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THE DUAL OF THE SPACE OF MEASURES WITH CONTINUOUS TRANSLATIONS

Gerard L.G. Sleijpen

Communicated by D.E. Ramirez

1. INTRODUCTION

Let S be'a locally compact semigroup. Consider the space L(S) of
all bounded Radon measures u on S of which the translations ru and
lu[ru(x) s= u*;, Qu(x) 1= x+p (% € S), where X denotes the point-mass
at x] are maps on S that are continuous with respect to the total
variation norm. Assume that S is a foundation semigroup; i.e.
clo Wsupp(u)|u € L(8)} = s [cf. [11,54]. Certainly, if in addition S
has an identity element [S is said to be a foundation stip; cf. [6],
(2.2)], in view of the results in e.g. [6], one may state that L(S)
is the analogue of the group algebra Ll(G) of a locally compact group
G. However, unlike the group case, in general, there is no Radon
measure m on S for which L(S) can be identified with Ll(S,m). Conse-
quently, it is not obvious whether L(S)*, the topological dual of

L(S), can be identified with the space of the bounded complex-valued

L(S)-measurable [i.e. u-measurable for all u € L(S)] functions on S.
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For instance, any non-discrete locally compact Hausdorff space X pro-
vided with a trivial multiplication [i.e. fix a 0 € X and define

xy := 0 for all x,y € X] is a foundation semigroup on which every
bounded Radon measure belongs to L(X) and clearly L(X)* cannot be
viewed as a space of functions on X. If S is a foundation stip, then
in this case, as well, no such "dominant" measure m need exist [cf.
(2.9)1. However, in this note, for such a semigroup S, we identify
L(S)* with the above-mentioned space of L(S)-measurable functions.

We shall shed some light upon the structure of a foundation stip
[(2.1)-(3.2)]. The results shall be used in order to obtain a genera-
lization of the localization property in ch.IV, §5, no.9 of [3]. As a
corollary, we find the description of L(S)* as mentioned above.

This localization property is a basic requirement if one whishes
to apply the main results in [2]; the constructions, considered by
J.-P. Bertrandias in this paper, may turn out to be important in or-
der to obtain analogues on foundation stips of the LP(G) spaces on a
group G (p ¢ (1,»]).

If, the foundation stip is commutative, the results in this note
follow easily from the ones in ch.XIV of [5]. However, in the non-
commutative case, we have to do some work. Some of the lemmas (2.4)-
(2.8), in one or another form, can also be found in [5]; for the con-

venience of the reader we include a [simplified] proof here.

2. THE COUNTABLE CLOSURE OF THE SMALLEST DENSE IDEAL

The conventions, notations and definitions that are not explained
in the text are the same as the ones in [6]. Definition (2.1) and
proposition (2.2) are basic in the theory of stips; their proofs can

be found in [6].
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(2.1) DEFINITION. [cf. [6], (2.1)-(2.4)]. Let S be a locally compact
semigroup with identity element 1. S is said to be a stip if for each
neighbourhood U of 1 we have that

(1) x € int[U_l(Ux) n (xU)U_ll for all x € S

(ii) 1 € int[U_lv n wU_lj for some v,w € U.
If, in addition, (iii) clo(U{supp(u)lu € L(S)}) = 8, we say that S is

a foundation stip. Put § := ﬂ{JIJ ©8,¢clod =8, IS n 8JcJ}.

Throughout the sequel, S is a stip.

(2.2) PROPOSITION. [cf. [6], (2.4)-(2.7), (3.13)]. clo($)

Sy

588 = 85 = §; 5 is the smallest dense ideal of S. Let U,V be open

sets, X € S, vevVvn S. Then U_l(Vx), (xV)Uhl, (Un é)_lx, x(U n é)—l

- -1
are open and X € int[ (xV)v L nv (vx)]. L(S) is an L-ideal in the

space M(S) of all bounded Radon measures on S. O

K denotes the collection of all compact subsets F of S, while N
is the subcollection of all F € K that are L(S)-negligible [i.e.
H(F) = 0 for all u € L(s)]. L(S), is the unit-ball {n e Lo}l

[lul] = 1} of Li(s).

