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THE DUAL OF THE SPACE OF MEASURES WITH CONTINUOUS TRANSLATIONS 

Gerard L.G. Sleijpen 

Communicated by D.E. Ramirez 

i. INTRODUCTION 

Let S be a locally compact semigroup. Consider the space L(S) of 

all bounded Radon measures U on S of which the translations r and 

Z [r (x) := ~*x, s (x) := x*~ (x E S), where x denotes the point-mass 

at x~ are maps on S that are continuous with respect to the total 

variation norm. Assume that S is a foundation semigroup; i~e. 

clo U{supp(~)l ~ ~ L(S)} = S [cf. [i],w Certainly, if in addition S 

has an identity element Is is said to be a foundation stir; cf. [6], 

(2.2)], in view of the results in e.g. [6J, one may state that L(S) 

is the analogue of the group algebra LI(G) of a locally compact group 

G. However, unlike the group case, in general, there is no Radon 

measure m on S for which L(S) can be identified with Ll(s,m). Conse- 

quently, it is not obvious whether L(S)*, the topological dual of 

L(S), can be identified with the space of the bounded complex-valued 

L(S)-measurable [i.e. ~-measurable for all ~ s L(s)J functions on S. 
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For instance, any non-discrete locally compact Hausdorff space X pro- 

vided with a trivial multiplication [i.e. fix a 0 s X and define 

xy := 0 for all x,y s X] is a foundation semigroup on which every 

bounded Radon measure belongs to L(X) and clearly L(X)* cannot be 

viewed as a space of functions on X. If S is a foundation stip, then 

in this case, as well, no such "dominant" measure m need exist [cf. 

(2.9)]. However, in this note, for such a semigroup S, we identify 

L(S)* with the above-mentioned space of L(S)-measurable functions. 

We shall shed some light upon the structure of a foundation stip 

[(2.1)-(3.2)]. The results shall be used in order to obtain a genera- 

lization of the localization property in ch. IV, w no.9 of [3]. As a 

corollary, we find the description of L(S) as mentioned above. 

This localization property is a basic requirement if one whishes 

to apply the main results in [2]; the constructions, considered by 

J.-P. Bertrandias in this paper, may turn out to be important in or- 

der to obtain analogues on foundation stips of the LP(G) spaces on a 

group G (p r (i,~]). 

If, the foundation stip is commutative, the results in this note 

follow easily from the ones in ch.XIV of [5]. However, in the non- 

commutative case, we have to do some work. Some of the lemmas (2.4)- 

(2.8), in one or another form, can also be found in [5]; for the con- 

venience of the reader we include a [simplified] proof here. 

2. THE COUNTABLE CLOSURE OF THE SMALLEST DENSE IDEAL 

The conventions, notations and definitions that are not explained 

in the text are the same as the ones in [6]. Definition (2.1) and 

proposition (2.2) are basic in the theory of stips; their proofs can 

be found in [6J. 
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(2.1) DEFINITION. [cf. [61, (2.1)-(2.4)]. Let S be a locally compact 

semigroup with identity element I. S is said to be a sti~ if for each 

neighbourhood U of 1 we have that 

(i) x s int[u-l(ux) N (xU)U-11 for all x s S 

(ii) I s int[U-Iv n wU-ll for some v,w c U. 

If, in addition, (iii) clo(U{supp(~)I~ s L(S)}) = S, we say that S is 

a foundation stir. Put S := A{JIJ ~ s, clo J = s, JS c sJ _c j}. 

Throughout the sequel, S is a stip. 

(2.2) PROPOSITION. [cf. [61, (2.4)-(2.7), (3.13)I. clo(S) = S, 

SSS = SS = ~; S is the smallest dense ideal of S. Let U,V be o~en 

sets, x s S, v E V n S. Then U-I(vx), (xV)U -I, (U n S)-Ix, x(U N S)-I 

ar 9 o~en and x c int[(xV)v -I n v-l(vx)1. L(S) is an L-ideal in the 

s~ace M(S) of all bounded Radon measures on S. 

K denotes the collection of all compact subsets F of S, while N 

is the subcollection of all F c K that are L(S)-negligible [i.e. 

~(F) = 0 for all ~ ~ L(S)]. L(S) is the unit-ball {~ E L(S) I 
1 

I I~ll ~ I} of Lcs) 

(2.3) NOTATION. S := U{clo(A) IA is a countable subset of S}. 

