RESEARCH ARTICLE

THE DUAL OF THE SPACE OF MEASURES WITH CONTINUOUS TRANSLATIONS

Gerard L.G. Sleijpen

Communicated by D.E. Ramirez

1. INTRODUCTION

Let S be a locally compact semigroup. Consider the space L(S) of all bounded Radon measures μ on S of which the translations r_{μ} and $\ell_{\mu}[r_{\mu}(\mathbf{x}) := \mu \star \mathbf{x}, \ell_{\mu}(\mathbf{x}) := \mathbf{x} \star \mu \ (\mathbf{x} \in S)$, where \mathbf{x} denotes the point-mass at \mathbf{x}] are maps on S that are continuous with respect to the total variation norm. Assume that S is a foundation semigroup; i.e. clo U{supp(μ) | $\mu \in L(S)$ } = S [cf. [1],§4]. Certainly, if in addition S has an identity element [S is said to be a <u>foundation stip</u>; cf. [6], (2.2)], in view of the results in e.g. [6], one may state that L(S) is the analogue of the group algebra $L^{1}(G)$ of a locally compact group G. However, unlike the group case, in general, there is no Radon measure m on S for which L(S) can be identified with $L^{1}(S,m)$. Consequently, it is not obvious whether $L(S)^{\star}$, the topological dual of L(S)-measurable [i.e. μ -measurable for all $\mu \in L(S)$] functions on S.

For instance, any non-discrete locally compact Hausdorff space X provided with a trivial multiplication [i.e. fix a $0 \in X$ and define xy := 0 for all x, y $\in X$] is a foundation semigroup on which every bounded Radon measure belongs to L(X) and clearly L(X)^{*} cannot be viewed as a space of functions on X. If S is a foundation stip, then in this case, as well, no such "dominant" measure m need exist [cf. (2.9)]. However, in this note, for such a semigroup S, we identify L(S)^{*} with the above-mentioned space of L(S)-measurable functions.

We shall shed some light upon the structure of a foundation stip [(2.1)-(3.2)]. The results shall be used in order to obtain a generalization of the localization property in ch.IV, §5, no.9 of [3]. As a corollary, we find the description of $L(S)^*$ as mentioned above.

This localization property is a basic requirement if one whishes to apply the main results in [2]; the constructions, considered by J.-P. Bertrandias in this paper, may turn out to be important in order to obtain analogues on foundation stips of the $L^{P}(G)$ spaces on a group G (p $\in (1,\infty]$).

If, the foundation stip is commutative, the results in this note follow easily from the ones in ch.XIV of [5]. However, in the noncommutative case, we have to do some work. Some of the lemmas (2.4)-(2.8), in one or another form, can also be found in [5]; for the convenience of the reader we include a [simplified] proof here.

2. THE COUNTABLE CLOSURE OF THE SMALLEST DENSE IDEAL

The conventions, notations and definitions that are not explained in the text are the same as the ones in [6]. Definition (2.1) and proposition (2.2) are basic in the theory of stips; their proofs can be found in [6].

(2.1) <u>DEFINITION</u>. [cf. [6], (2.1)-(2.4)]. Let S be a locally compact semigroup with identity element 1. S is said to be a <u>stip</u> if for each neighbourhood U of 1 we have that

(i) $\mathbf{x} \in \operatorname{int}[\overline{U}^{-1}(\overline{U}\mathbf{x}) \cap (\mathbf{x}\overline{U})\overline{U}^{-1}]$ for all $\mathbf{x} \in S$ (ii) $1 \in \operatorname{int}[\overline{U}^{-1}\mathbf{v} \cap w\overline{U}^{-1}]$ for some $\mathbf{v}, \mathbf{w} \in U$.

If, in addition, (iii) $clo(U\{supp(\mu) \mid \mu \in L(S)\}) = S$, we say that S is a <u>foundation stip</u>. Put $\dot{S} := n\{J \mid J \subseteq S, clo J = S, JS \cap SJ \subseteq J\}$.

Throughout the sequel, S is a stip.

