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BI-CGSTAB AS AN INDUCED DIMENSION REDUCTION METHOD

GERARD L.G. SLEIJPEN∗, PETER SONNEVELD† , AND MARTIN B. VAN GIJZEN‡

Abstract. The Induced Dimension Reduction method [12] was proposed in 1980 as an iterative
method for solving large nonsymmetric linear systems of equations. IDR can be considered as the
predecessor of methods like CGS (Conjugate Gradient Squared) [9]) and Bi-CGSTAB (Bi-Conjugate
Gradients STABilized, [11]). All three methods are based on efficient short recurrences. An important
similarity between the methods is that they use orthogonalisations with respect to a fixed ‘shadow
residual’. Of the three methods, Bi-CGSTAB has gained the most popularity, and is probably still
the most widely used short recurrence method for solving nonsymmetric systems.

Recently, Sonneveld and van Gijzen revived the interest for IDR. In [10], they demonstrate that

a higher dimensional shadow space, defined by the n × s matrix eR0, can easily be incorporated into
IDR, yielding a highly effective method.

The original IDR method is closely related to Bi-CGSTAB. It is therefore natural to ask whether
Bi-CGSTAB can be extended in a way similar to IDR. To answer this question we explore the relation
between IDR and Bi-CGSTAB and use our findings to derive a variant of Bi-CGSTAB that uses a
higher dimensional shadow space.

Keywords: Bi-CGSTAB, Bi-CG, iterative linear solvers, Krylov subspace methods, IDR.

AMS(MOS) subject classification: 65F15, 65N25.

1. Introduction. Transpose free Bi-CG (bi-conjugate gradients) methods, also
referred to as hybrid Bi-CG methods, are among the most popular iterative methods
for solving sparse high-dimension linear systems of equations

Ax = b.

Here, A is a given n× n matrix and b is a given vector. As GMRES, these methods
try to find appropriate approximate solutions in Krylov subspaces x0 + Kk(A, r0)
generated by A and initial residual r0 = b−Ax0. Unlike GMRES, they do not find
the approximate solutions with smallest residual norm. But, in contrast to GMRES,
these methods use short recurrences, and as a result are often much more efficient,
both with respect to memory and to computations, for problems where GMRES needs
many iterations to find a sufficiently accurate solution.

Krylov subspace methods grow in each iteration. This makes it possible to con-
struct increasingly better approximate solutions using a suitable selection criterion.
Efforts of finding appropriate approximate solutions have mainly focused on con-
structing residuals with small or smallest norm. For instance, for symmetric systems
(i.e. A∗ = A), CR (conjugate residuals) constructs residuals with smallest Euclidean
norm, while the residuals for CG (conjugate gradients) have smallest A−1-norm. Bi-
CG has been viewed as a CG process with respect to a quadratic form rather than an
inner-product, and residuals were considered to be ‘minimized’ with respect to this
quadratic form.

Bi-CGSTAB is a combination of two methods, of Bi-CG and restarted GMRES
(or GCR). In the restarted GMRES part, a residual is minimized in each step, in
the Bi-CG part, the Bi-CG process is incorporated. The focus in Bi-CGSTAB is
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on preserving the Bi-CG coefficients, hoping that the nice features of Bi-CG (read
‘residual minimization’) are transferred to Bi-CGSTAB.

An alternative approach has been taken in [12] in the construction of the IDR
(induced dimension reduction) method, ‘squeezing’ the residuals to zero. The IDR
method finds residuals in a sequence of shrinking subspaces. Bi-CG can also be viewed
in such a perspective. Bi-CG residuals belong to a sequence of growing Krylov sub-
spaces, but they also belong to a sequence of shrinking subspaces: Bi-CG uses so-called
‘shadow’ Krylov subspacesKk(A∗, r̃0) for testing, that is, the residuals are constructed
to be orthogonal to this sequence of growing shadow spaces. The starting point for
the IDR construction is more abstract, more elegant than for Bi-CG. Residuals are
constructed in spaces Gk that are defined recursively by Gk+1 = (I − ωkA)(Gk ∩ S)
(see §2). Here, S is a fixed proper subspace of Cn. If A has no eigenvector that is
orthogonal to the subspace S, then Gk+1 ⊂ Gk and the dimension of Gk reduces with
increasing k (see also Th. 2.2 below).

The subspace S in the original IDR paper [12] from 1980 consists of all vectors
orthogonal to some (random) vector r̃0. The method turned out to be very effective.
In fact, as effective as the more recent Bi-CGSTAB method (from 1992). Unfortu-
nately, the original formulation of the IDR algorithm contained some instabilities,
and IDR did not gain the popularity of Bi-CGSTAB. In a recent paper [10], it was
shown that the IDR concept allows elegant incorporation of a smaller fixed subspace
S, or, equivalently, of a space of vectors orthogonal to all columns of an n× s matrix
R̃0 with s > 1. The idea to use a subspace S with co-dimension s combined with a
more stable computation of the residuals and approximate solutions led to the IDR(s)
algorithm. For s = 1, this algorithm is mathematically equivalent to the original IDR
method, but has superior numerical stability. Moreover, the numerical experiments
in [10] show that, for modest values of s, as s = 4, even for ‘tough’ linear equations,
IDR(s) often achieves almost the same convergence as GMRES, that is, comparable
accuracy for the same number of MVs. However,the additional costs per MV in IDR
are modest and limited (as with Bi-CGSTAB), whereas these costs in GMRES grow
proportional to the iteration step.

In §4 of this paper, the IDR principle is formulated in terms of Krylov subspaces.
Although this formulation is less elegant, it may provide more insight, since it facili-
tates comparison of IDR and Bi-CGSTAB type of methods, and it may lead to even
more effective variants. In §5, we give an alternative proof from the one [10, §5.2] of
the mathematical equivalence of IDR(s) with s = 1 and Bi-CGSTAB. The proof here
gives a more detailed relation and also serves as an introduction to the subsequential
sections. Via a block variant of Bi-CG in §6, we explain in §7 how the case s > 1
can be incorporated in Bi-CGSTAB as well, yielding a variant that is equivalent to
IDR(s) (see §8).

Our block variant of Bi-CG uses blocks of size p = 1 (that is, n-vectors) in the
search Krylov subspace, and blocks of size s (that is, n× s matrices) for testing. The
focus in literature on block methods is mainly on the case where the size p of the
blocks for searching and the size s of the blocks for testing are equal (p = s, cf., e.g.,
[5, 4, 6]). A general block Lanczos version (with p 6= s ) has been discussed in [1].
There is no Bi-CGSTAB version. The case where p > 1 and s = 1 for Bi-CGSTAB
has been discussed in [3]. The purpose of all these papers is to develop methods for
solving block systems, also called multiple right-hand side system, i.e., systems where
b is an n× p matrix with p > 1. IDR(s), however, aims for fast convergence for the
single right-hand side case (i.e., p = 1) by using higher dimensional blocks (s > 1) for
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testing. One paper [13], works in precisely our setting (p = 1, s > 1). However, the
formulation there is in terms of (Bi-CG) polynomials (Padé approximations), making
the exposition intransparant. Moreover, their experiments concentrate on high values
of s (e.g. s = 100), where, in our experience, only low values of s are attractive. We
feel that the subspace formulation of IDR is more elegant and more flexible. In this
paper we bridge the subspace approach and the polynomial one.