Note t h a t  S i s  a t w o - s i d e d  d e n s e  i d e a l  i n  S .  

E is t h e  c o l l e c t i o n  o f  a l l  i d e m p o t e n t s  e i n  S [ e  2 = e ]  a n d  

E~ := S fl E. 

(2.4) LEMMA. Let (V) be a sequence of nei~hbourhoods of I. Then 
n nEIN . . . .  

E 6 N N{Vnln ~ IN} ~ @. 
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Proof. There exists a sequence (W) 
n n �9 

neighbourhoods of i such that 

of open relatively compact 

~2 ~ N int(Vn_ I) n = 2,3, n Wn-i ' "'" 

Put H := Q{Wnln ~ IN}. Then H is a compact subsemigroup of S. Let e 

be an idempotent in the kernel of H. For each n �9 IN, take w �9 W N S. 
n n 

Let x 6 n clo{wmim ~ n}. Then x �9 H and there is a y �9 S such that 

n 
e = exye. Then e E clo{eWmYeim �9 IN}, while eWmYe �9 So 

(2.5) LEMMA. For each e �9 E, eSe is closed. Sw = U{eSeie �9 E6}" 

Proof. The first claim is obvious. Let A be a countable subset of S. 

an e ~ E 6 N A{S-lala E A} N n{as-II a �9 A}. Then A ~ eSe, There is 

whence clo(A) c eSe. 

(2.6) LEMMA. Let A c S be countable, let F be a 0-compact subset of S. 

There is an f �9 E 6 such that AF D FA ~ fSf. 

Proof. Let B be a countable subset of S such that A c clo(B). For each 

x s S both xSa -I and a-iSx are neighbourhoods of x (a �9 B). Since, F 

is 0-compact, for each a �9 B there are countable subsets Pa' P' of F 
a 

Fa _c PaS and aF _c SP'.a Let f �9 E 6 n D{pS -11p ~ Pa' a �9 B} N such that 

A{S-iplp �9 P', a E B} n n{s-laI a �9 B} n A{as-iIa �9 B}. If x �9 F then 
a 

xa = pt for some p E P , t �9 S. Since fp = p, we have that fxa = fpt 
a 

= pt = xa. Therefore 

FB o BF c fSf and FA u AFc clo(FB o BF) c fSf. 

(2.7) LEMMA. Let S be a foundation stip. Then S = U{supp(v)]~ �9 L(S)}. 

Proof. Put T := U{supp(~)]~ s L(S)}. Let x �9 S. Since S-ix is open 

+ -ix) and non-empty, there is a U E L(S) such that ~(S # 0. 

If t E supp(V) D S-Ix then x �9 St i O{supP(Y*~)IY s S}. Hence S ! T. 
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+ 2-n 
If (~n)n6iN is a sequence in L(S) I, then ~ := Z ~n �9 L(S) and 

n= 1 

supp(9) = clo U{supp(~ n) In �9 IN}. Therefore S~ _c T. 

+ 
Let ~ �9 L(S) . Put d := sup{~(aK) la �9 S, K �9 K}. Then ~(AF) = d 

for some countable subset A of S and some ~-compact subset F of S. 

Consider v := ~IS\A F. If K ~ K then 9(aK) = 0 for all a E S. Since 

I 6 clo(S) and ~ 6 L(S) we have that %'(K) = 0 for all K ~ K. Therefore 

~(S\AF) = 0. By (2.6) there is an f 6 E~ 

supp(~) ~ clo(AF) ~ clo fSf = fSf. 

with AFc fSf. Hence 

(2.8) LEMMA. Let S be a foundation stir. Let F �9 K and e E E 6 

F c Se. 

+ I << m for all ~ s L(S). There is an m ~ L(S) such that ~ F 

with 

+ 
Proof. Let ~ s L(S) such that e s supp(~). There is a sequence 

1 

(x) in F for which {x *~[n ~ IN} is dense in {x*~Ix �9 F}. Put 
n n �9 n 

i 

m := z2-nx *~. If K e K such that m(K) = 0 then x*v(K) = 0 for all 
n 

x �9 F,  w h e n c e  ~ t F * ~ ( K )  = 0 (~ �9 L ( S ) ) ,  S i n c e  e c s u p p ( ~ ) ,  

~]F*;(K) = 0 (~ c L(S)). Finally, the observation that ~IF*e = 

(~ s L(S)) completes the proof. 