(2.2) <u>PROPOSITION</u>. [cf. [6], (2.4)-(2.7), (3.13)]. $clo(\dot{s}) = s$, $\dot{sss} = \dot{ss} = \dot{s}$; \dot{s} <u>is the smallest dense ideal of S. Let U,V be open</u> <u>sets</u>, $x \in S$, $v \in V \cap \dot{s}$. <u>Then</u> $U^{-1}(Vx)$, $(xV)U^{-1}$, $(U \cap \dot{s})^{-1}x$, $x(U \cap \dot{s})^{-1}$ <u>are open and</u> $x \in int[(xV)v^{-1} \cap v^{-1}(Vx)]$. L(S) <u>is an L-ideal in the</u> <u>space M(S) of all bounded Radon measures on S</u>.

K denotes the collection of all compact subsets F of S, while N is the subcollection of all F ϵ K that are L(S)-negligible [i.e. $\mu(F) = 0$ for all $\mu \epsilon$ L(S)]. L(S)₁ is the unit-ball { $\mu \epsilon$ L(S)} $||\mu|| \le 1$ of L(S).

(2.3) <u>NOTATION</u>. $S_{\omega} := U\{clo(A) | A \text{ is a countable subset of } s\}$. Note that S_{ω} is a two-sided dense ideal in S. E is the collection of all idempotents e in S $[e^2 = e]$ and $E_{\delta} := S_{\omega} \cap E$.

(2.4) LEMMA. Let $(v_n)_{n \in IN}$ be a sequence of neighbourhoods of 1. Then $E_{\delta} \cap \cap \{v_n \mid n \in IN\} \neq \phi.$

<u>Proof.</u> There exists a sequence (W) of open relatively compact neighbourhoods of 1 such that

$$\overline{W}_n^2 \stackrel{\subset}{=} \underset{n-1}{W}_{n-1} \cap \operatorname{int}(V_{n-1}), \quad n = 2, 3, \dots$$

Put $H := \bigcap \{ w_n \mid n \in IN \}$. Then H is a compact subsemigroup of S. Let e be an idempotent in the kernel of H. For each $n \in IN$, take $w_n \in W_n \cap S$. Let $x \in \bigcap clo \{ w_m \mid m \ge n \}$. Then $x \in H$ and there is a $y \in S$ such that ne = exye. Then $e \in clo \{ ew_m ye \mid m \in IN \}$, while $ew_m ye \in S$.

(2.5) <u>LEMMA</u>. For each $e \in E$, eSe is closed. S₁₀ = U{eSe | $e \in E_{\delta}$ }.

<u>Proof.</u> The first claim is obvious. Let A be a countable subset of S. There is an $e \in E_{\delta} \cap \cap \{S^{-1}a \mid a \in A\} \cap \cap \{aS^{-1} \mid a \in A\}$. Then $A \subseteq eSe$, whence $clo(A) \subseteq eSe$.

(2.6) LEMMA. Let $A \subseteq S_{\omega}$ be countable, let F be a σ -compact subset of S. There is an f ϵ E_{δ} such that AF \circ FA \subseteq fSf.

<u>Proof.</u> Let B be a countable subset of \dot{S} such that $A \subseteq clo(B)$. For each $x \in S$ both xSa^{-1} and $a^{-1}Sx$ are neighbourhoods of x ($a \in B$). Since, F is σ -compact, for each $a \in B$ there are countable subsets P_a , P'_a of F such that $Fa \subseteq P_aS$ and $aF \subseteq SP'_a$. Let $f \in E_\delta \cap n\{pS^{-1} | p \in P_a, a \in B\} \cap n\{s^{-1}p | p \in P'_a, a \in B\} \cap n\{s^{-1}a | a \in B\} \cap n\{aS^{-1} | a \in B\}$. If $x \in F$ then xa = pt for some $p \in P_a$, $t \in S$. Since fp = p, we have that fxa = fpt = pt = xa. Therefore

$$FB \cup BF \subseteq fSf \text{ and } FA \cup AF \subseteq clo(FB \cup BF) \subseteq fSf.$$

(2.7) <u>LEMMA</u>. Let S be a foundation stip. Then S = $U\{supp(\mu) | \mu \in L(S)\}$.