(2.3) NOTATION. §  := U{clo(a) [A is a countable subset of S}.
Note that Sw is a two-sided dense ideal in S.

: . 2
E is the collection of all idempotents e in § [e” = el and

(2.4) LEMMA. Let (V) oy Be a sequence of neighbourhoods of 1. Then

€l

Eg 0 N{v |n e IN} # 8.
n
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Proof. There exists a sequence (wn)n of open relatively compact

€IN

neighbourhoods of 1 such that

GZ

n )l n=2,3,...

= n int(Vv
- n

n—-1 -1
Put H := ﬂ{wnln € IN}. Then H is a compact subsemigroup of S. Let e
be an idempotent in the kernel of H. For each n € IN, take wn € Wn n é.
Let x € N clo{wm|m =z n}. Then x ¢ H and there is a y € S such that

n
e = exye. Then e ¢ clo{ewmye|m € IN}, while ew ye e S. ad

(2.5) LEMMA. For each e ¢ E, eSe is closed. S, = U{ese|e Ed}'

Proof. The first claim is obvious. Let A be a countable subset of é.
X PN -1
There is an e € By n Nis “ala ¢ A} n N{aS |a € a}. Then A < eSe,

whence clo(B) ¢ eSe. ]

(2.6) LEMMA. Let A E-Sw Eg_countable, let F be a u-compact subset of S.

There is an £ € E, such that AF n FA < fSf.

$

Proof. Let B be a countable subset of S such that A < clo(B). For each
x € S both xSa_1 and a_lsx are neighbourhoods of x (a € B). Since, F
is o-compact, for each a € B there are countable subsets Pa, Pé of F

such that Fa E_Pas and aF ¢ SP;. Let £ € E. N ﬂ{pstllp € Pa, a € Bl n

§
-1 . -1 -1

n{s “plp ¢ Pl,ac B} n nN{s "ala € B} n N{as "|a € B}. If x ¢ F then

xa = pt for some p € Pa' t € S. Since fp = p, we have that fxa = fpt

= pt = xa. Therefore

FB U BF © £Sf and FA U AF © clo(FB U BF) < fSf. a

(2.7) LEMMA. Let S be a foundation stip. Then S = U{supp() |u € L(s)}.

Proof. Put T := U{supp(u)|u € L(S)}. Let x € S. Since sl is open
+ -1
and non-empty, there is a p € L(S) such that u(S x) # O.

If t € supp(u) n é-lx then % € St E‘U{supp(§*u)|y € S}. Hence § < T.
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]

+ -
If (v ) is a sequence in L(S)_, then v := I v 2 n e L(S) and
n neIN 1 =1 D

supp{v) = clo U{supp(vn)ln € IN}. Therefore S < T.
w
+ .
Let 4 € L(S) . Put d := sup{u(aK)|a € S, K ¢ K}. Then p(aF) = &
for some countable subset A of § and some o-compact subset F of S.

Consider v := u!S\AF' If K € K then v(aKk) = 0 for all a ¢ §. since

1 ¢ clo(é) and v ¢ L(S) we have that v(X) = 0 for all X ¢ K. Therefore

L(S\AF) = 0. By (2.6) there is an f ¢ E, with AF ¢ fSf. Hence

§
supp (i) € clo(AF) < clo fSf = fSf. 0

(2.8) LEMMA. Let S be a foundation stip. Let F ¢ K and e € E, with

8
F ¢ Se.

+
There is an m € L{S) such that u]F << m for all u € L(S).

+
Proof. Let v € L(s)1 such that e € supp{v). There is a sequence
(x ) in F for which {Xx *v|n ¢ IN} is dense in {x*v|x ¢ F}. Put
n neIN n
m = zz'“;n*v. If K ¢ K such that m(K) = O then x*v(K) = 0 for all

x € F, whence u]F*v(K) =0 (4 € L(S)). Since e € supp(v),

u|F*é(K) = 0 (p € L(S)). Finally, the observation that ulF*é

1
=

(# € L(S)) completes the proof. 0

(2.9) EXAMPLE. There exists a foundation stip S for which Sm # S. In
particular, for this stip S, for each m € M(S)+ we have L(S) i_Ll(S,m).
[Take an uncountable index set I, and let S be the product space {O,l}I
endowed with the product topology and coordinate wise multiplication
[per coordinate we have the usual multiplication of the integers]. Then
5 consists of the elements x in S for which only finitely many codrdi-
nates are equal to 1 [{i ¢ I|x(i) = 1} is finite]. Furthermore, L(S)

is the closed subspace of M(S) generated by {x ¢ M(S)|x ¢ S}. There-
fore, S is a foundation stip. However, Sw consists of the elements in