(2.9) EXAMPLE. There exists a foundation stip S for which S ~ S. In 

+ LI(S,m) particular, for this stip S, for each m 6 M(S) we have L(S) ! 

[Take an uncountable index set I, and let S be the product space {0,I} I 

endowed with the product topology and coordinate wise multiplication 

[per coordinate we have the usual multiplication of the integers]. Then 

consists of the elements x in S for which only finitely many co6rdi- 

nates are equal to I [{i E Ilx(i) = i} is finiteJ. Furthermore, L(S) 

is the closed subspace of M(S) generated by {x E M(S) Ix E S}. There- 

fore, S is a foundation stip. However, S consists of the elements in 

S for which at most countably many coordinates are equal to 1 and 
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S # S. Now, suppose there is an m s M(S) + such that L(S) c L l(S,m). 
L0 

T h e n  t h e r e  i s  a n  m 1 E L ( S )  + s u c h  t h a t  L ( S )  = L l ( S , m ) .  T h e r e f o r e ,  b y  

(2.7), S = supp(ml). However, this violates the facts that clo S = S 

andS r S .] 

3. THE LOCALIZABILITY OF S WITH RESPECT TO L(S) 

In order to show that any foundation stip S is "localizable" with 

respect to L(S) [cf. (3.4) I we need another two lem/nas. In these lem- 

mas we give a partition of S into L(S)-measurable non-L(S)-negligible 

parts. 

(3.1) LEMMA. Let H be a compact subsemigroup of S with identity ele- 

ment I. Put 

E(H) := E N H, 

I(e) := U{sfif ~ E(H), HfH = HeH} (e E E(H)), 

H(e) := I(e)\U{I(f)If s E(H), e ~ HfH} (e s E(H)). 

Then (I) I(e) is a closed left ideal in S (e s E(H)), 

(2) {H(e) le ~ E(H)} is a partition of S, 

(3) if e E E(H) then H(e) N S ~ ~ if and only if H(e) is open inn 

I(e), 

(4) The collection {H(e) le s E(H), H(e) N S ~ ~} covers S. 

Proof. Before we prove (I)-(4), we make some observations. 

(i) Note that H(e) = H(f) for all e,f s E(H) for which HeH = HfH. 

Take an x c S. Put F(x) := {y s Hixy = x}. Since F(x) is a com- 

pact semigroup, F(x) contains some minimal idempotent e I [i.e. 

e I s F(x) N E and e I s F(x)yF(x) ~ HyH for all y s F(x)3. 

(ii) If f ~ E(H) such that x s I(f) then x E Sf I for some fl E E(H) 

for which HflH = HfH. Clearly, fl E F(x) and therefore, 
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e I c HflH = HfH. Obviously, x �9 I(e I) and, consequently, 

x �9 H(el)- 

(iii) Furthermore, if e �9 E(H) such that x s H(e), then, by definition 

of H(e) and the fact that x �9 I(e I) we have that e E HelH. Since 

e I is minimal, we see that e s HelH ~ HyH for all y ~ F(x). 

From (ii), it follows that {H(e) le ~ E(H)} covers S and also that 

{H(e) le �9 E(H), H(e) N S # ~} covers S. In view of (i), it is not hard 

to see that, for any f,e c E(H), either H(f) = H(e) or H(f) N H(e) = ~. 

In order to prove (i) and (3), let e 0 ~ E(H). 

The closedness of I(e 0) follows easily from the compactness of 

{f E E(H) IHfH = He0H}. 

Now, assume that H(e 0) N S ~ ~. 

First we shall prove that 

(5) Sf D H(e0) N S ~ ~ for all f ~ E(H) for which HfH = He0H. 

Take an x �9 H(f) N S. Let e �9 E(H) such that HeH = HfH and x �9 Se. 

Let v,w �9 H such that e = vfw. Consider xvf. Obviously xvf �9 Sf N 

n I(f). If xvf �9 Se I for some e I �9 E(H) then xvfe I = xvf and, there- 

fore xvfelw = xe = x, which shows that vfelw �9 F(x) [where F(x) is 

as above3. Hence, by (iii), f �9 HvfelwH ~ HelH. Apparently, xvf E H(f) 

and if N H(f) N S # ~. Since H(f) = H(e o) for all f E E(H) with 

HfH = He0H, this proves (5). 

