[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Ideas
Part 1: Procedural skills

Johan Jeuring
Utrecht University

Monday, September 7, 2016

1. Introduction

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

& Education §1

bu Shcen =
MathMatch Practice Session - Nocreditawarded MathMatch DU
V/ View Grade.

o
Question 9 Score /1
or?— ag?
Verservoudigzovel mage
ersnsgzowaimogee =2 K
VourAnswer: 31— 45
5

Zoek een
o S e, weblecture

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
[} [= =

DEE

Free input?

0o Understanding the process for solving quadratic equations | Dashboard | The World of Math | Khan Academy

——— @& https @ www.khanacademy.org.

[0 HE Buienradar YouTube Wikipedia NS StatCounter Facebook dub Johan Jeuring Googles

maps.googlecom Get access.

#KHANACADEMY | LEARN v COACH

Understanding the process for solving
quadratic equations

Create a lst of steps,in order, that will solve the following equation.
5(z-3)'+4=129

Solution steps:

Add 3 to both sides Subtract 4 from both sides

Add 4 to both sides Divide both sides by 5

Divide both sides by 5
Subtract 3 from both sides
ct 4 from both sides
Square both sides

Take the square root of both sides

(V] z Universiteit Utrecht

N‘

%,,

N\

§

B v /9 OHANTIEURNG v

x

Answer

Drag and drop the steps to describe the.
solution path

Show me how

Stuck? Watch a video.

[Faculty of Science
Information and Computing Sciences]

Quality of feedback? §1

http://studio.code.org/hoc/2

) learn.code.org

You are using all of the necessary -
types of blocks but not in the right
way.

5&\\“’%}) [Faculty of Science
Z, Y § Universiteit Utrecht Information and Computing Sciences]
NS

5)

http://studio.code.org/hoc/2

§1

8 006 Enercities &

Ml Hishscores _ Community __Teachers) Y

357100

CIETREEEN | o ot o e ot o e st b i e s, & o sty it B |
o g Eavpet Gt Th Eaopet Gt 2k moprabe 1 ayae Dt T b e |

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

» Simplified tasks
» Bad feedback
» No feedback

Universiteit Utrecht

§1

[Faculty of Science

Information and Computing Sciences]

[m]

=

= E 9DQAC¢

§1

Use

» languages and grammars

> algebra's
To

» determine what a student has done
» determine what a student should do
> explain instead of show why a student performs badly

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

ulting in §1

bl

x> +20=9x
¥ -9x+20=0

x| (x-5)(x+4) =0 D

' *
Tip:
drieterm ontbinden

¥2-0x+20=0
wordt dan:
(x-4)(x-5)=0

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o F = E E 9DQAC¢

line of presentation §1

Introduction
Procedural skills
Strategy specification language

Feedback services

Application domains
Logic
Mathematics
Serious games

Programming
Lab assignment

gncludi r%marks [Faculty of Science
nive! echt

rsiteit Information and Computing Sciences]

o = = = E DA

2. Procedural skills

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Procedural skills §2

In many subjects students have to acquire procedural skills:

» Mathematics: find the derivative of a function
» Linear Algebra: solve a system of linear equations
» Logic: rewrite a proposition to disjunctive normal form

» Computer Science: construct a program from a
specification using Dijkstra’s calculus

» Physics: calculate the resistance of a circuit

» Biology: calculate inheritance values using Mendel's laws

>
Eg“% 5 .) [Facult_y of S_cience
7{{{“1“% Universiteit Utrecht Information and Computing Sciences]
12 :

Example §2

Thecrie B
Het oplossen van kwadratische vergelijkingen
Om de vergelijking x*> — 7x — 18 =0 op te lossen,
ontbind je eerst het linkerlid in factoren. s v ey

Vervolgeuspasjetoe|A-B=0 geeft A=0 v B=0. |

Je krijgt
»—-Tx—18=0 Ontbind in factoren.
x—9E+2)=0 Pastoe A-B=0 gegft A=0 v B=0.

x—9=0wv x+2=0
x=9 v x=-2

Bij het oplossen van een kwadratische vergelijking gebruik je het
volgende werkschema.

Werkschema: zo los je een kwadratische vergelijking op
1 Maak het rechterlid nul.