<u>Proof.</u> Put T := U{supp(μ) | $\mu \in L(S)$ }. Let x $\in S$. Since $\dot{s}^{-1}x$ is open and non-empty, there is a $\mu \in L(S)^+$ such that $\mu(\dot{s}^{-1}x) \neq 0$. If t \in supp(μ) $\cap \dot{s}^{-1}x$ then x \in St \subseteq U{supp($\bar{y}*\mu$) | $y \in S$ }. Hence $\dot{s} \subseteq T$. If $(v_n)_{n \in IN}$ is a sequence in $L(S)_1^+$, then $v := \sum_{n=1}^{\infty} v_n 2^{-n} \in L(S)$ and supp $(v) = clo \ U\{supp(v_n) \mid n \in IN\}$. Therefore $S_{\omega} \subseteq T$.

Let $\mu \in L(S)^+$. Put d := sup{ $\mu(aK) \mid a \in S, K \in K$ }. Then $\mu(AF) = d$ for some countable subset A of S and some σ -compact subset F of S. Consider $\nu := \mu \mid_{S \setminus AF}$. If $K \in K$ then $\nu(aK) = 0$ for all $a \in S$. Since $1 \in clo(S)$ and $\nu \in L(S)$ we have that $\nu(K) = 0$ for all $K \in K$. Therefore $\mu(S \setminus AF) = 0$. By (2.6) there is an $f \in E_{\delta}$ with $AF \subseteq fSf$. Hence supp(μ) $\subseteq clo(AF) \subseteq clo fSf = fSf$.

(2.8) LEMMA. Let S be a foundation stip. Let $F \in K$ and $e \in E_{\delta}$ with $F \subseteq Se$.

There is an
$$m \in L(S)$$
 such that $\mu \mid_{F} << m$ for all $\mu \in L(S)$.

Proof. Let $v \in L(S)^+_1$ such that $e \in \operatorname{supp}(v)$. There is a sequence $(\mathbf{x}_n)_{n \in IN}$ in F for which $\{\overline{\mathbf{x}}, \star v \mid n \in IN\}$ is dense in $\{\overline{\mathbf{x}} \star v \mid \mathbf{x} \in F\}$. Put $m := \Sigma 2^{-n} \overline{\mathbf{x}}, \star v$. If $K \in K$ such that m(K) = 0 then $\overline{\mathbf{x}} \star v(K) = 0$ for all $\mathbf{x} \in F$, whence $\mu|_F \star v(K) = 0$ ($\mu \in L(S)$). Since $e \in \operatorname{supp}(v)$, $\mu|_F \star \overline{e}(K) = 0$ ($\mu \in L(S)$). Finally, the observation that $\mu|_F \star \overline{e} = \mu$ ($\mu \in L(S)$) completes the proof.

(2.9) EXAMPLE. There exists a foundation stip S for which $S_{\omega} \neq S$. In particular, for this stip S, for each m ϵ M(S)⁺ we have L(S) $\notin L^{1}(S,m)$. [Take an uncountable index set I, and let S be the product space $\{0,1\}^{I}$ endowed with the product topology and coordinate wise multiplication [per coordinate we have the usual multiplication of the integers]. Then \dot{S} consists of the elements x in S for which only finitely many coordinates are equal to 1 [$\{i \in I | x(i) = 1\}$ is finite]. Furthermore, L(S) is the closed subspace of M(S) generated by { $\bar{x} \in M(S) | x \in \dot{S}$ }. Therefore, S is a foundation stip. However, S_{ω} consists of the elements in S for which at most countably many coordinates are equal to 1 and

 $S_{\omega} \neq S$. Now, suppose there is an $m \in M(S)^+$ such that $L(S) \subseteq L^1(S,m)$. Then there is an $m_1 \in L(S)^+$ such that $L(S) = L^1(S,m)$. Therefore, by (2.7), $S_{\omega} = \text{supp}(m_1)$. However, this violates the facts that $clo S_{\omega} = S$ and $S \neq S_{\omega}$.]

3. THE LOCALIZABILITY OF S WITH RESPECT TO L(S)

In order to show that any foundation stip S is "localizable" with respect to L(S) [cf. (3.4)] we need another two lemmas. In these lemmas we give a partition of \dot{S} into L(S)-measurable non-L(S)-negligible parts.