A combination of (5) and (2.2) shows that 

(6) S-IH(e0) is an open set containing {f �9 E(H) IHfH = He0H}. 

Let f s E(H) such that e 0 % HfH. Suppose that f s S-IH(e0). Then 

tf �9 H(e 0) for some t �9 S. Clearly, tf 6 I(f). Since tf �9 H(e0), we 

must have that e 0 �9 HfH, which is impossible. Apparently 

(7) if f E E(H) such that e 0 ~ HfH then f % S-IH(e0). 

Finally, to prove that H(e 0) is open in I(e0), let x �9 clo(I(e0)\H(e0)). 
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Note that, if y �9 I(e0)\H(e 0) and f is a minimal idempotent in F(y) 

then f �9 He0H and e 0 ~ HfH. Therefore, there are nets (xl)l�9 A in 

I(e0)\H(e 0) converging to x and (fl)ls in E(H) such that 

x~f~ = x~, f~ �9 He0H , e 0 ~ Hf~H (~ �9 A). 

Since E(H) N He0H is compact, we may assume that (fl)l�9 converges to 

an f �9 E(H) N He0H. (6), (7) and "f s He0H" tells us that e 0 ~ HfH. 

Also we have that xf = x, which shows that x ~ H(e0). 

The other property in the lemma has a simple proof; this is 

omitted. 

(3.2) LEMMA. Let H be a compact G6-subsemigrou P of S such that I s H. 

Using the same notation as in the preceding lamina, we have that 

(I) each e c E(H) belongs to E 6 as soon as H(e) N S # ~; 

(2) for each U E L(S) there exists a countable subcollection P 

o_~f {H(e)[e E E(H), H(e) N S ~ ~} such that I~I (s\U~) = 0. 

Proof. Let e s E(H) such that H(e) N S ~ ~. since H is a G6-set and 

H(e) is open in I(e) [cf. (3.1.3)], we can find a compact subsemigroup 

H' of H that is a G6-set in I(e) and with e s H' c__ H(e) . Note that for 

each f E E(H) n H' we have that HfH = HeH. Since H' is a G6-set in 

I(e), there exists a countable subset D of S [use (2.2)] such that 

H' N clo(D) ~ ~. Therefore, since each compact semigroup contains mi- 

nimal idempotents, in view of our note, we have that e E clo(hDg) for 

some h,g s H. Now (i) follows from the fact that hDg c S. 

Put E := {e s E(H)[H(e) n S ~ ~}. 

+ 
To prove (2), let U �9 L(S) 

Since S c U{H(e) le �9 E} by an adaptation of the argument in the proof 

of (2.7), we can find a sequence (Fn)n�9 of compact subsets of S and 

a countable subset C of E such that 
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(3) u(S\CA) = 0, 

where A := U{Fn[n E IN}. 

Now, let F 6 {Fnln ~ IN} and e ( C. Put p' := ~le F. We shall show 

that there exists a countable subset p' of {H(e)le s E} such that 

~'(S\Up') = 0; then, in view of (3), we may conclude that (2) holds. 

Let E > 0. Since e belongs to E6, e*~' = ~' and p' s L(S), there is 

a sequence (a) in S such that e s clo{anln �9 IN} and 
n n6IN 

- , .2 -n [ lu'-a *~ II < ~ (n  ~ I N ) .  
n 

Now, we shall prove that 

(4) eS N H(f) c U{int(a-IH(f))I n s IN} 
-- n 

if ~ E). 

Let f 6 E and take an x 6 eS N H(f). The facts that ex = x and 

e s clo{a In c IN} imply that x �9 clo{anXln �9 IN}. I(f) is a left 
n 

ideal and hence, a x �9 I(f) (n �9 IN). Now, the openness of H(f) in 
n 

I(f) shows that akx 6 H(f) for some k s IN. Let O be an open set in 

S such that H(f) = O N I(f). Then we have that 

-i klO -lak)-i klO x e a k O o I(f) _c a N (S I(f) _c a 

o int(aklI(f)) c int(aklO O aklI(f))c int(aklH(f)). 

This shows (4). Since eF is compact and eFc S c U{H(f) If c E}, (4) 

leads to the existence of a finite subcollection P of {H(f) If 6 E} 
c 

such that 

_c D-ipe, where Pe eF 

Now note that 

e F \ P  c D - 1 p  \ p  , w h i l e  
E; - -  E E 

p, (D-Ip \p ) -< 
E s 

:= UP 
E 

and D := {anln ~ IN}. 