The purpose of this paper is to provide insight. Therefore, we focus on mathemat-
ical concepts rather than on technical details. The new algorithms that we describe
in this paper should therefore not be considered as matured, but as bridging steps
between the Bi-CGSTAB approach and the IDR approach, with the ultimate goals to
improve both types of algorithms.

Some remarks on the notation.

Notation 1.1. As a general rule, we will use notations and terminology that are
common in the literature about Bi-CG methods. Our notation is therefore different
from the one used in [10]. For example, we will use the term ‘shadow space’ for the

space spanned by the columns of a matrix R̃. This terminology and notation is linked
to the ’shadow residuals’ in Bi-CG. In IDR, S is the left-Null space of R̃, and is
unrelated to the concept of a shadow residual.

Notation 1.2. If R̃ is an n× s matrix, and v is a vector, then we put v ⊥ R̃ if
v is orthogonal to all column vectors of R̃ and we say that v is orthogonal to R̃. The

linear subspace of all vectors v that are orthogonal to R̃ is denoted by R̃
⊥

.

Notation 1.3. When we mention the number of iterations, or the number of
steps, we always refer to the number of matrix-vector multiplications (MVs), where
each step or iteration always corresponds to one (one-dimensional) MV. A multipli-
cation AV, with V an n× s matrix is counted as s MVs.

Notation 1.4. In the paper we use sometimes IDR and sometimes IDR(s).
When we use the latter, we always refer to the specific prototype-IDR method that
is described in [10]. The more general IDR refers to any IDR-type method, i.e., a
method that constructs residuals in subspaces Gk of shrinking dimension.

Notation 1.5. Updates of the form v−C~β will play a crucial role in this paper.
Here, v is an n-vector and C is an n × s matrix. When considering such updates,
both v and C are available. Often, the s-vector ~β is determined by an orthogonality
requirement v−C~β ⊥ R̃ where R̃ is some given n× s matrix. For ease of notation,
we will simply put

“v−C~β ⊥ R̃” if we mean “Let ~β be such that v−C~β ⊥ R̃”.

Note that, with σ ≡ R̃
∗

C, ~β can be computed as ~β = σ−1(R̃
∗

v) (or with a more

stable variant as repeated or modified). The operator I−Cσ−1R̃
∗

is a skew projection

onto the orthogonal complement of R̃.

2. The IDR principle. The IDR (induced dimension reduction) method finds
residual vectors in a sequence (Gk) of shrinking subspaces, i.e., Gk+1 ⊂ Gk and
dim(Gk+1) < dim(Gk) for all k ∈ N0 unless Gk = {0}. The existence of such a
sequence is guaranteed by the fundamental IDR theorem that we repeat here (The-
orem 2.2) for ease of explanation (see also [10, Th. 1]). The theorem is an easy
consequence of the following lemma.
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Lemma 2.1. Let G0 and S be subspaces and µ0 ∈ C. Put G1 ≡ (µ0I−A)(G0∩S).1

1) If G1 ⊂ G0 then (µ1I−A)(G1 ∩ S) ⊂ G1.
2) If G1 = G0 6= {0}, then G0 ∩ S contains an eigenvector of A.

Proof. Note that (µ1I−A)(G1 ∩ S) ⊂ G1 iff (µ0I−A)(G1 ∩ S) ⊂ G1. Therefore,
1) follows from the inclusion (µ0I−A)(G1 ∩ S) ⊂ (µ0I−A)(G0 ∩ S) = G1.

If G0 = G1 then dim(G0) = dim((µ0I −A)(G0 ∩ S)) ≤ dim(G0 ∩ S) ≤ dim(G0).
In particular, dim(G0 ∩ S) = dim(G0), whence G0 ⊂ S and G0 = (µ0I−A)(G0 ∩ S) =
(µ0I−A)G0, which implies that µ0I−A, and therefore A, has an eigenvector in G0

unless G0 = {0}.

The IDR theorem in [10] has been formulated in terms of subspaces of a linear
subspace S. As we will explain in Note 4.3 below, it is convenient to formulate the

theorem in terms of a complement space S = R̃
⊥

0 .

Theorem 2.2. Let R̃0 = [r̃1, . . . , r̃s] be an n×s matrix and let (µj) be a sequence
in C. With G0 ≡ Cn, define,

Gk+1 ≡ (µkI−A)(Gk ∩ R̃
⊥

0 ) (k = 0, 1, . . .). (2.1)

If R̃
⊥

0 does not contain an eigenvector of A, then, for all k = 0, 1, . . ., we have that

1) Gk+1 ⊂ Gk, and 2) dim Gk+1 < dimGk unless Gk = {0}.

Proof. Take S = R̃
⊥

0 and apply the lemma inductively.

Note 2.3. The theorem is correct for any linear subspace G0 that is invariant
under multiplication by A: AG0 ⊂ G0. In particular, the theorem is correct if G0 is a
full Krylov subspace K(A,v) ≡ Span{Akv | k = 0, 1, . . .}.

3. The IDR(s) algorithm. The IDR(s) algorithm (cf. [10]), that we discuss
in this section, constructs residuals in the spaces Gk . The algorithm updates the
residuals in each step using short recurrences. The following three ideas, in all of
which residuals play a central role, are exploited.

In this section, R̃0 is an n× s matrix of full rank.

1. Providing a cheap ride for approximate solutions. As in Bi-CG, and in hybrid
Bi-CG methods as Bi-CGSTAB, the updates for an IDR residual r are of the form
r+ = r−cα, with c = Au and the vector u explicitly available. This allows to update
the associated approximate solution x̃, r = b−Ax̃, at an additional cost of one AXPY
(vector update) only: with x̃+ ≡ x̃ + uα we have that r+ = b − Ax̃+. The MV
(matrix-vector multiplication) c = Au and possibly one (or a few) DOT product(s)
to compute the scalar α where needed to find the update for r. The approximate
solutions get a(n almost) free ride. Of course, a number of vector updates can be
combined: if r+ = r−C~α with C = AU and the n× s matrix U explicitly available,
then x̃+ = x̃ + U~α. Note that a column of U can be updated as U~γ + ωv if the
corresponding column of C is updated as C~γ + ωAv. Keeping these observations
in mind, we will concentrate on the residuals and updates of the form Au, in the
discussion and the derivation of the algorithms (for IDR as well as for Bi-CG and
Bi-CGSTAB) in the sequel of this paper.