(3.1) <u>LEMMA</u>. Let H be a compact subsemigroup of S with identity element 1. Put

$$\begin{split} & E(H) := E \cap H, \\ & I(e) := U\{Sf \mid f \in E(H), HfH = HeH\} & (e \in E(H)), \\ & H(e) := I(e) \setminus U\{I(f) \mid f \in E(H), e \notin HfH\} & (e \in E(H)). \end{split}$$

Then (1) I(e) is a closed left ideal in S (e ϵ E(H)),

- (2) {H(e) $| e \in E(H)$ } is a partition of S,
- (3) if $e \in E(H)$ then $H(e) \cap \dot{S} \neq \phi$ if and only if H(e) is open in I(e),
- (4) The collection {H(e) | $e \in E(H)$, H(e) $\cap \dot{S} \neq \phi$ } covers \dot{S} .

Proof. Before we prove (1)-(4), we make some observations.

- (i) Note that H(e) = H(f) for all $e, f \in E(H)$ for which HeH = HfH. Take an $x \in S$. Put $F(x) := \{y \in H | xy = x\}$. Since F(x) is a compact semigroup, F(x) contains some minimal idempotent e_1 [i.e. $e_1 \in F(x) \cap E$ and $e_1 \in F(x)yF(x) \subseteq HyH$ for all $y \in F(x)$].
- (ii) If $f \in E(H)$ such that $x \in I(f)$ then $x \in Sf_1$ for some $f_1 \in E(H)$ for which $Hf_1H = HfH$. Clearly, $f_1 \in F(x)$ and therefore,

 $e_1 \in Hf_1H = HfH.$ Obviously, $x \in I(e_1)$ and, consequently, $x \in H(e_1).$

(iii) Furthermore, if $e \in E(H)$ such that $x \in H(e)$, then, by definition of H(e) and the fact that $x \in I(e_1)$ we have that $e \in He_1H$. Since e_1 is minimal, we see that $e \in He_1H \subseteq HyH$ for all $y \in F(x)$.

From (ii), it follows that $\{H(e) | e \in E(H)\}$ covers S and also that $\{H(e) | e \in E(H), H(e) \cap S \neq \phi\}$ covers S. In view of (i), it is not hard to see that, for any f, $e \in E(H)$, either H(f) = H(e) or $H(f) \cap H(e) = \phi$.

In order to prove (1) and (3), let $e_0 \in E(H)$.

The closedness of $I(e_0)$ follows easily from the compactness of $\{f \in E(H) \mid HfH = He_0H\}$.

Now, assume that $H(e_0) \cap \dot{S} \neq \phi$.

First we shall prove that

(5) $\dot{s}f \cap H(e_0) \cap \dot{s} \neq \phi$ for all $f \in E(H)$ for which $HfH = He_0H$. Take an $x \in H(f) \cap \dot{s}$. Let $e \in E(H)$ such that HeH = HfH and $x \in Se$. Let $v, w \in H$ such that e = vfw. Consider xvf. Obviously $xvf \in \dot{s}f \cap \dot{s}$ $\cap I(f)$. If $xvf \in Se_1$ for some $e_1 \in E(H)$ then $xvfe_1 = xvf$ and, therefore $xvfe_1w = xe = x$, which shows that $vfe_1w \in F(x)$ [where F(x) is as above]. Hence, by (iii), $f \in Hvfe_1wH \subseteq He_1H$. Apparently, $xvf \in H(f)$ and $\dot{s}f \cap H(f) \cap \dot{s} \neq \phi$. Since $H(f) = H(e_0)$ for all $f \in E(H)$ with $HfH = He_0H$, this proves (5).

A combination of (5) and (2.2) shows that

(6) $\dot{s}^{-1}H(e_0)$ is an open set containing { $f \in E(H) | HfH = He_0H$ }. Let $f \in E(H)$ such that $e_0 \notin HfH$. Suppose that $f \in \dot{s}^{-1}H(e_0)$. Then t $f \in H(e_0)$ for some $t \in \dot{s}$. Clearly, t $f \in I(f)$. Since t $f \in H(e_0)$, we must have that $e_0 \in HfH$, which is impossible. Apparently (7) if $f \in E(H)$ such that $e_0 \notin HfH$ then $f \notin \dot{s}^{-1}H(e_0)$.

