
[Faculty of Science
Information and Computing Sciences]

Ideas
Part 1: Procedural skills

Johan Jeuring
Utrecht University

Monday, September 7, 2016

[Faculty of Science
Information and Computing Sciences]

2

1. Introduction

[Faculty of Science
Information and Computing Sciences]

3

ICT & Education §1

[Faculty of Science
Information and Computing Sciences]

4

Free input? §1

[Faculty of Science
Information and Computing Sciences]

5

Quality of feedback? §1

http://studio.code.org/hoc/2

http://studio.code.org/hoc/2

[Faculty of Science
Information and Computing Sciences]

6

Help! §1

[Faculty of Science
Information and Computing Sciences]

7

Problems §1

I Simplified tasks
I Bad feedback
I No feedback

[Faculty of Science
Information and Computing Sciences]

8

Goal §1

Use

I languages and grammars
I algebra’s

To

I determine what a student has done
I determine what a student should do
I explain instead of show why a student performs badly

[Faculty of Science
Information and Computing Sciences]

9

Resulting in §1

[Faculty of Science
Information and Computing Sciences]

10

Outline of presentation §1
Introduction

Procedural skills

Strategy specification language

Feedback services

Application domains

Logic

Mathematics

Serious games

Programming

Lab assignment

Concluding remarks

[Faculty of Science
Information and Computing Sciences]

11

2. Procedural skills

[Faculty of Science
Information and Computing Sciences]

12

Procedural skills §2

In many subjects students have to acquire procedural skills:

I Mathematics: find the derivative of a function
I Linear Algebra: solve a system of linear equations
I Logic: rewrite a proposition to disjunctive normal form
I Computer Science: construct a program from a

specification using Dijkstra’s calculus
I Physics: calculate the resistance of a circuit
I Biology: calculate inheritance values using Mendel’s laws
I . . .

[Faculty of Science
Information and Computing Sciences]

13

Example §2

[Faculty of Science
Information and Computing Sciences]

14

Tutoring tools for procedural skills §2

I Typical features of these tools:
• Generate exercises
• Stepwise construction of a solution
• Select rewriting rule or transformation
• Suggest how to continue
• Check correctness of a step/solution

I Such tools offer many advantages to users:
• User can work at any time
• User can select material and exercises
• Tool can select exercises based on a user-profile
• Mistakes can be logged, and reported back to teachers
• Tool can give immediate feedback

[Faculty of Science
Information and Computing Sciences]

15

Do they work? §2

I Tutoring systems
I Serious games

[Faculty of Science
Information and Computing Sciences]

16

3. Strategy specification language

[Faculty of Science
Information and Computing Sciences]

17

Logex §3

http://ideas.cs.uu.nl/logex/

http://ideas.cs.uu.nl/logex/

[Faculty of Science
Information and Computing Sciences]

18

Rewriting to disjunctive normal form §3

I Rewrite rules for logical propositions:

¬¬φ ⇒ φ φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)
¬(φ ∧ ψ) ⇒ ¬φ ∨ ¬ψ (φ ∨ ψ) ∧ χ ⇒ (φ ∧ χ) ∨ (ψ ∧ χ)
¬(φ ∨ ψ) ⇒ ¬φ ∧ ¬ψ

I Exercise: bring ¬(¬(p ∨ q) ∧ r) to DNF

¬(¬(p ∨ q) ∧ r)
⇒ ¬¬(p ∨ q) ∨ ¬r
⇒ p ∨ q ∨ ¬r

¬(¬(p ∨ q) ∧ r)
⇒ ¬((¬p ∧ ¬q) ∧ r)
⇒ ¬(¬p ∧ ¬q) ∨ ¬r
⇒ ¬¬p ∨ ¬¬q ∨ ¬r
⇒ p ∨ ¬¬q ∨ ¬r
⇒ p ∨ q ∨ ¬r

[Faculty of Science
Information and Computing Sciences]

18

Rewriting to disjunctive normal form §3

I Rewrite rules for logical propositions:

¬¬φ ⇒ φ φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)
¬(φ ∧ ψ) ⇒ ¬φ ∨ ¬ψ (φ ∨ ψ) ∧ χ ⇒ (φ ∧ χ) ∨ (ψ ∧ χ)
¬(φ ∨ ψ) ⇒ ¬φ ∧ ¬ψ

I Exercise: bring ¬(¬(p ∨ q) ∧ r) to DNF

¬(¬(p ∨ q) ∧ r)
⇒ ¬¬(p ∨ q) ∨ ¬r
⇒ p ∨ q ∨ ¬r

¬(¬(p ∨ q) ∧ r)
⇒ ¬((¬p ∧ ¬q) ∧ r)
⇒ ¬(¬p ∧ ¬q) ∨ ¬r
⇒ ¬¬p ∨ ¬¬q ∨ ¬r
⇒ p ∨ ¬¬q ∨ ¬r
⇒ p ∨ q ∨ ¬r

[Faculty of Science
Information and Computing Sciences]

18

Rewriting to disjunctive normal form §3

I Rewrite rules for logical propositions:

¬¬φ ⇒ φ φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)
¬(φ ∧ ψ) ⇒ ¬φ ∨ ¬ψ (φ ∨ ψ) ∧ χ ⇒ (φ ∧ χ) ∨ (ψ ∧ χ)
¬(φ ∨ ψ) ⇒ ¬φ ∧ ¬ψ