2. Bi-orthogonalisation. To move from r ∈ Gk to r+ ∈ Gk+1, we first construct

a residual vector v in Gk ∩ R̃
⊥

0 by subtracting a vector of the form S~γ from r: with

1We use this slightly more elegant formulation instead of the equivalent G1 ≡ (I−ω0A)(G0 ∩S)
to avoid the condition ω0 6= 0. In the description of the algorithms we use the latter.
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~γ = (R̃
∗

0S)−1R̃
∗

0r, we take v = r − S~γ (and S of the form AU). Then, for some
appropriate scalar ω, we multiply v by I− ωA: r+ = v− ωAv.

3. Residual differences. The skew projection in idea 2 assumes a non-singular

matrix R̃
∗

0S. In particular, the matrix S has to be n× s. We construct our matrix S
as a difference of s+1 residuals. Note that r+− r is of the form Au with u = x̃− x̃+

if r = b−Ax̃ and r+ = b−Ax̃+. (Note that v−r = S~γ is in the span of the columns
of S and does not introduce new information, whereas r+ − r introduces the ‘new’

vector Av.) If R̃
∗

0S happens to be singular or ill-conditioned, we have to reduce s.
For details, see [10, §4]. See also Note 6.2. We will not give details here: the purpose
of this paper is to give insight on the relation between IDR and Bi-CGSTAB methods.

The following two propositions express the effectiveness of these ideas.

Proposition 3.1. Suppose si = Aui for i < j, rj = b−Axj .
Put Uj ≡ [uj−s, . . . ,uj−1 ] and Sj ≡ [ sj−s, . . . , sj−1 ]. Select an ω ∈ C. If

v ≡ rj − Sj~γ, rj+1 = v− ωAv, sj ≡ rj − rj+1

uk ≡ Uk~γ + ωv, xj+1 ≡ xj + uj ,
(3.1)

then sj = Auj and rj+1 = b−Axj+1.

Note that the proposition offers four alternatives for computing sj . Computing
sj ≡ Sj~γ + ωAv and uj ≡ Uj~γ + ωv requires 2s + 2 vector updates, whereas the
alternative uj ≡ Uj~γj + ωv and sj = Auj requires only s + 1 vector updates. More-
over, in our experience this way of updating is numerically more stable than the first
alternative. In both cases rj+1 can be computed as rj+1 = rj−sj . If the computation
of ω relies on Av, e.g., by minimizing the norm of rj+1 = v− ωAv, then the second
alternative is less attractive since it would require 2MVs. For maintaining accuracy,
it can be useful to compute rj+1 at strategically selected values for j (and if ω is
available) as rj+1 = b−Axj+1 (see [8]), and sj can be obtained as sj = rj − rj+1.

Proposition 3.2. Let Gk+1 = (I− ωA)(Gk ∩ R̃
⊥

0 ).
Suppose Span(Sj) ⊂ Gk and rj ∈ Gk+i for i either 0 or 1 .

If v, sj and rj+1 are as defined in (3.1) with ~γ such that v ⊥ R̃0, then

v ∈ Gk ∩ R̃
⊥

0 , rj+1 ∈ Gk+1, sk ∈ Gk+i.

The proposition shows that in s + 1 steps of (3.1) s + 1 residuals in Gk (and s
differences in Gk) can be ‘lifted’ to s+1 residuals in Gk+1. At step 1 of a cycle of s+1
steps we are free to select an ω. In the other s steps of the cycle, we use the same ω.
We follow the Bi-CGSTAB strategy for selecting the ‘free’ ω; we minimize the norm
of v− ωAv.

Alg. 3.1 displays the resulting algorithm.

The initialization requires an n×s matrix U. For ease of discussion, we will assume
in the following sections that U = [ r0,Ar0, . . . ,A

s−1r0 ]. However, the matrix U
(and S) can also be constructed by s steps of a method as GCR [2]. The approximate
solution x and associated residual r can also be updated in these s steps. Then, the
initial x and initial r mentioned in the initialization of Alg. 3.1 can be selected as the
results of these s steps of GCR. Note that, in the GCR approach, the ith column of
S = AU is a multiple of the difference of the ith and the (i− 1)th GCR residual: the
columns of S are differences of residuals according to idea 3.
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Select an x0.

Select n× s matrices R̃0 and U

Compute S = AU

x = x0, r = b−Ax

i = s + 1, j = s + 1

repeat

Solve R̃
∗

0S~γ = R̃
∗

0r for ~γ

v = r− S~γ, c = Av

If i > s, i = 1, end if

If j > s, ω ← c∗v/c∗c, j = 0, end if

Uei ← U~γ + ωv, x← x + Uei

r1 ← v− ωc, Sei ← r− r1, r← r1

i← i + 1, j ← j + 1.

end repeat

Alg. 3.1: IDR(s). S = [sk−i+1, . . . , sk−1, sk−s, sk−s−1, . . .] at the start of the kth
loop. Here, the sks are as in (3.1): the ith column Sei of S is equal to sk−s, which is
replaced in the loop by the newly computed sk. The matrix U has a similar relation
with the uk of (3.1) and follows a similar update strategy.

The initial matrices U and R̃0 have to be such that R̃
∗

0S is non-singular.

In Alg. 3.1, we suggest to replace the ‘oldest’ column of U and S by the ‘newest’,
rather than deleting the first column and adding the new column as last column as
suggested Prop. 3.1.

4. IDR and Krylov subspaces. The subspace Gk in Theorem 2.2 can also be
formulated in terms of Krylov subspaces as we will see in the following theorem. The
Krylov subspaces in this theorem are generated by an n× s matrix rather than by an
n-vector (that is, an n× 1 matrix):

Definition 4.1. The Krylov subspace Kk(B, R̃) of order k generated by an n×n

matrix B and an n× s matrix R̃ is given by

Kk(B, R̃) ≡






k−1∑

j=0

Bj R̃~γj | ~γj ∈ C
s




 . (4.1)

In case s = 1, we have the usual Krylov subspaces. The Krylov subspace as
defined here, are also called “block Krylov subspaces” (see, e.g., [1]).

Note that the ~γj are s vectors that generally do not commute with the n ×

s matrices Bj R̃ In particular,
∑k−1

j=0 Bj R̃~γj is not of the form q(B)R̃ with q a

polynomial of degree < k. Nevertheless, q̄(B∗)v ⊥ R̃ if v ⊥ Kk(B, R̃).

Theorem 4.2. Let R̃0, (µj) and Gk be as in Theorem 2.2. Consider the polyno-

mial p of degree k given by p(λ) ≡
∏k

j=1(µj − λ) (λ ∈ C). Then

Gk = {pk(A)v | v ⊥ Kk(A∗, R̃0)}. (4.2)
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Proof. The claim for k = 0 is trivial. We use an induction argument the prove
the theorem. Assume that (4.2) is correct.

Then,

Gk ∩ R̃
⊥

0 = {pk(A)v | pk(A)v ⊥ R̃0, v ⊥ Kk(A∗, R̃0)}.

Since v ⊥ Kk(A∗, R̃0), we have that q(A)v ⊥ R̃0 for all polynomials q of degree < k.