Finally, to prove that $H(e_0)$ is open in $I(e_0)$, let $x \in clo(I(e_0) \setminus H(e_0))$.

Note that, if $y \in I(e_0) \setminus H(e_0)$ and f is a minimal idempotent in F(y) then $f \in He_0H$ and $e_0 \notin HfH$. Therefore, there are nets $(\mathbf{x}_{\lambda})_{\lambda \in \Lambda}$ in $I(e_0) \setminus H(e_0)$ converging to x and $(f_{\lambda})_{\lambda \in \Lambda}$ in E(H) such that

 $\mathbf{x}_{\lambda} \mathbf{f}_{\lambda} = \mathbf{x}_{\lambda}, \ \mathbf{f}_{\lambda} \in \mathrm{He}_{0}\mathrm{H}, \ \mathbf{e}_{0} \notin \mathrm{Hf}_{\lambda}\mathrm{H} \qquad (\lambda \in \Lambda).$ Since E(H) \cap He₀H is compact, we may assume that $(\mathbf{f}_{\lambda})_{\lambda \in \Lambda}$ converges to an $\mathbf{f} \in \mathrm{E}(\mathrm{H}) \cap \mathrm{He}_{0}\mathrm{H}$. (6), (7) and " $\mathbf{f} \in \mathrm{He}_{0}\mathrm{H}$ " tells us that $\mathbf{e}_{0} \notin \mathrm{Hf}\mathrm{H}$. Also we have that $\mathbf{x}\mathbf{f} = \mathbf{x}$, which shows that $\mathbf{x} \notin \mathrm{H}(\mathbf{e}_{0})$.

The other property in the lemma has a simple proof; this is omitted.

(3.2) LEMMA. Let H be a compact G_{δ} -subsemigroup of S such that $1 \in H$. Using the same notation as in the preceding lemma, we have that

- (1) <u>each</u> $e \in E(H)$ <u>belongs</u> to E_{δ} as soon as $H(e) \cap \dot{S} \neq \phi$;
- (2) for each $\mu \in L(S)$ there exists a countable subcollection Pof {H(e) | $e \in E(H)$, H(e) $\cap \dot{S} \neq \phi$ } such that $|\mu|(S \setminus UP) = 0$.

<u>Proof.</u> Let $e \in E(H)$ such that $H(e) \cap \dot{S} \neq \phi$. since H is a G_{δ} -set and H(e) is open in I(e) [cf. (3.1.3)], we can find a compact subsemigroup H' of H that is a G_{δ} -set in I(e) and with $e \in H' \subseteq H(e)$. Note that for each $f \in E(H) \cap H'$ we have that HfH = HeH. Since H' is a G_{δ} -set in I(e), there exists a countable subset D of \dot{S} [use (2.2)] such that H' \cap clo(D) $\neq \phi$. Therefore, since each compact semigroup contains minimal idempotents, in view of our note, we have that $e \in clo(hDg)$ for some h, $g \in H$. Now (1) follows from the fact that hDg $\subseteq \dot{S}$.

Put E := {e ϵ E(H) H(e) \cap S $\neq \phi$ }.

To prove (2), let $\mu \in L(S)^+$.

Since $\dot{s} \subseteq U\{H(e) | e \in \dot{E}\}$ by an adaptation of the argument in the proof of (2.7), we can find a sequence $(F_n)_{n \in IN}$ of compact subsets of \dot{s} and a countable subset C of \dot{E} such that

$$(3) \qquad \mu(S \setminus CA) = 0,$$

where A := $\bigcup\{F_n \mid n \in IN\}$. Now, let F $\in \{F_n \mid n \in IN\}$ and e \in C. Put $\mu' := \mu \mid_{eF}$. We shall show that there exists a countable subset p' of $\{H(e) \mid e \in E\}$ such that $\mu'(S \setminus Up') = 0$; then, in view of (3), we may conclude that (2) holds. Let $\varepsilon > 0$. Since e belongs to E_{δ} , $\overline{e} * \mu' = \mu'$ and $\mu' \in L(S)$, there is a sequence $(a_n)_{n \in IN}$ in \dot{S} such that $e \in clo\{a_n \mid n \in IN\}$ and

$$\left| \left| \mu' - \tilde{a}_n^* \mu' \right| \right| < \varepsilon.2^{-n}$$
 (n ϵ IN).