S for which at most countably many coordinates are equal to 1 and
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. + 1
Sm # S. Now, suppose there is an m € M(S) such that L(S) € L (s,m).
+ 1
Then there is an m, € L(8) such that L{(S) = L (S,m). Therefore, by
(2.7), Sm = supp(ml). However, this violates the facts that clo Sw = 8

and S # sw.]

3. THE LOCALIZABILITY OF S WITH RESPECT TO L(S)

In order to show that any foundation stip S is "localizable" with
respect to L(S) [cf. (3.4)] we need another two lemmas. In these lem-
mas we give a partition of $ into L(S)-measurable non~L(S)-negligible

parts.

(3.1) LEMMA. Let H be a compact subsemigroup of S with identity ele-

ment 1. Put

E(H) := E n H,
I(e) := U{SE|f ¢ E(H), HfH = HeH} (e € E(H)),
H(e) := I(e)\U{I(£)|f ¢ E(H), e ¢ HEH} (e € E(H)).
ZEEE.(i) I(e) is a closed left ideal in S (e € E(H)),

(2) {#(e)|e € E(H)} is a partition of s,
(3) if e € E(H) then H(e) n § # ¢ if and only if H(e) is open in
I(e),

(4) The collection {H(e)’e € E(H), H(e) n 13 £ #} covers S.

25992. Before we prove (1)-(4), we make some cobservations.

(i) Note that H(e) = H(f) for all e,f ¢ E(H) for which HeH = HfH.
Take an x € S. Put F(x) := {y ¢ H|xy = x}. Since F(x) is a com-
pact semigroup, F(x) contains some minimal idempotent e, fi.e.
e, € F(x) n E and e, F(x)yF{x) ¢ HyH for all y ¢ F(x)].

(ii) If £ € E(H) such that x € I(f) then x € Sf1 for some f1 e E(H)

for which Hf H = HfH. Clearly, £

1 € F(x) and therefore,

1
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e, € Hflﬂ = HfH. Obviously, x € I(el) and, consequently,

X € H(el).
(iii) Furthermore, if e € E(H) such that x € H(e), then, by definition

of H(e) and the fact that x € I(el) we have that e € Helﬁ. Since

e, is minimal, we see that e € He

1 H < HyH for all y ¢ F(x).

1

From (ii), it follows that {H(e)\e € E(H)} covers § and also that
{H(e)]e € E(H), H(e) n S # #} covers S. In view of (i), it is not hard
to see that, for any £,e € E(H), either H(f) = H(e) or H(f) n H(e) = #.

In order to prove (1) and (3), let eo € E(H).

The closedness of I(eo) follows easily from the compactness of

{f ¢ E(H) |HER = He HJ.

Now, assume that H(eo) n s # 8.
Pirst we shall prove that
(5) SE 0 H(ey) NS # ¢ for all £ ¢ E(H) for which HEH = He H.
Take an x € H{f) n S. Let e ¢ E(H) such that HeH = HfH and x € Se.
Let v,w € H such that e = vfw, Consider xvf. Obviously xvf € Sfns
nI(f). If xvf € Se1 for some e, € E(H) then xvfe1 = xvf and, there-

fore xvfe,w = Xe = x, which shows that vfe,w € F(x) {where F(x) is

1 1

as above]. Hence, by (iii), f € vaele € He H. Apparently, xvf e H(f)

1
and S£ N H(E) n S # 4. Since H() = H(ey) for all f ¢ E(H) with

HfH = HeOH, this proves (5).