Hence, pk(A)v ⊥ R̃0 if and only if Akv ⊥ R̃0, which is equivalent to v ⊥ (A∗)kR̃0,

or, equivalently, v ⊥ (A∗)kR̃0~γk for all s vectors ~γk. Apparently,

Gk ∩ R̃
⊥

0 = {pk(A)v | v ⊥ Kk+1(A
∗, R̃0)},

whence

Gk+1 = (µk+1 I−A)(Gk ∩ R̃
⊥

0 ) = {(µk+1 I−A)pk(A)v | v ⊥ Kk+1(A
∗, R̃0)}.

Since (µk+1 I−A)pk(A) = pk+1(A) this proves the theorem.

The theorem suggests that IDR and Bi-CGSTAB are related. Before we go into
details on this in §5, we first discuss some obvious consequences.

Note 4.3. In the proof of the theorem, we used that fact that if Av ⊥ R̃0 and v ⊥
K for some linear subspace K then v is orthogonal to the subspace span(A∗R̃0)⊕K.

The analogue expression in case R̃
⊥

0 is given as a linear subspace S (i.e., if Av ∈ S

and v ∈ K̃ then v ∈ . . .) is less elegant.

The existence of an eigenvector orthogonal to R̃0 in Theorem 2.2 can also be
expressed in terms of the “shadow” Krylov subspace K(A∗, R̃0), where

K(A∗, R̃0) ≡

∞⋃

k=0

Kk(A∗R̃0).

Proposition 4.4. The following three statements are equivalent:
a) There exists an eigenvector of A that is orthogonal to R̃0.

b) K(A∗, R̃0) 6= Cn.

c) There is a non-trivial vector x such that K(A,x) ⊥ R̃0.
The characterization of Gk in Theorem 4.2 leads to an alternative proof of 1) of

Theorem 2.2. The proof that

Gk+1 = {(µk+1 I−A)pk(A)v | v ⊥ Kk+1(A
∗, R̃0)}

⊂ {pk(A)v | v ⊥ Kk(A∗, R̃0)} = Gk

follows from the fact that v ⊥ Kk+1(A
∗, R̃0) implies that (µk+1 I−A)v ⊥ Kk(A∗, R̃0).

The following corollary provides some insight on the decrease of the dimension
of Gk with increasing k. The result is an immediate consequence of Theorem 4.2 (we
leave the proof to the reader).

Corollary 4.5. If pk(A) is non-singular, i.e., if none of the µj is an eigenvalue
of A (j = 1, . . . , k), then

dim(Gk) = n− dim(Kk(A∗, R̃0)).
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Note that

dk+1 − dk ≤ dk − dk−1 ≤ s, where dk ≡ dim(Kk(A∗, R̃0)). (4.3)

In general (generic case), when ks ≤ n we will have that dk = ks: if the column vectors

of R̃0 have been randomly selected, then, with probability 1, we will have that dk = ks
whenever ks < n and A∗ has n linearly independent eigenvectors. However, dk+1−dk

can be < s as the following example shows.
Example 4.6. If R̃0 = [v,A∗v, (A∗)3v], then d1 = s = 3, d2+i = 5 + i.

5. Bi-CGSTAB and IDR in case s = 1. Theorem 4.2 suggests a relation
between IDR and Bi-CGSTAB. In this section, we concentrate on the case s = 1. We
put r̃0 instead of R̃0 (that is, we assume that R̃0 = [ r̃0 ]).

Bi-CGSTAB has been introduced as a transpose free variant of Bi-CG. The kth
Bi-CG residual rBi-CG

k is of the form

rBi-CG

k = qk(A)r0, (5.1)

with qk a polynomial of degree k such that

qk(0) = 1 and qk(A)r0 ⊥ Kk(A∗, R̃0). (5.2)

The first property makes qk to a ‘residual polynomial’, i.e., qk(A)r0 = b −Axk for
some xk (xk = x0 + q̃(A)r0, where q̃ is such that q(λ) = 1 − λq̃(λ)). Note that the
two properties in (5.2) determine qk uniquely.2

An auxiliary polynomial pk of degree k is used in Bi-CGSTAB for further reduc-
tion of the Bi-CG residual:

rBi-CGSTAB

k = pk(A)rBi-CG

k . (5.3)

The polynomial pk is of the form pk(λ) = (1− ωkλ) · · · (1− ω1λ), with

ωk = minargω‖(1− ωA)pk−1(A)rBi-CG

k ‖2.

If the Bi-CGSTAB process does not stagnate, then the ωj will be non-zero and, with
µj ≡ 1/ωj , we have that pk(λ) = 1

µk ···µ1
(µk − λ) · · · (µ1 − λ). Therefore, in view of

(5.1) and Theorem 4.2, we can conclude that rBi-CGSTAB

k belongs to Gk .
In view of the uniqueness remarks on the form of the Bi-CG residual and the

selection of the ωj in IDR and Bi-CGSTAB (to minimize residual norms), we can
conclude that IDR for s = 1 and Bi-CGSTAB are equivalent: assuming exact arith-
metic, then, with the same initialization (the same r0 and r̃0), they produce the same
residuals every second step.

Also as an introduction to the case s > 1, we give some more details (still assuming
s = 1 and k to be small to enough to have Krylov subspaces of full dimension; see
Footnote 2).

Bi-CG relies on coupled two-term recurrences:
Scalars αk and βk+1 are computed such that

{
rBi-CG

k+1 = rBi-CG

k − cBi-CG

k αk ⊥ r̃k

uBi-CG

k+1 = rBi-CG

k+1 − uBi-CG

k βk+1 such that cBi-CG

k+1 ≡ AuBi-CG

k+1 ⊥ r̃k.
(5.4)

2For ease of explanation, we implicitly assume that k is small enough to have Krylov subspaces
of full dimension: k = dim(Kk(A, r0)) = dim(Kk(A∗,er0)). The purpose of this section is to provide
inside on the relation between IDR and Bi-CGSTAB: we will not discuss the consequences here of
‘degenerated’ Krylov subspaces.
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Here, r̃0, . . . , r̃j is a basis of Kj+1(A
∗, r̃0) for all j ≤ k. Multiplying the second

recurrence relation by A allows the following reformulation of (5.4):

{
rBi-CG

k+1 = rBi-CG

k − cBi-CG

k αk ⊥ r̃k

cBi-CG

k+1 = ArBi-CG

k+1 − cBi-CG

k βk+1 ⊥ r̃k.
(5.5)

This formulation is slightly more compact than the one in (5.4), but can also be used
as an alternative for computing cBi-CG

k+1 and uBi-CG

k+1 . Because, once βk+1 and cBi-CG

k+1 have
been determined such that cBi-CG

k+1 ⊥ r̃k, then uBi-CG

k+1 can be obtained as an update
at the cost of one additional AXPY (per step): uBi-CG

k+1 = rBi-CG

k+1 − uBi-CG

k βk+1. This
formulation is closer to the IDR approach. Therefore, we will used it to derive Bi-
CGSTAB below.