2 Ontbind het linkerlid in factoren.

3 Gebruik: vit A-B=0 volgt A=0 v B=0.

ESW% L) [Faculty of Science
%US Universiteit Utrecht Information and Computing Sciences]
13 AN

Tutoring tools for procedural skills §2

» Typical features of these tools:

Generate exercises

Stepwise construction of a solution
Select rewriting rule or transformation
Suggest how to continue

Check correctness of a step/solution

» Such tools offer many advantages to users:
e User can work at any time
e User can select material and exercises
e Tool can select exercises based on a user-profile
e Mistakes can be logged, and reported back to teachers
e Tool can give immediate feedback

&\\‘Wﬁ)) [Faculty of Science
% Y § Universiteit Utrecht Information and Computing Sciences]
NS

14)

they work? §2

» Tutoring systems

» Serious games

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

3. Strategy specification language

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
= . ~

DEE

Logex

Convert to disjunctive normal form

2 New exercise

g ~pd v p)
< ~@p)A-p
< ~anpap
S -sarpap

% & % Universiteit Utrecht
17 N

§3

http://ideas.cs.uu.nl/logex/

Rule Justification

NLEN @ Hel o L

Convert to conjunctive normal form Froof logical equivalence

Conacion per step

De Morgan

Double negation

Gl e A - |

+ Check If derivation is complete

[Faculty of Science
Information and Computing Sciences]

http://ideas.cs.uu.nl/logex/

riting to disjunctive normal form §3

> Rewrite rules for logical propositions:

mp = ¢ PNV X) = (@AY)V(DAX)
“(pAY) = VY (dVY)AX = (6AX)V (Y AX)
—(pVY) = —p A9

» Exercise: bring =(=(p V ¢) A r) to DNF

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(] [= =

DEE

¢ = ¢

—~(¢V) = oAy

—(=(pV g AT)

= pVgqV-r

Universiteit Utrecht

[m]

» Exercise: bring =(=(p V ¢) A r) to DNF
=

=

[Faculty of Science
Information and Computing Sciences]

riting to disjunctive normal form

> Rewrite rules for logical propositions:

~(PAY) = ~pV Y

PA[WVX) = (AY)V

(¢
(VY)Ax = (PAX)V

(¥ A

DEE

A X)
X)

§3

riting to disjunctive normal form §3

> Rewrite rules for logical propositions:

mp = ¢ PNV X) = (@AY)V(DAX)
“(pAY) = VY (dVY)AX = (6AX)V (Y AX)
—(pVY) = —p A9

» Exercise: bring =(=(p V ¢) A r) to DNF
2 ~(~(pVg) AT) ~(~(pVg) AT)

= —-=(pVg)V-r =((-pA—q) A T)
= pVgqV-r —(0p A—q) Vv or

]
pV gV oor
P Vv q V —r [Faculty of Science
Universiteit Utrecht Information and Computing Sciences]
=] F = E E DA

R

ategies for reaching DNF

» Naive strategy:

Apply rewrite rules exhaustively

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
= . ~

DEE

Strategies for reaching DNF §3

» Naive strategy:

Apply rewrite rules exhaustively

> Algorithmic strategy:
(1) Remove constants
(2) Unfold definitions of implication/equivalence
(3) Push negations inside (top-down)
(4) Then use the distribution rule

Q ﬁ)ﬁ) [Facult_y of S_cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

19

Strategies for reaching DNF §3

» Naive strategy:

Apply rewrite rules exhaustively

> Algorithmic strategy:
(1) Remove constants
(2) Unfold definitions of implication/equivalence
(3) Push negations inside (top-down)
(4) Then use the distribution rule

» Expert strategy:
Apply the algorithmic strategy, but use rules for
tautologies and contradictions whenever possible

Q ﬁ)ﬁ) [Facult_y of S_cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

19

Modelling intelligence | §3

To model intelligence in a computer program, Bundy (The
Computer Modelling of Mathematical Reasoning, 1983)
identifies three important, basic needs:

1. The need to have knowledge about the domain
2. The need to reason with that knowledge

3. The need for knowledge about how to direct or guide that

reasoning
_‘\\‘Wﬁ’ [Faculty of Science
% Y % Universiteit Utrecht Information and Computing Sciences]
NS
20)

Modelling intelligence | §3

To model intelligence in a computer program, Bundy (The
Computer Modelling of Mathematical Reasoning, 1983)
identifies three important, basic needs:

1. The need to have knowledge about the domain
2. The need to reason with that knowledge

3. The need for knowledge about how to direct or guide that
reasoning

In our running example:

1. The domain consists of logical propositions
2. Reasoning uses rewrite rules for logical propositions

3. Strategies guide that reasoning
ngyﬁ) [Faculty of Science
%

= . il . g 3
N é Universiteit Utrecht Information and Computing Sciences]

20 %ﬂ»\

Modelling intelligence |1 §3

» Strategies can be used for any kind of procedural activities
(not just maths)

» Alternatives: ACT-R (next week), CTAT (Cognitive Tutor
Authoring Tools), Andes, many more

» Strategies are a declarative and compositional alternative

Our running example in ACT-R

1. The domain consists of logical propositions
2. Reasoning uses production rules for logical propositions

3. Reasoning is implemented by an interpreter which chooses
which productions to fire. There is no explicit
representation of complex cognitive skills

5&\\“’%}) [Faculty of Science
% Y § Universiteit Utrecht Information and Computing Sciences]
NS

21)

A strategy specification language §3

We need the following concepts for specifying a strategy:

» apply a basic rewrite rule ("N distributes over V")
> sequence ("first ... then ...")
» choice ("use one of the rules for ")
» apply exhaustively ("repeat ... as long as possible”)
> traversals ("apply ... top down”)

The same concepts are found in:
» (program) transformation languages
» proof plans and tacticals
» workflow languages
[Faculty of Science

; U <= Universiteit Utrecht Information and Computing Sciences]
2 YN

ategy composition §3

» Basic strategy combinators:

1. Sequence § <>t
2. Choice s<>t
3. Unit elements succeed, fail
4. Labels label ¢ s
5. Recursion fix f
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ategy composition §3

» Basic strategy combinators:

1. Sequence § <>t
2. Choice s<>t
3. Unit elements succeed, fail
4. Labels label £ s
5. Recursion fix f

» Many more combinators can be added:
option s = s <|> succeed
many s = fix (Az — option (s <> z))

repeat s = many s <> not s
[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

4. Feedback services

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Calculating feedback automatically §4

With a strategy, we can calculate several kinds of feedback:

>

25

Feedback after a step by a user

Hints on how to continue

Worked-out solutions

Strategy unfolding (problem decomposition)
Completion problems

Progress (number of steps remaining)

Report common mistakes

Most categories appear in the tutoring principles of
Anderson

Offered as (web-)services to other learning environments

[Faculty of Science

NI : ty of 3
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

porting common mistakes

» Formulate misconceptions as buggy rules:

~(OAY) # oAy
PNWVX) A (GAY)V X

» Buggy rules can be recognized and reported with a
specialized feedback text

Universiteit Utrecht

» Also: buggy strategies to describe procedural mistakes

[m]

[Faculty of Science
Information and Computing Sciences]
= . ~

DEE

§4

Strategy unfolding §4

» Strategies have a hierarchical structure
» Use structure to decompose an exercise
e First ask for the final answer

e If the answer is incorrect, decompose the problem into
subparts and let the user try again

e Example from linear algebra: split the Gaussian Elimination
method into a forward and a backward pass

» The structure of a strategy and its labels also provide a
way to adapt and customize the strategy

5&\\“’%}) [Faculty of Science
% Y § Universiteit Utrecht Information and Computing Sciences]
NS

feedback is calculated §4

The main idea:
» A strategy describes valid sequences of rules
» View a strategy specification as a context-free grammar

» This turns tracking intermediate steps into a parsing
problem

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

How feedback is calculated §4

The main idea:

» A strategy describes valid sequences of rules

» View a strategy specification as a context-free grammar

» This turns tracking intermediate steps into a parsing

problem

Feedback service

Parsing problem

ready

is the empty sentence (¢) accepted?

provide hint

compute the “first set”

worked-out solution

construct a sentence

after a step

N
; Y % Universiteit Utrecht
28 N

try to recognize the rewrite rule that

was used, and parse this rule as the

next symbol of the input)
[Faculty of Science

Information and Computing Sciences]

5. Application domains

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

plication domains §5

> Logic

» Mathematics

» Communication skills

> Infection and Immunology

» Programming

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Universiteit Utrecht

5.1 Logic

[Faculty of Science
Information and Computing Sciences]

oving equivalences §5.1

» Use strategies to prove the equivalence of logical
propositions

> Allow student to make forward steps and backward steps

~((p—=9) = (pA4q)