Z p'(a IPE\Pe)-. ~ e .  

n = l  

Put P := U{Pl/nln s IN}. Then P is the union of countably many ele- 

D-iPl/n\Pl/n ments of {H(f) If ~ E} and, furthermore, eF\P ~ (n s IN), 
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which implies that ~'(eF\P) = 0. 

The proof of the following lemma is an adaptation of the one of 

proposition in ch. IV, w no.9 in [3]. The subsequent theorem can be 

viewed as a generalization of this result in [33. 

(3.3) LEMMA. Let S be a foundation stip. Let H be a compact G6-sub- 

semiqroup of S with 1 E H. Let e s E(H) for which H(e) N S ~ ~. There 

exists a family A of compact subsets of H (e) such that 

(i) A D B = ~ for all A,B s A, A ~ B, 

(ii) A ~ N for all A �9 A [where N as in w 

(iii) for each C �9 K with C c H(e), the collection {AIA �9 A,A n C ~ ~} 

is countable and C\UA �9 ~, 

1 << m (~ �9 L(S)). (iv) for each A e A there is an m �9 L(S) + such that V A 

Proof. For each F < K, put d(F) := {x �9 FIX n F % ~ for all X �9 K 

with x �9 int(X)}. Note that d(F) c F and F\d(F) �9 N. 

By Zorn's lemma there exists a family of compact subsets of S 

that is maximal with respect to property (i) , (ii) and (v) : A = d(A) 

for all A �9 A. 

Let C �9 K with C c H(e). Take an open relatively compact neigh- 

bourhood U of C and put ~ := U n I(e). There is an idempotent f �9 E 6 

such that eH c fSf, whence I(e) c SeH c Sf [cf.(2.6)]. By (2.8) there 

+ 
is an m �9 L(S) such that 

~I~ << m for all ~ �9 L(S). 

If F �9 A such that F A C ~ ~ then ~ ~ F N U c I(e) N U = ~. Since 

d(F) = F there is a ~ �9 L(S) with ~(F n U) # 0. Consequently, re(F) ~ 0. 

Apparently {F �9 AIF A C # ~} c_ {F �9 Aim(F) ~ 0}. The countability 

property follows easily now. In particular c\UA is measurable. 

The negligibility follows from the maximality of A. 
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(3.4) THEOREM. Let S b_~e a foundation st ip. There exists a family H of 

compact subsets of S such that 

(i) A N B = ~ for all A,B E H, A ~ B; 

(ii) A ~ ~ for all A ~ H; 

(iii) for each ~ c L(S) +, D(s\U{A ~ HID(A) ~ 0}) = 0; 

(iv) for each A 6 ~ there is an m s L(S) + for which 

~JA' << m (~ E L(S)). 

The theorem follows by an obvious combination of (3.2) and (3.3). 

Viewing the above result, the reader will not find it too hard 

to prove the following theorem and proposition [cf. [213. 

(3.5) THEOREM. Let S be a foundation stip. Let B be a subcollection 

of L(S) loc, the space of Radon measures V on S that are locally con- 

tained in L(S) [i.e. ~IF s L(S) for all compact subsets F of S]. If 

(fp)p6B is a family of complex-valued functions on S for which for 

each p s B, f is p-measurable, and f = f locally, p-a.e, whenever, 
P P 

p,~ e B, p << I01, then there is a complex-valued function f on S 

that is p-measurable for each p s B and f = f locally p-a.e, for all p . . . . .  

p s B. D 

with the above B, let L~(S,B) be the quotient Banach lattice of 

L~(S,B) with respect to N(S,B), where [~(S,B) is the space of all 

bounded complex-valued B-measurable functions on S provided with the 

sup-norm and N(S,B) := {f s L~(S,B)If = 0 ~-a.e. for all ~ ~ B}. 

In [4], de Jonge shows that the property of B as described in 

(3.5) is equivalent to the Dedekind completeness of L~(S,B). One also 

encounters these properties in the field of statistics; the interested 

reader is referred to [2] and [4] for detailed information. 
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(3.6) PROPOSITION. Let S be a foundation stip. Then L(S)* is isometri- 

call[ isomorphic to L~(S,L(S)) [more precise: for each h s L(S)* there 

is an f s I~(S,L(S)) such that h(~) = ~(f) (V s L(S)) and 

llhil = llfli   D 
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