An induction argument shows that (5.5) implies that

rBi-CG

k+1 , cBi-CG

k+1 ⊥ r̃k, r̃k−1, . . . , r̃0 :

local bi-orthogonality implies global bi-orthogonality.
Bi-CG leads to Bi-CGSTAB: put Pk ≡ pk(A) with pk a polynomial of degree k

with pk(0) = 1. The first relation in (5.5) leads to (take r̃k = p̄k(A∗)r̃0): (select αk

such that)

vk ≡ Pkr
Bi-CG

k+1 = Pkr
Bi-CG

k −Pkc
Bi-CG

k αk ⊥ r̃0.

With rk ≡ Pkr
Bi-CG

k and ck = Pkc
Bi-CG

k , this reads as

vk = rk − ckαk ⊥ r̃0.

With pk+1(λ) ≡ (1− ωk+1λ)pk(λ), we have

rk+1 ≡ Pk+1r
Bi-CG

k+1 = (I− ωk+1A)Pkr
Bi-CG

k+1 = (I− ωk+1A)vk.

The second relation in (5.5) allows us to compute Pkc
Bi-CG

k+1 :

Pkc
Bi-CG

k+1 = APkr
Bi-CG

k+1 −Pkc
Bi-CG

k βk = Avk − ckβk ⊥ r̃0.

With uk ≡ Pku
Bi-CG

k and w ≡ vk − ukβk, we have that Aw = Pkc
Bi-CG

k+1 and uk+1 =
(I− ωk+1A)w = w− ωk+1Aw.

The algorithm derived here is given in the left panel of Alg. 5.2. Note that this
version of Bi-CGSTAB is slightly different from the standard one in the computation
of the vector uk. As explained above, the formulation here relies on two explicit
orthogonalization on r̃0. In the standard formulation, one of the orthogonalization is
implicit. We could make the orthogonalization explicit at the cost of one additional
AXPY (as compared to the standard approach) (the last three lines in the ‘repeat
loop’ replace the lines u′ = u − ωAu, compute β, u = r + u′β, of the standard
algorithm).

The IDR algorithm for s = 1 is given in the right panel of Alg. 5.2. The algorithm
has been slightly simplified: two steps

r′ = r−Au, α such that v = r′ −Auα ⊥ r̃0,
have been combined into one single step

α′ such that v = r−Auα′ ⊥ r̃0

Here, we used the fact that s = r− r′ = Au and
r′ − sα = r′ − (r− r′)α = r− (r− r′)α′ for α′ = 1 + α.
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Select an x.

Select an r̃0.

Compute r = b−Ax, set u = r.

repeat

Compute Au

α such that v = r−Auα ⊥ r̃0

Compute Av

Select ω, r = v− ωAv

β such that Aw = Av−Auβ ⊥ r̃0

w = v− uβ

u = w− ωAw

end repeat

Select an x.

Select an r̃0.

Compute r = b−Ax, set u = r.

repeat

Compute Au

α such that v = r−Auα ⊥ r̃0

Compute Av . r′ = r.

Select ω, r = v− ωAv

s = r′ − r, u′ = uα + ωv

β such that v′ = r− sβ ⊥ r̃0

u = u′β + ωv′

end repeat

Alg. 5.2: Bi-CGSTAB (left) and IDR (right). The boxed expressions as Av
indicate a multiplication by A. The unboxed expressions Av represent vectors that
are already available and do not require a multiplication by A. The vectors r and
the vectors v of Bi-CGSTAB and IDR coincide, the u vectors are co-linear. Indices
have been suppressed to emphasize that newly computed vectors can replace old
ones (that are represented by the same letter). The vectors v′ and u′ in IDR can
be stored in the location for v and u, respectively (the prime has been added to
facilitate the description of the relation with Bi-CGSTAB). The recursions to update
the approximate solutions have not been included: if r (and v) is updated by a vector
of the form −Auα then update x by uα

To see that the algorithms are equivalent, add indices. Then the IDR loop reads
as:

αk such that vk = rk −Aukαk ⊥ r̃0

Select ωk+1, rk+1 = vk − ωk+1Avk

sk+1 = rk − rk+1, u′

k+1 = ukα + ωk+1vk

β such that v′

k+1 = rk+1 − sk+1β ⊥ r̃0

uk+1 = u′

k+1β + ωk+1v
′

k+1

Note that sj = Au′

j . Hence

Auk+1 = sk+1β + ωk+1Av′

k+1 = rk+1 − v′

k+1 + ωk+1Av′

k+1

= (I− ωk+1A)(vk − v′

k+1)

Note that v′

k+1 − vk ⊥ r̃0. Since v′

k+1 − vk = rk+1 − vk − sk+1β, we have that

v′

k+1 − vk = −ωk+1Avk −A(ukα + ωk+1vk)β ∈ Span(Avk,Auk) ∩ r̃⊥0 .

Hence, assuming that the vk and uk of IDR and Bi-CGSTAB coincide (except for a
scalar multiple), we see that v′

k+1−vk is a multiple of Aw of Bi-CGSTAB. Therefore,
Auk+1 is a multiple of (I−ωk+1A)Aw of Bi-CGSTAB, which shows that the uk+1 of
IDR and Bi-CGSTAB are co-linear and that the vk+1 and rk+1 coincide. Summarizing
we have

Proposition 5.1. If x0 and r̃0 coincide, if we use exact arithmetic, and if
we use the same selection strategy for the ωk (minimizing residual norms), then the
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vectors vk and rk in IDR and BiCGSTAB coincide and the vectors uk in IDR and
BiCGSTAB are co-linear.

Or in a less mathematical formulation: except for the last three lines in the
‘repeat loops’ in Alg. 5.2, the IDR and the Bi-CGSTAB algorithm are the same and
essentially produce the same quantities.

6. Bi-CG. As recalled in the previous section, where we discussed the case s = 1,
Bi-CGSTAB has been introduced as a transpose free variant of Bi-CG. To explain how
an s-dimensional initial shadow residual R̃0 can be incorporated in Bi-CGSTAB, we
first have to explain how Bi-CG can be formulated for an s-dimensional initial shadow
residual. This is the subject of this section.

Suppose R̃0 is an n× s matrix of full rank.

Recall that Kk(A∗, R̃0) is the space of all vectors
∑

j<k(A∗)j R̃0
~βj with ~βj in Cs.

Kk(A∗, R̃0) is the (block) Krylov subspace of order k generated by A∗ and R̃0. Let

R̃i be n × s matrices such that the columns of the matrices R̃0, . . . , R̃k−1 span the

space Kk(A∗, R̃0) (for all k sufficiently small, cf. Footnote 2).

Example 6.1. R̃k = p̄k(A∗)R̃0 with pk(λ) = (1− ωk λ) · · · (1− ω1 λ).

We will now explain how to construct a residual vector rk in KK(A, r0) with

K = ks + 1 that is orthogonal to Kk(A∗, R̃0).

