ξ), L1,Nf(ξ) >L2([0,1]) + < g(η), L2,Mg(η) >L2([0,1]) (40)
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with

L1,N =
N∑

i=0

−H
′
i(ξ)

∆αi

∂

∂ξ
− Hi

∆αi

∂2

∂ξ2
, (41)

L2,M =
M∑

j=0

−
W ′

j(η)
∆βj

∂

∂η
− Wj

∆βj

∂2

∂ξ2
, (42)

Finally, the minimisation of the energy becomes two decoupled minimisation problems for F
and G. The minimisation problems are very much alike, from now on we will concentrate
on the F function. Let us first examine the minimisation of < f,L1,Nf >L2([0,1]). By the
Courant-Fisher theorem the minimising function is the eigenfunction belonging to the smallest
eigenvalue of the eigenvalue problem

L1,Nf = λf. (43)

For N →∞ we may consider the asymptotic behaviour of L1,N . In this regime, close to the
attractor, it holds that the function Hi gets increasingly flat with increasing i, since in the
ξ coordinate the strips that are transformed to [0, 1] get smaller and smaller as we approach
the attractor. Suppose that H can be well approximated by a linear function for large i
and that the boundary makes an angle θ with the vertical at the attractor. Then it holds
that Hi(x) → Hi(0) + ∆αi tan(θ)−1x and the terms in the summation for large i are well
approximated by

− tan(θ)−1
[ ∂
∂x

+ x
∂2

∂x2

]
− Hi(0)

∆αi

∂2

∂x2
.

It is clear that the second term will dominate for large i and the eigenvalue problem may be
written

−ci
∂2

∂x2
f = λf,

with ci = Hi(0)
∆αi

. For every finite value of i we have the same solution,

f(x) =
∞∑

k=0

Ak sin(
√
λ

ci
x) +Bk cos(

√
λ

ci
x).

Boundary conditions f ′(0) = f ′(1) = 0 dictate that all Ak must be zero. This also quantises
the eigenvalues to yield

f(x) =
∞∑

k=0

Bk cos(πkx), (44)

which is independent of i. By the normalisation constraint and < F , 1 >= 1, the Bk are not
all zero. For the function G we can find a similar expression

g(x) =
∞∑

k=0

Ck cos(πkx). (45)

From the normalisation constraint ‖Ψ‖ = 1 we have that not all Bk and Ck are zero. Note
also that ci is diverging, and the total energy (40) diverges for i → ∞. For any finite N the
energy is meaningful, and minimisation yields a solution independent of N .
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If we substitute the solutions obtained above in the expansion (37) and rewrite using (36) we
find

Ψnm = Fn + Gm,

Fn(ξ) =
K∑

k=0

J∑
l=0

N(k,l)∑
i=0

Bl,k
n I

ξ∈[αl,k
i ,αl,k

i+1]
cos(nπ

ξ − αl,k
i

∆αl,k
i

),

Gm(η) =
K∑

k=0

J∑
l=0

M(k,l)∑
j=0

C l,k
m I

η∈[βl,k
j ,βj+1l,k]

cos(mπ
η − βl,k

j

∆βl,k
j

).

(46)

In these expressions I denotes the indicator function. Also, the boundary condition Ψ =
F + G = 0 implies that Bl,k

n = −C l,k
m , if m = n. Therefore we need only the coefficient Bl,k

n

The minimisation problem is solved by Ψ0,0, with the coefficients Bl,k
0 and C l,k

0 determined
by ‖Ψ‖ = 1 and < F , 1 >= 1 . In this case F and G are piecewise constants and the solution
has a jump at the attractor, see also section 8.
The next best solutions are less trivial to find. Small values of n,m will yield small energies,
yet it is not a priori clear how the energies are ordered with respect n and m, this depends
on αi and βj .

Even if we do not consider asymptotic behaviour we have information on the behaviour
of (43) by noting that it is of Sturm-Liouville type

d

dx
(p(x)

df

dx
) + [q(x) + λρ(x)]f = 0.

Write (43) as
P (x)f ′′(x) +Q(x)f ′(x)− λf = 0,

then we have Sturm-Liouville type if we set

q(x) = 0

p(x) = e
R x
0

Q(y)
P (y)

dy

ρ(x) = −e
R x
0

Q(y)
P (y)

dy
/P (x).

We have boundary conditions f ′(0) = f ′(1), which makes the problem of periodic Sturm-
Liouville type. Standard Sturm-Liouville theory gives us that there are a countably infinite
number of eigenvalues, the eigenvalues are real and have a smallest member, in absolute value.
Therefore our minimisation problem attains a minimum. The eigenfunctions are orthogonal,
and by the Sturm separation theorem they oscillate more rapidly with increasing eigenvalue.
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[18] Leo R. M. Maas and Frans Peter A. Lam. Geometric focusing of internal waves. Journal
of Fluid Mechanics, 300:1–41, 1995.

[19] Leo R. M. Maas, Frans-Peter A. Lam, Dominique Benielli, and Joël Sommeria. Ob-
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