A combination of (5) and (2.2) shows that

(6) é-lﬂ(eo) is an open set containing {f e E(H)|HfH = HeoH}.
Let f € E{H) such that e ¢ HfH. Suppose that f ¢ é—lH(eO). Then

tf ¢ H(eo) for some t € é. Clearly, tf € I(f). Since tf ¢ H(eo), we
must have that eo € HfH, which is impossible. Apparently

(7 if £ € E(H) such that e, ¢ HfH then f ¢ é—lﬁ(eo).

Finally, to prove that H(eo) is open in I(eo), let x € clo(I(eo)\H(eo)).
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Note that, if y € I(eo)\H(eo) and f is a minimal idempotent in F(y)

H HfH. T i
then £ ¢ Heo and e0 ¢ HfH herefore, there are nets (XA)AeA in

I(eo)\H(eO) converging to x and (f>‘))‘€A in E(H) such that

xkfk =%, fk € HeOH, e, ¢ foH (A e Ay,

Since E{H) n HeOH is compact, we may assume that (fA)AeA converges to
an £ € E(H) n HeOH. (6), (7) and "f ¢ HeOH" tells us that ey ¢ HfH.
Also we have that xf = x, which shows that x ¢ H(eo).

The other property in the lemma has a simple proof; this is

omitted. a

(3.2) LEMMA. Let H be a compact G -subsemigroup of S such that 1 ¢ H.

§

Using the same notation as in the preceding lemma, we have that

(1) each e € E(H) belongs to E, as soon as H(e) n S # &;

§

(2) for each ¥ € L(S) there exists 2 countable subcollection P

of {H(e)le € E(H), H{e) n S # ¢} such that ‘u|(S\UP) = 0.

Proof. Let e € E(H) such that H(e) n é # #é. since H is a Gs—set and
H(e) is open in I(e) [cf. (3.1.3)], we can find a compact subsemigroup
H' of H that is a Gé—set in I(e) and with e € H' ¢ H(e). Note that for

each £ ¢ E(H) n H' we have that HfH = HeH. Since H' is a Gd—set in
I(e), there exists a countable subset D of S [use (2.2)] such that
H' n clo(D) # ¢. Therefore, since each compact semigroup contains mi-
nimal idempotents, in view of our note, we have that e ¢ clo(hDg) for
some h,g € H. Now (1) follows from the fact that hDg E_é.

Put E := {e € E(H)!H(e) ns¢# 4.

To prove (2), let u € L(S)+.
Since é E.U{H(e)|e € ﬁ} by an adaptation of the argument in the proof

of (2.7), we can find a sequence (Fn)n of compact subsets of S and

€IN

a countable subset C of E such that
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(3) u(s\ca) = 0,
where A := U{Fnln € IN}.
Now, let F ¢ {Fnin € IN} and e € C. Put u' := u|eF. We shall show

that there exists a countable subset p' of {H(e)|e ¢ E} such that
u'(s\Up') = 0; then, in view of (3), we may conclude that (2) holds.
Let € > 0. Since e belongs to E@' e*u' = ' and p' € L(S), there is

a sequence (a )

in § such that e ¢ clola_|n ¢ IN} and
n’ neIN n

l|u'—5n*u']| <e2 " (n € IN).

Now, we shall prove that

(4) es n H(f) < U{int(a;lﬂ(f))|n ¢ IN} (f € B).

Let £ ¢ E and take an x € eS n H(f). The facts that ex = x and

e € clo{an|n € IN} imply that x € clo{anxln e IN}. I(f) is a left
ideal and hence, anx € I(f) (n € IN). Now, the openness of H(f) in
I(f) shows that ax € H(f) for some k € IN. Let ©C be an open set in

S such that H(f) = O n I(f). Then we have that

~1 -1 ~~1 -1 -1
X € ak O n I(f) E-ak on (s ak) I(f) E-ak o}
) -1 . -1 -1 . -1
n 1nt(ak I(f)) 5_1nt(ak on ak I(£)) g.lnt(ak H(f)).