Let C0 be the n× s matrix with columns Ar0, . . . ,A
sr0.

The matrix C0 is of the form AU0 with U0 explicitly available: U0 = [r0, . . . ,A
s−1r0].

Now, find a vector ~α0 ∈ Cs such that r1 ≡ r0 −C0 ~α0 ⊥ R̃0, r1 ∈ Kp+1(A, r0), and
update x0 as x1 = x0 + U0 ~α0.

Note that, with σ0 ≡ R̃
∗

0C0 any vector of the form w−C0σ
−1
0 R̃

∗

0w is orthogonal

to R̃0: I − C0σ
−1
0 R̃0 is a skew projection onto the orthogonal complement of R̃0.

Here, for ease of explanation, we assume that σ0 is s×s non-singular. If σ0 is singular
(or ill conditioned), then s can be reduced to overcome breakdown or loss of accuracy
(see Note 6.2 and [10] for more details).

Let v = r1. We construct an n× s matrix C1 orthogonal to R̃0 as follows:

s = Av, s = s−C0(σ
−1
0 R̃

∗

0s), C1ej = s, v = s for j = 1, . . . , s.

Here, C1 ej = s indicates that the j-column of Cj is set to the vector s: ej is the jth

(s-dimensional) standard basis vector. Then C1 is orthogonal to R̃0 and its columns

form a basis for the Krylov subspace of order s generated by A1 ≡ (I−C0σ
−1
0 R̃

∗

0)A
and A1r1. Note that there is a matrix U1 such that C1 = AU1. The columns of U1

can be computed simultanuously with the columns of C1: U1ej = v−U0(σ
−1
0 R̃

∗

0s).
Note that more stable approaches as GCR (or Arnoldi) for computing a basis of

this Krylov subspace could have been used as well. Now, with σ1 ≡ R̃
∗

1C1, the

vector r2 ≡ r1 − C1(σ
−1
1 R̃

∗

1r1) is orthogonal to R̃0 as well as to R̃1, it belongs to

K2p+1(A, r0), and x2 = x1 + U1(σ
−1
1 R̃

∗

1r1) is the associated approximate solution.
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Select an x0

Select an eR0

Compute r0 = b−Ax0

k = −1, σk = I,

Set Uk = 0, Ck = 0, eRk = 0.

repeat

s = rk

for j = 1, . . . , s

u = s, Compute s = Au

βk = σ−1

k ( eR
∗

ks)

u = u−Ukβk, Uk+1ej = u

s = s−Ckβk, Ck+1ej = s

end for

k← k + 1

σk = eR
∗

kCk, αk = σ−1

k ( eR
∗

krk)

xk+1 = xk + Ukαk, rk+1 = rk −Ckαk

end repeat

Alg. 6.3: Bi-CG. 0 is the n× s zero matrix, I is the s× s identity matrix. R̃k is
an n× s matrix such that Span(R̃k) +Kk(A∗, R̃0) equals Kk+1(A

∗, R̃0).

Repeating the procedure

rk+1 = rk −Ck~αk ⊥ R̃k

v = rk+1

for j = 1, . . . , s

s = Av

Ck+1ej = s−Ck
~βj ⊥ R̃k

v = Ck+1ej

end for

(6.1)

leads to the residuals as announced: rk ∈ Kks+1(A, r0), rk ⊥ Kk(A∗, R̃0). With σk ≡

R̃
∗

kCk, the ~αk and ~βj = ~β
(k)
j can be computed as ~αk = σ−1

k (R̃
∗

krk), ~βj = σ−1
k (R̃

∗

ks).
Simultaneously with the computation of the columns of Ck+1, the columns of a matrix
Uk+1 can be computed. A similar remark applies to the update of xk. The resulting
algorithm can be found in Alg. 6.3.

The columns of Ck+1 form a Krylov basis of the Krylov subspace generated by

Ak+1 ≡ (I−Ckσ−1
k R̃

∗

k)A and Ak+1rk.

Note 6.2. If σk = R̃
∗

kCk is (close to) singular, then reduce s. We can take the
following approach (which has not been included in Alg. 6.3).

Determine the singular value decomposition of σk , σk = QΣV ∗ with Q and V s × s
unitary matrices, Σ = diag(ν1, . . . , νs), with singular values νj ordered such that
ν1 ≥ . . . ≥ νs ≥ 0. Find p < s such that νp > δ > νp+1 for some appropriate (small)

δ > 0. Now, replace R̃k by R̃kQ( : , 1 :p) (here we use MATLAB’s notation) and Ck

by Ck( : , 1:p). Then the ‘new’ σk has singular values ν1, . . . , νp.
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7. Bi-CGSTAB. We are now ready to formulate the Bi-CGSTAB version of
IDR for s > 1.

As before, for each k, select a polynomial pk of exact degree k, and put Pk ≡
pk(A). For ease of notation, replace Ck = CBi-CG

k , Uk = UBi-CG

k , and rk = rBi-CG

k

in (6.1) by Ck, Uk, and rk , respectively. Now (6.1) can be reformulated as (take

R̃k = p̄k(A∗)R̃0)

Pkrk+1 = Pkrk −PkCk~αk ⊥
eR0

v = Pkrk+1

for j = 1, . . . , s

s = Av

PkCk+1ej = s−PkCk
~βj ⊥

eR0

v = PkCk+1ej

end for

(7.1)

Note that, for obtaining a formula for computing ~αk and ~βj = ~β
(k)
j there is no need

to refer to (6.1): it suffices to refer to the orthogonality conditions in (7.1).
To repeat the k-loop, represented in (7.1), k has to be increased, that is, Pk+1rk+1

and Pk+1Ck+1 have to be computed from Pkrk+1 and PkCk+1, respectively. If
Pk+1 = (I−ωkA)Pk, then these quantities can be obtained simply by multiplication
by I−ωkA. This naive approach would require p+1 additional multiplications by A.
However, in the process of updating PkCk+1, the vectors APkrk+1 and APkCk+1ej

(j = 1, . . . , s− 1) are computed. The following loop exploits this information.

Pkrk+1 = Pkrk −APkUkαk ⊥
eR0

v = Pkrk+1, s = Av, APkrk+1 = s

for j = 1, . . . , s

APkUk+1ej = s−APkUkβj ⊥
eR0

PkUk+1ej = v−PkUkβj

v = APkUk+1ej , s = Av, A
2
PkUk+1ej = s

end for

Select an ωk, Pk+1rk+1 = Pkrk+1 − ωkAPkrk+1

for i = 0, 1, A
i
Pk+1Uk+1 = A

i
PkUk+1 − ωkA

i+1
PkUk+1, end for

(7.2)

Here, AUk equals Ck. We used Uk in our formulation here since we also need A2Uk

and we want to limit the number of different symbols.
Computing Pk+1rk+1 as soon as Pkrk+1 is available, and computing Pk+1Ck+1ej

as soon as PkCk+1ej , is available leads to the following variant that requires less
memory.