< {implication elimination}
“(c(—=aVipAg)

< {De Morgan}
(=9 A-(pAg)

< {double negation}
(P=a A= (pAg)

< {De Morgan}
=g N(=pV-yg)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Proving equivalences (how) §5.1

» The strategy rewrites a pair of propositions

» Rewrite both parts to disjunctive normal form, and then
towards equal forms

» Two simple techniques simplify the generated proofs:

e Try to decompose the proof into subproofs by inspecting
the top-level operators
e Search for common subformulas

—([p—=a)| = (@A)
<{...}

p—=q|AN(=pV—q)

Q ﬁ)ﬁ) [Facult_y of S_cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

33

5.2 Mathematics

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Mathematics §5.2

» We collaborate with the Freudenthal Institute to extend
their applets with our feedback facilities
e Covers most topics in secondary school mathematics:
polynomial equations, inequalities, calculating with powers,
derivatives, etc.
e Applets are used by many schools (and a popular textbook)

» We participated in the Math-Bridge project
e Large European consortium around the ActiveMath learning
environment

e Aims at providing a math bridging course to higher
education

» We try to apply our approach to different types of exercises

5&\\“’%}) [Faculty of Science
% Y § Universiteit Utrecht Information and Computing Sciences]
NS

35)

DWO Math Enviroment - Mozilla Firefox

O Math Environment (with feedback)

Bestand Beperken Besld Geschiedenis Bladviers Extra Help
fi DWOMath Enviroment

§5.2
e

Digitale Wiskunde Omgeving Freudenthal Instituut

%5 >> B: Examples quadreq

Los de vergelijking op

Nietingeloge
d 0 E L@ e

tip
22— H=0

solve

it

D de factoren op 0 stellen
2=0af 21=4=0

constante termen naar rechts
brengen
x=0af 2= atiabele vrimaen door beide kanten]
te delen
x=0 af k=2

ot P OOOOOPO@OD fi
Seore: 10 totaal: 10
Universiteit Utrecht

[m]

Tool by Peter Boon (Freuderﬂ;h |t!,"c§I’stcL.‘etnecl

=

Information and Computing Sciences]

DEE

Challenges in a math tutor §5.2

» Support for canonical forms

e To test for equality
e To control the granularity of steps
e To simplify terms

Examples:
e 2V/2 versus /8, 31 versus I (or even 3.5)
e x+ (—3) versus x — 3

e pattern ax + b versus 3 — bx

v

Flexibility in strategies (customization)

» Parameterized rewrite steps (“divide both sides by 5")

Q ﬁ)ﬁ) [Facult_y of S_cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

37

at does a step look like? §5.2

3x(dxzx—1)+3=T+z—14= 12z ="T+z — 147

You are doing a lot in this step!

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

at does a step look like? §5.2

3x(dxzx—1)+3=T+z—14= 12z ="T+z — 147

You are doing a lot in this step!

3x(dxzx—1)+3

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

at does a step look like? §5.2

3x(dxzx—1)+3=T+z—14= 12z ="T+z — 147

You are doing a lot in this step!

3x(dxzx—1)+3
= (B*x4xz—-3%x1)+3

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

at does a step look like? §5.2

3x(dxzx—1)+3=T+z—14= 12z ="T+z — 147

You are doing a lot in this step!

3x(dxzx—1)+3
= (B*x4xz—-3%x1)+3
= (12%7-3%1)+3

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

at does a step look like? §5.2

3x(dxzx—1)+3=T+z—14= 12z ="T+z — 147

You are doing a lot in this step!

3x(dxzx—1)+3
= (Bx4dxx—3%1)+3
= (12xz-3%1)+3
= (12%z-3)+3

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

at does a step look like? §5.2

3x(dxzx—1)+3=T+z—14= 12z ="T+z — 147

You are doing a lot in this step!

3x(dxzx—1)+3
(3x4%xzx—3%1)+3
(12xz—3%1)+3
(12%xz—3)+3
(12xz+(-3))+3

4l

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

at does a step look like? §5.2

3x(dxzx—1)+3=T+z—14= 12z ="T+z — 147

You are doing a lot in this step!

3x(dxzx—1)+3
(3x4%xzx—3%1)+3
(12xz—3%1)+3
(12xx—3)+3
(12xz+(-3))+3
12z 4+ (-3 +3)

L

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

hat does a step look like? §5.2

3x(dxzx—1)+3=T+z—14= 12z ="T+z — 147

You are doing a lot in this step!