This shows (4). Since eF is compact and eF < s E_U{H(f)!f e £}, (4)
leads to the existence of a finite subcollection Pe of {H(E)|f € E}
such that
eF c DulP , where P := UP and D := {a In € IN}.
- € € € n
Now note that

eF\P_ < D 1P \P , while
£ — £ €
1 = 1
1 - < ] - < .
u' (D PE\PE) < nilu (an Pe\Pe) [

Put P := U{ |n € IN}. Then P is the union of countably many ele-

P1/n
. -1
ments of {H(f) |f£ ¢ E} and, furthermore, eF\P c D Pl/n\Pl/n (n € IN),
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which implies that u'(eF\P) = 0. O

The proof of the following lemma is an adaptation of the one of
proposition in ch.IV, §5, no.9 in [3]. The subsequent theorem can be

viewed as a generalization of this result in [3].

(3.3) LEMMA. Let S be a foundation stip. Let H be a compact G -sub-

8

semigroup of S with 1 € H. Let e € E(H) for which H(e) n 8 # ¢. There

exists a family A of compact subsets of H(e) such that

(i) A n B =¢ for all A,B ¢ A, A # B,

(ii) A ¢ N for all A € A [where N as in §21,

(i1i) for each C € K with C < H(e), the collection {A|A ¢ A,A n C # ¢}
is countable and C\UA € N,

“+
(iv) for each A € A there is an m ¢ L(S) such that ulA <<m (e L(S)}.

Proof. For each F ¢ K, put d(F) := {x € F]X nF ¢&N for all x € K
with x € int(X)}. Note that d(F) < F and F\d(F) € N.

By Zorn's lemma there exists a family of compact subsets of S
that is maximal with respect to property (i), (ii) and (v): A = d(A)
for all A € A.

Let C ¢ K with C < H(e). Take an open relatively compact neigh-
bourhood U of C and put C:=0n I{e). There is an idempotent £ ¢ Ed
such that eH < fSf, whence I(e) ¢ SeH ¢ Sf [cf.(2.6)]. By (2.8) there
is an m € L(S)+ such that

u]g << m for all u € L(S).
If FeAsuchthat FnC# g then g #FnuUciI(e)nd=C. Since
d(F) = F there is a u € L(S) with u(F n U) # 0. Consequently, m(F) # 0.
Apparently {F ¢ AIF nc#dglcirFe A[m(F) # 0}. The countability
property follows easily now. In particular C\UA is measurable.

The negligibility follows from the maximality of A. 0
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(3.4) THEOREM. Let S be a foundation stip. There exists a family H of

compact subsets of S such that

(i) AnB =g for all A,B ¢ H, A # B;
(i1) A ¢ N for all A e H;
(iii) for each u e L(S)', u(s\U{a € H|u(a) # 0}) = 0;

+
{iv) for each A ¢ H there is an m € L(8) for which

Ul <<m (4 € L(8)). ]

The theorem follows by an obvious combination of (3.2) and (3.3).
Viewing the above result, the reader will not find it too hard

to prove the following theorem and proposition [ef. [27].

(3.5) THEOREM. Let S be a foundation stip. Let B be a subcollection

of L(S)loc, the space of Radon measures y on S that are locally con-

tained in L(S) [i.e. uIF € L(S) for all compact subsets F of $]. If

(fp)peB is a family of complex-valued functions on S for which for

each p ¢ B, fp iﬁ p-measurable, and fp = f0 locally p-a.e. whenever,

p,0 € B, p << Icl, then there ig'g_complex—valued function f on S

that Eg_p—measurable for each p ¢ B and fp = f locally p-a.e. for a 1

p € B. f

With the above B, let Lw(S,B) be the quotient Banach lattice of
L”(s,B) with respect to N(s,B), where L (S,B) is the space of all
bounded complex-valued B-measurable functions on § provided with the

o«
sup~norm and N(S,B) := {f € L (S,B)‘f = 0 p-a.e. for all u € B}.

In [4], de Jonge shows that the property of B as described in
(3.5) is equivalent to the Dedekind completeness of Lw(S,B). One also
encounters these properties in the field of statistics; the interested

reader is referred to [2] and [4] for detailed information.
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*
(3.6) PROPOSITION. Let S be a foundation stip. Then L(S) is isometri-

*
cally isomorphic EQ_LW(S,L(S)) [more precise: for each h ¢ L(S) there

is an f € Lm(S,L(S)) such that h(u) = u(f) (u € L(S)) and

Hnll = Hell,3 O
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