Pkrk+1 = Pkrk −PkCkαk ⊥
eR0

v = Pkrk+1, s = Av

Select an ωk, Pk+1rk+1 = v− ωks

for j = 1, . . . , s

v = s−PkCkβj ⊥
eR0

s = Av, Pk+1Ck+1ej = v− ωks

end for

(7.3)

The additional matrix PkCk+1 need not to be stored. The formation of PkCk+1

and APkCk+1 in the last step of (7.2) may be superfluous if Pk+1rk+1 = Pkrk+1 −
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Select an x0

Select an eR0

Compute r0 = b −Ax0

k = 0, s = r0

for j = 1, . . . , s

U0ej = s, s = As, S0ej = s

end for

repeat

σk = eR
∗

0Sk, ~αk = σ−1

k ( eR
∗

0rk)

v = rk − Sk~αk

s = Av

Select an ωk

rk+1 = v− ωks

for j = 1, . . . , s

~βj = σ−1

k ( eR
∗

0s)

v = s− Sk
~βj

s = Av

Sk+1ej = v− ωks

end for

k← k + 1

end repeat

Select an x

Select an eR0

Compute r = b −Ax

s = r

for j = 1, . . . , s

Uej = s, s = As, Sej = s

end for

repeat

σ = eR
∗

0S, ~α = σ−1( eR
∗

0r)

x = x + U~α, v = r − S~α

s = Av

Select an ω

x = x + ωv, r = v− ωs

for j = 1, . . . , s

~β = σ−1( eR
∗

0s)

u = v−U~β, v = s− S~β

s = Av

U
′ej = u − ωv, S

′ej = v− ωs

end for

U = U
′
, S = S

′

end repeat

Alg. 7.4: Bi-CGSTAB. For analysis purposes, we present the algorithm with in-
dices (and no update of the approximate solution), see the left panel. The right panel
includes the update of the approximate solution, but the algorithm here has been
displayed without indices: new values are allowed to replace old values.

ωkAPkrk+1 turns out to be small enough. Unfortunately, this step can not be avoided
in (7.2), whereas (7.3) allows a ‘break’ after the computation of Pk+1rk+1. Never-
theless, the approach in (7.2) may be useful, since it may allow easier generalization
to other hybrid Bi-CG variants. Note that in coding (7.2) the matrix update of
Pk+1Ck+1 can exploit BLAS2 subroutines with better parallelization properties then
the sequence of vector updates in (7.3).

With rk ≡ Pkrk, Sk ≡ PkCk and vk ≡ Pkrk+1, we obtain the algorithm as
displayed in the left panel of Alg. 7.4.

8. Bi-CGSTAB and IDR(s). We put sk+1 ≡ rk+1−rk and Sk ≡ [sk, sk−1, . . . , sk+1−s].
The IDR(s) loop runs as follows (below the horizontal line)

vk = rk − Sk~αk ⊥
eR0

Select ω, rk+1 = (I− ωA)vk

for j = 1, . . . , s

vk+j = rk+j + Sk+j
~βk+j ⊥

eR0

rk+j+1 = (I− ωA)vk+j

end for

vk+1+s = rk+1+s − Sk+1+s~αk+1+s ⊥
eR0
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As before, . . . ⊥ R̃0 indicates that the s-vectors (~α and ~β) in the expression in front

of the symbol ⊥ has been selected such that the expression is orthogonal to R̃0.
The following lemma implies that IDR(s) and Bi-CGSTAB are equivalent: if they

produce the same vk and rk, then, in exact arithmetic, they produce the same rk+1,
vk+s+1 and rk+1+s. With the same initialization, assuming exact arithmetic, they
produce the same residuals and approximations every s + 1 step.

Lemma 8.1. Let wk+j ≡ Avk+j + Sk~γk+j ⊥ R̃0.

a) vk+1+s = rk+1 − Sk+1+s
~̃α ⊥ R̃0.

b) Span(Sk+1+s) = (I− ωA)Span([wk+s−1,wk+s−2, . . . ,wk]).
c) With

Ã ≡ (I− Sk(R̃
∗

0Sk)−1R̃
∗

0)A, (8.1)

Span([wk+s−1,wk+s−2, . . . ,wk]) is the Krylov subspace of order s generated by Ã and

Ãvk.
Proof. We first prove by induction that

Span([ sk+j+1, . . . , sk+1 ]) + Span(Sk) = Span([wk+j , . . . ,wk ]) + Span(Sk).

Note that

sk+j+1 = rk+j+1 − rk+j = −ωAvk+j + vk+j − rk+j

∈ −ωAvk+j + Span(Sk+j) ⊂ Span([wk+j , . . . ,wk]) + Span(Sk).

The last inclusion follows by induction.
For j > 0, we have

sk+j+1 = rk+j+1 − rk+j = (I− ωA)(vk+j − vk+j−1). (8.2)

Since vk+1+j − vk+j = rk+j+1 − vk+j + Sk+j+1
~β = −ωAvk+j + Sk+j+1

~β, we have

that vk+1+j − vk+j ∈ Span([wk+j , . . . ,wk]) + Span(Sk). In addition, ~β is such that

vk+1+j − vk+j ⊥ R̃0. We also have that Span([wk+j , . . . ,wk]) ⊥ R̃0, which implies
that vk+1+j − vk+j ∈ Span([wk+j , . . . ,wk]). Therefore,

Span([vk+1+j − vk+j , . . . ,vk+1 − vk]) = Span([wk+j , . . . ,wk]). (8.3)

In particular, Span([vk+s−vk+s−1, . . . ,vk+1−vk]) = Span([wk+s−1, . . . ,wk]), which,
in combination with (8.2) proves b).

Clearly, Span([wk+j−1,wk+j−2, . . . ,wk]) = Ã(Span([vk+j−1,vk+j−2, . . . ,vk]))
(j = 2, . . . , s). Note that

Span([vk+j−1,vk+j−2, . . . ,vk]) = Span([vk+j−1 − vk+j−2, . . . ,vk+1 − vk,vk]).

Therefore, (8.3) implies that

Span([vk+j−1,vk+j−2, . . . ,vk]) = Ã(Span([vk+j−1,vk+j−2, . . . ,vk])) + Span(vk).

Repeating this argument proves c) of the lemma.

Proposition 8.2. If x0 and R̃0 coincide, if we use exact arithmetic and if we use
the same selection strategy for the ωk (minimizing residual norms), then every s+1-st
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step the vectors vk and rk in IDR(s) coincide with v and r vectors in Bi-CGSTAB.

In a less mathematical formulation, the differences between Bi-CGSTAB and
IDR(s) are in the main ‘for j=1,. . . s’ loop of Alg. 7.4. Bi-CGSTAB keeps the matrices
Sk and Uk fixed in this loop (the updates take place out of this loop, where they are
replaced by Sk+1 and Uk+1, respectively), whereas IDR(s) updates these matrices in
each step (that is, after each MV), replacing the ‘oldest’ column by a ‘new’ vector
(of residual differences). At the beginning of the loop, the S-matrices of Bi-CGSTAB
and IDR(s) span the same space, a Krylov subspace generated by a projected matrix
(see (8.1)).