3x(dxzx—1)+3
(3x4%xzx—3%1)+3
(12xz—3%1)+3
(12xx—3)+3
(12xz+(-3))+3
12z 4+ (-3 +3)
12+ 240

A

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

hat does a step look like? §5.2

3x(dxzx—1)+3=T+z—14= 12z ="T+z — 147

You are doing a lot in this step!

3x(dxzx—1)+3

= (Bx4dxx—3%1)+3

= (12%z-3%1)+3

= (12%xz-3)+3

= (12xz+4(-3))+3

= 12*xz+(-3+3)

= 12xz+4+0

= 12xz

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Similar problems §5.2

v

Economy of rules: | want to describe
ax(b+c¢) = axbt+axc
but preferably not also:
ax(b—c) = axb—axc
—ax(b+c¢) = —axb—axc
» Canonical forms: a + (—b) should be presented as a — b

» Granularity: users at different levels need different
granularity of rules

» Recognizing user steps: when showing steps to users, we
want to apply some simplifications automatically. When
recognising steps, however, such simplifications are not

obligatory
_\\‘Wﬁ’ [Faculty of Science
% Y % Universiteit Utrecht Information and Computing Sciences]
NS
39)

Views §5.2

A view views an expression in a particular format:

» a match function returns an equivalent value in a different
format, for example:

match plusView (a — b) = a+(—b)
match plusView (—(a + b)) = —a+ —b

» a build function to return to the original domain, for
example:

3x(dxx—1)

= { match plusViewon 4xz —1 }
3x(dxz+(—1))

= { distribute * over + }
3xdxz+3x(—1)

= { simplify using rationalView }
122 —3

5&\\“’%}) [Faculty of Science
% Y § Universiteit Utrecht Information and Computing Sciences]
NS

40)

Views and rules §5.2

» Many rules use one or more views for matching on the
left-hand side

> Many rules use one or more views to clean up a result
expression after rewriting

» Views and parametrized rules solve the problem of making
all steps in solving an exercise explicit

5&\\“’%}) [Faculty of Science
= B = Universiteit Utrecht Information and Computing Sciences]

41 %{ﬂ@

5.3 Serious games

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

A communication skills game §5.3

43

Cammunicate! x

<« & science-vs75.science.uu.nl/backend/index.php/scenario/index/scenarios.18 | =

Uttioggen.

H Ja, helemaal.

Toestemming vragen om advies te geven reflectie geven doorvragen om advies te kunnen geven | voor|

1. Zal ik u een advies geven wat u het beste kan doen?

N _—

o
= a fn-q q A A
N) é Universiteit Utrecht Information and Computing Sciences]

Editing scenario’s

Editor
+ | @ science-vs75 science.uu.nl
Buienradar

YouTube Wikipedia NS

20T

StatCounter Facehook dub

o < =

—

- *

-——
Intenties Ouders Ordenen Valideer Scenario: bali

Communicate!

Johan Jeuring Google +

Scriptbeheer Kenmerken Kladblad Opslaan Media Speler Patiént Gesprek Onderwerp

ek demo

§5.3

maps.google.com

Emoties
o
¥

Parameter:

Contact

[-] Naam onderwerp

¥

@D Intenties

Ui jo s amanvatting bissk al dat 6 mevrouw begrepan had. Ds
et s daardoor overbodig

@& Commentaar

Nieuw item Alles naar nodes Alles verwiideren
s/P Zin Intentie Emotie
s 7] (geen)

Universiteit Utrecht

J9 (X Einde gesprek
= Eindknoop

Feedback

cnce
Information and Computing Sciences]

An infection and immunity game §5.3

- 6 - Scenario: 1 e

A: Opsonisation

B: Chemotaxis

C: Lysis

D: Neutrophil

E: Macrophage

F: Monocyte

G: Cytokine

H: Pre-existing antibodies

I: Produced antibodies
{(H)C | [AB.HID } o

K: T-Helper

5&\\“% [Faculty of Science
% N § Universiteit Utrecht Information and Computing Sciences]
NS

45 }

5.4 Programming

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Programming §5.4

We have developed programming tutors for

» Evaluating functional expressions
» Learning functional programming

» Learning imperative programming

More about this in the third lecture about ideas.