Now, we shall prove that

(4)
$$eS \cap H(f) \subseteq U\{int(a_n^{-1}H(f)) \mid n \in IN\}$$
 (f $\in E$).

Let $f \in \dot{E}$ and take an $x \in eS \cap H(f)$. The facts that ex = x and $e \in clo\{a_n \mid n \in IN\}$ imply that $x \in clo\{a_n x \mid n \in IN\}$. I(f) is a left ideal and hence, $a_n x \in I(f)$ ($n \in IN$). Now, the openness of H(f) in I(f) shows that $a_k x \in H(f)$ for some $k \in IN$. Let O be an open set in S such that $H(f) = O \cap I(f)$. Then we have that

$$x \in a_k^{-1} O \cap I(f) \subseteq a_k^{-1} O \cap (s^{-1}a_k)^{-1}I(f) \subseteq a_k^{-1} O$$
$$\cap int(a_k^{-1}I(f)) \subseteq int(a_k^{-1} O \cap a_k^{-1}I(f)) \subseteq int(a_k^{-1}H(f)).$$

This shows (4). Since eF is compact and eF \underline{c} $\dot{s} \underline{c} \cup \{H(f) | f \in \dot{E}\}$, (4) leads to the existence of a finite subcollection P_{ϵ} of $\{H(f) | f \in \dot{E}\}$ such that

$$eF \subseteq D^{-1}P_{\varepsilon}$$
, where $P_{\varepsilon} := UP_{\varepsilon}$ and $D := \{a_n | n \in IN\}$.

Now note that

$$eF \setminus P_{\varepsilon} \subseteq D^{-1} P_{\varepsilon} \setminus P_{\varepsilon}, \text{ while}$$

$$\mu' (D^{-1} P_{\varepsilon} \setminus P_{\varepsilon}) \leq \sum_{n=1}^{\infty} \mu' (a_{n}^{-1} P_{\varepsilon} \setminus P_{\varepsilon}) \leq \varepsilon.$$

Put P := U{P_{1/n} | n ϵ IN}. Then P is the union of countably many elements of {H(f) | f ϵ E} and, furthermore, eF\P \subseteq D⁻¹P_{1/n}\P_{1/n} (n ϵ IN),

which implies that $\mu'(eF \setminus P) = 0$.

The proof of the following lemma is an adaptation of the one of proposition in ch.IV, §5, no.9 in [3]. The subsequent theorem can be viewed as a generalization of this result in [3].

(3.3) LEMMA. Let S be a foundation stip. Let H be a compact G_{δ} -subsemigroup of S with 1 ϵ H. Let e ϵ E(H) for which H(e) \cap S $\neq \phi$. There exists a family A of compact subsets of H(e) such that

(i) $A \cap B = \phi$ for all $A, B \in A$, $A \neq B$,

- (ii) $A \notin N$ for all $A \notin A$ [where N as in §2],
- (iii) for each $C \in K$ with $C \subseteq H(e)$, the collection $\{A | A \in A, A \cap C \neq \emptyset\}$ is countable and $C \setminus UA \in N$,
- (iv) for each A ϵ A there is an m ϵ L(S)⁺ such that $\mu|_{a} \ll m (\mu \epsilon L(S))$.

<u>Proof</u>. For each $F \in K$, put $d(F) := \{x \in F | X \cap F \notin N \text{ for all } X \in K \text{ with } x \in \text{int}(X) \}$. Note that $d(F) \subset F$ and $F \setminus d(F) \in N$.

By Zorn's lemma there exists a family of compact subsets of S that is maximal with respect to property (i), (ii) and (v): A = d(A) for all $A \in A$.

Let C ϵ K with C $\underline{\subset}$ H(e). Take an open relatively compact neighbourhood U of C and put $\widetilde{C} := \overline{U} \cap I(e)$. There is an idempotent f ϵE_{δ} such that eH $\underline{\subset}$ fSf, whence I(e) $\underline{\subset}$ SeH $\underline{\subset}$ Sf [cf.(2.6)]. By (2.8) there is an m ϵ L(S)⁺ such that

 $\mu \mid_{C} \ll m$ for all $\mu \in L(S)$.