9. Numerical experiments. We present two numerical examples. The first
example serves to demonstrate that the generalized Bi-CGSTAB method and IDR(s)
produce the same residuals every s + 1-st step (as long as numerical effects do not
play a role). The second example exposes a difference in numerical stability between
the two methods. The experiments have been performed using MATLAB 6.5. We
have used the MATLAB implementation of IDR(s) that is described in [10]. For
Bi-CGSTAB we use an implementation of Alg. 7.4.

To illustrate the equivalence of Bi-CGSTAB and IDR we consider the Sherman4
matrix from the MATRIX MARKET collection. We have taken a right-hand-side
vector corresponding to a solution vector that consists of ones. Figure 9.1 shows the
convergence of IDR(s) and Bi-CGSTAB for a shadow space of dimension four.3 For
IDR(s) we have only plotted the residual norms at every s + 1-st step, although the
method produces a residual in every iteration (= MV-multiplications). Clearly, the
Bi-CGSTAB-residual norms basically coincide with the IDR-residual norms at these
crucial steps, until numerical effects start to play a role.

Table 9.1 presents the number of IDR- and Bi-CGSTAB MVs for increasing values
of the dimension of the shadow space that is needed to make the scaled residual norm
smaller than 10−8. Both methods use the recursively updated residual to check for
convergence. To validate that this desired accuracy has actually been achieved, we
have tabulated the scaled norm of the true residual ‖b −Ax‖/‖b‖. The table also
includes the (optimal) number of GMRES MVs. These results are only included to
indicate how close IDR(s) (or Bi-CGSTAB) is to this optimal number. Of course
IDR (and Bi-CGSTAB) iterations are much cheaper than GMRES iterations. The
results show that increasing s reduces the number of IDR and Bi-CGSTAB iterations
to a value that is only 25% above the optimal value for GMRES. The overall gain of
increasing s is for this example significant, but rather limited. This is simply because
the results for s = 1 are already good, only 50% above the optimal value of 120
MVs. Except Bi-CGSTAB for s = 4, all methods compute the solution to the desired
accuracy. Probably the most noteworthy observation for this example is that IDR(s)
and Bi-CGSTAB require basically the same number of MVs for the same dimension of
the shadow space, which confirms the mathematical equivalence between the methods.

As a second example we consider the ADD20 matrix, also from the MARIX-
MARKET collection. We have again taken the right-hand-side vector corresponding
to a solution vector that consists of ones. Figure 9.2 shows the convergence of IDR(s)
and Bi-GCSTAB for a shadow space of dimension four. Also for this example, initially
the residual norms of IDR(s) and Bi-CGSTAB coincide. However, numerical effects

3The notation Bi-CGSTAB(4) in figures and tables indicates the use of a shadow space of dimen-
sion four. Note the difference in notation with BiCGstab(`) in §10, where the ` refers to polynomial
factors of degree `.
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Fig. 9.4: Convergence of Bi-CGSTAB(4) and IDR(4) for SHERMAN4.

Method Number of MVs ‖b−Ax‖/‖b‖

GMRES 120 9.8 · 10−9

IDR(1) 179 6.6 · 10−9

IDR(2) 161 8.3 · 10−9

IDR(3) 153 8.7 · 10−9

IDR(4) 146 3.0 · 10−9

IDR(5) 150 1.2 · 10−9

Bi-CGSTAB(1) 180 9.0 · 10−9

Bi-CGSTAB(2) 162 8.6 · 10−9

Bi-CGSTAB(3) 156 4.6 · 10−9

Bi-CGSTAB(4) 150 1.8 · 10−7

Bi-CGSTAB(5) 144 7.1 · 10−9

Table 9.1: Number of matrix-vector multiplications to solve the SHERMAN4
system such that the (true) norm of the scaled residual is less than 10−8.

are much stronger, and after about 100 iterations the convergence curves of the two
methods start to differ significantly, resulting in a significantly different number of
MVs to achieve the desired accuracy.

Table 9.2 presents the number of IDR- and Bi-CGSTAB MVs for increasing values
of the dimension of the shadow space that is needed to make the scaled residual norm
smaller than 10−8, and also the scaled norms of the true residuals ‖b−Ax‖/‖b‖.

IDR(s) performs well for this example. A significant reduction of the number of
MVs is achieved if s is increased, and the accuracy that is reached remains satisfactory.
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Fig. 9.4: Convergence of Bi-CGSTAB and IDR(s) for ADD20 with a four-
dimensional shadow space.

Method Number of MVs ‖b−Ax‖/‖b‖

GMRES 295 1.0 · 10−8

IDR(1) 672 9.0 · 10−9

IDR(2) 581 9.9 · 10−9

IDR(3) 588 4.8 · 10−9

IDR(4) 480 5.3 · 10−9

IDR(5) 444 9.4 · 10−9

Bi-CGSTAB(1) 728 9.0 · 10−9

Bi-CGSTAB(2) 648 9.8 · 10−9

Bi-CGSTAB(3) 528 2.0 · 10−7

Bi-CGSTAB(4) 545 7.1 · 10−6

Bi-CGSTAB(5) 702 0.026

Table 9.2: Number of matrix-vector multiplications to solve the ADD20 system
such that the (true) norm of the scaled residual is less than 10−8.

Bi-CGSTAB, on the other hand, shows to be numerically less stable than IDR(s), and
fails to compute an accurate solution for s = 5.

The above example shows that the generalized Bi-CGSTAB algorithm Alg. 7.4
should not be considered as an improvement over IDR(s). However, we did not
formulate the algorithm for this reason, but to reflect the insights we have gained
about the relation between IDR and Bi-CGSTAB.
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10. Conclusions and future work. The IDR approach offers an elegant view
on transpose free Bi-CG methods with initial shadow residual of dimension s, with
s > 1. The inclusion of such a higher dimensional shadow space in IDR proved
to be remarkable effective and can be included in Bi-CG and Bi-CGSTAB as well.
Inclusion in Bi-CGSTAB is less elegant than in IDR, and in its present formulation
also numerically less stable. Nevertheless, with this inclusion, IDR and Bi-CGSTAB
are equivalent.

Extensive experiments in [10], show that for many problems IDR with modest s,
as s = 4, requires a similar number of MVs as GMRES for obtaining approximate
solutions of comparable accuracy. But in contrast to GMRES, the additional costs
per MV are fixed and modest for IDR.

However, experiments in [10] with BiCGstab(`) (see [7]) for ` = 2 show that there
is still room for improvement: BiCGstab(2) is more robust. Quadratic polynomial
factors with real coefficients appear to be more suitable then linear factor with real
coefficients for strongly nonsymmetric problems. Inclusion of these higher degree
factors in IDR is our next goal, and we believe that the insight into the relation
between IDR and Bi-CGSTAB that we have obtained in this paper is an essential
step towards achieving this.
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