5&\\“’%}) [Faculty of Science
% Y § Universiteit Utrecht Information and Computing Sciences]
NS

47 Y

6. Lab assignment

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

as tutorial §6

Visit http://ideas.cs.uu.nl/tutorial/

hitpi//ideas.cs.uu.nl/tutorial/ %

(€)@ T sl & nE w-|=

Ideas tutorial (version 1.2) OpenUnlveralieh 8 I

Making a domain reasoner

This tutorial shows how to make a simple domain reasoner with the Ideas framework. We start by defining a minimal
exercise and show how this can be compiled into an application that can handle feedback requests. Make sure you have
installed a Haskell compiler and the cabal package manager (see Haskell Platform). Get the latest version of the ideas
package from Hackage and install the library with the following command:

cabal install ideas
We can now start writing a new Haskell module and import some modules from the Ideas package.

module Main where

import Ideas.Common.Llibrary
import Ideas.Main.Default

This will import basic functionality (1deas.commen . Library) for defining your own exercise. The other import
(1deas.Main. Default) is needed for step 4 of this tutorial.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

http://ideas.cs.uu.nl/tutorial/

Lab assighment §6

50

NI
£\

Start version, see http://ideas.cs.uu.nl/tutorial/, has,

» Simple arithmetic expression language

» Two evaluation rules

data Expr = Add Expr Ezpr | Negate Ezpr | Con Int

1. Add multiplication to the expression language (and extend
the evaluation strategy)

2. Add distribution rules to the strategy

3. Add support for calculating with fractions (e.g. % + %)

e Find the least common multiple of the denominators
e Rewrite top-heavy fractions to mixed fractions (e.g. 1%)

[Faculty of Science

= . il . g 3
N % Universiteit Utrecht Information and Computing Sciences]

http://ideas.cs.uu.nl/tutorial/

About the Ildeas framework §6

> Latest release: version 1.5 (May 2016)
» Over 10,000 lines of Haskell code (in 110 modules)
» http://hackage.haskell.org/package/ideas

How to interact with a domain reasoner?

» Develop a client that calls the (server/cgi) domain reasoner
» Use the Haskell interpreter (ghci)

» Compile to a cgi binary (with support for HTML) and
deploy on your localhost; use a browser

» Compile and send a request from the command-line (file)

5&\\“’%}) [Faculty of Science
% Y § Universiteit Utrecht Information and Computing Sciences]
NS

51)

http://hackage.haskell.org/package/ideas

Aiq.'.'l"h._.'_

ain reasoner in browser

Ideas: documentation pages

€) @ hitpy/localhost/Tutorialcgifinput=< 7 € | [[B~ Googie

Fle & B w|- =

§6

[Facurt

- Exercise
Exercise eval.full v imtion
® strategy
Description 0 ez
Evaluate an expression (full) : :::;"aﬂ:: =
) R ® test report
Derivations
1.
Add (Con 5) (Negate (Con 2)) o
= eval.negate
Add (Con 5) (Con (-2))
= eval add
Con3
Universiteit Utrecht

of Science

Information and Computing Sciences]

[m]

=

E 9DQAC¢

More information §6

Bastiaan Heeren and Johan Jeuring. Feedback services for
stepwise exercises. Science of Computer Programming Special
Issue on Software Development Concerns in the e-Learning
Domain, volume 88, 110 - 129, 2014.

Bastiaan Heeren, Johan Jeuring, and Alex Gerdes. Specifying
rewrite strategies for interactive exercises. In Mathematics in
Computer Science 3(3), 349 - 370, 2010.

g‘Wf/} [Faculty of Science

= . il . g 3
N % Universiteit Utrecht Information and Computing Sciences]

o
53 KN

» You can discuss the lab amongst each other, but you
cannot reuse code from somebody else

» Hand in your solution via email to me on or before 28/9

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

7. Concluding remarks

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Concluding remarks §7

v

We introduced a strategy language to make the procedure
for solving an exercise explicit

v

This language is what differentiates us from other tools

v

Feedback is calculated from the strategy by turning
feedback services into parsing problems

v

Strategies can be used in many learning tools

5&\\“’%}) [Faculty of Science
% Y § Universiteit Utrecht Information and Computing Sciences]
NS

56)

	Introduction
	Procedural skills
	Strategy specification language
	Feedback services
	Application domains
	Logic
	Mathematics
	Serious games
	Programming

	Lab assignment
	Concluding remarks