If $F \in A$ such that $F \cap C \neq \phi$ then $\phi \neq F \cap U \subseteq I(e) \cap \overline{U} = \widetilde{C}$. Since d(F) = F there is a $\mu \in L(S)$ with $\mu(F \cap U) \neq 0$. Consequently, $m(F) \neq 0$. Apparently $\{F \in A | F \cap C \neq \phi\} \subseteq \{F \in A | m(F) \neq 0\}$. The countability property follows easily now. In particular C\UA is measurable. The negligibility follows from the maximality of A.

(3.4) THEOREM. Let S be a foundation stip. There exists a family H of compact subsets of S such that (i) $A \cap B = \phi$ for all $A, B \in H, A \neq B$;

- (ii) $A \notin N$ for all $A \in H$;
- (iii) for each $\mu \in L(S)^+$, $\mu(S \setminus U\{A \in H | \mu(A) \neq 0\}) = 0$;
- (iv) for each $A \in H$ there is an $m \in L(S)^+$ for which $\mu|_L << m \qquad (\mu \in L(S)).$

The theorem follows by an obvious combination of (3.2) and (3.3). Viewing the above result, the reader will not find it too hard to prove the following theorem and proposition [cf. [2]].

(3.5) THEOREM. Let S be a foundation stip. Let B be a subcollection of L(S)_{loc}, the space of Radon measures μ on S that are locally contained in L(S) [i.e. $\mu|_F \in L(S)$ for all compact subsets F of S]. If (f_{ρ})_{$\rho \in B$} is a family of complex-valued functions on S for which for each $\rho \in B$, f_{ρ} is ρ -measurable, and $f_{\rho} = f_{\sigma}$ locally ρ -a.e. whenever, $\rho,\sigma \in B, \rho << |\sigma|$, then there is a complex-valued function f on S that is ρ -measurable for each $\rho \in B$ and $f_{\rho} = f$ locally ρ -a.e. for all $\rho \in B$.

With the above B, let $L^{\infty}(S,B)$ be the quotient Banach lattice of $L^{\infty}(S,B)$ with respect to N(S,B), where $L^{\infty}(S,B)$ is the space of all bounded complex-valued B-measurable functions on S provided with the sup-norm and $N(S,B) := \{f \in L^{\infty}(S,B) | f = 0 \ \mu\text{-a.e. for all } \mu \in B\}.$

In [4], de Jonge shows that the property of B as described in (3.5) is equivalent to the Dedekind completeness of $L^{\infty}(S,B)$. One also encounters these properties in the field of statistics; the interested reader is referred to [2] and [4] for detailed information.

(3.6) <u>PROPOSITION.</u> Let S be a foundation stip. Then $L(S)^*$ is isometrically isomorphic to $L^{\infty}(S,L(S))$ [more precise: for each h ϵ $L(S)^*$ there is an f ϵ $L^{\infty}(S,L(S))$ such that $h(\mu) = \mu(f)$ ($\mu \in L(S)$) and $||h|| = ||f||_{-}$].

REFERENCES

- Baker, A.C., and J.W. Baker, <u>Algebras of measures on a locally</u> <u>compact semigroup</u>. II, J. London Math., Soc., (2), 2 (1970), 651-659.
- Bertrandias, J.-P., Unions et intersections d'espace L^P sur un espace localement compact, Bull. Sc. Math., (2), 101 (1977), 209-247.
- Bourbaki, N., <u>Eléments de Mathematique</u>, Livre VI, <u>integration</u>, deuxième édition. Hermann, Paris (1965).
- Jonge, E. de, <u>Coherency</u>, <u>compactness</u> and <u>normality</u> for sets of probability measures, Report 8035, University of Nijmegen.
- Sleijpen, G.L.G., <u>Convolution measure algebras on semigroups</u>, Thesis, Catholic University, Nijmegen (1976).
- Sleijpen, G.L.G., Locally compact semigroups and continuous translations of measures, Proc. London Math. Soc., (3), 37 (1978),75-97.

Mathematisch Instituut Katholieke Universiteit Toernooiveld 6525 ED Nijmegen/ The Netherlands Received April 28, 1980, and in final form November 10, 1980.