I Exercise: bring ¬(¬(p ∨ q) ∧ r) to DNF

¬(¬(p ∨ q) ∧ r)
⇒ ¬¬(p ∨ q) ∨ ¬r
⇒ p ∨ q ∨ ¬r

¬(¬(p ∨ q) ∧ r)
⇒ ¬((¬p ∧ ¬q) ∧ r)
⇒ ¬(¬p ∧ ¬q) ∨ ¬r
⇒ ¬¬p ∨ ¬¬q ∨ ¬r
⇒ p ∨ ¬¬q ∨ ¬r
⇒ p ∨ q ∨ ¬r

[Faculty of Science
Information and Computing Sciences]

19

Strategies for reaching DNF §3

I Naive strategy:
Apply rewrite rules exhaustively

I Algorithmic strategy:
(1) Remove constants
(2) Unfold definitions of implication/equivalence
(3) Push negations inside (top-down)
(4) Then use the distribution rule

I Expert strategy:
Apply the algorithmic strategy, but use rules for
tautologies and contradictions whenever possible

[Faculty of Science
Information and Computing Sciences]

19

Strategies for reaching DNF §3

I Naive strategy:
Apply rewrite rules exhaustively

I Algorithmic strategy:
(1) Remove constants
(2) Unfold definitions of implication/equivalence
(3) Push negations inside (top-down)
(4) Then use the distribution rule

I Expert strategy:
Apply the algorithmic strategy, but use rules for
tautologies and contradictions whenever possible

[Faculty of Science
Information and Computing Sciences]

19

Strategies for reaching DNF §3

I Naive strategy:
Apply rewrite rules exhaustively

I Algorithmic strategy:
(1) Remove constants
(2) Unfold definitions of implication/equivalence
(3) Push negations inside (top-down)
(4) Then use the distribution rule

I Expert strategy:
Apply the algorithmic strategy, but use rules for
tautologies and contradictions whenever possible

[Faculty of Science
Information and Computing Sciences]

20

Modelling intelligence I §3

To model intelligence in a computer program, Bundy (The
Computer Modelling of Mathematical Reasoning, 1983)
identifies three important, basic needs:

1. The need to have knowledge about the domain
2. The need to reason with that knowledge
3. The need for knowledge about how to direct or guide that

reasoning

In our running example:

1. The domain consists of logical propositions
2. Reasoning uses rewrite rules for logical propositions
3. Strategies guide that reasoning

[Faculty of Science
Information and Computing Sciences]

20

Modelling intelligence I §3

To model intelligence in a computer program, Bundy (The
Computer Modelling of Mathematical Reasoning, 1983)
identifies three important, basic needs:

1. The need to have knowledge about the domain
2. The need to reason with that knowledge
3. The need for knowledge about how to direct or guide that

reasoning

In our running example:

1. The domain consists of logical propositions
2. Reasoning uses rewrite rules for logical propositions
3. Strategies guide that reasoning

[Faculty of Science
Information and Computing Sciences]

21

Modelling intelligence II §3

I Strategies can be used for any kind of procedural activities
(not just maths)

I Alternatives: ACT-R (next week), CTAT (Cognitive Tutor
Authoring Tools), Andes, many more

I Strategies are a declarative and compositional alternative

Our running example in ACT-R

1. The domain consists of logical propositions
2. Reasoning uses production rules for logical propositions
3. Reasoning is implemented by an interpreter which chooses

which productions to fire. There is no explicit
representation of complex cognitive skills

[Faculty of Science
Information and Computing Sciences]

22

A strategy specification language §3

We need the following concepts for specifying a strategy:

I apply a basic rewrite rule (”∧ distributes over ∨”)
I sequence (”first . . . then . . . ”)
I choice (”use one of the rules for ¬”)
I apply exhaustively (”repeat . . . as long as possible”)
I traversals (”apply . . . top down”)

The same concepts are found in:
I (program) transformation languages
I proof plans and tacticals
I workflow languages

[Faculty of Science
Information and Computing Sciences]

23

Strategy composition §3

I Basic strategy combinators:

1. Sequence s <?> t

2. Choice s <|> t

3. Unit elements succeed, fail

4. Labels label ` s

5. Recursion fix f

I Many more combinators can be added:

option s = s <|> succeed

many s = fix (λx → option (s <?> x))

repeat s = many s <?> not s

[Faculty of Science
Information and Computing Sciences]

23

Strategy composition §3

I Basic strategy combinators:

1. Sequence s <?> t

2. Choice s <|> t

3. Unit elements succeed, fail

4. Labels label ` s

5. Recursion fix f

I Many more combinators can be added:

option s = s <|> succeed

many s = fix (λx → option (s <?> x))

repeat s = many s <?> not s

[Faculty of Science
Information and Computing Sciences]

24

4. Feedback services

[Faculty of Science
Information and Computing Sciences]

25

Calculating feedback automatically §4

With a strategy, we can calculate several kinds of feedback:

I Feedback after a step by a user
I Hints on how to continue
I Worked-out solutions
I Strategy unfolding (problem decomposition)
I Completion problems
I Progress (number of steps remaining)
I Report common mistakes

I Most categories appear in the tutoring principles of
Anderson

I Offered as (web-)services to other learning environments

[Faculty of Science
Information and Computing Sciences]

26

Reporting common mistakes §4

I Formulate misconceptions as buggy rules:

¬(φ ∧ ψ) 6⇒ ¬φ ∧ ¬ψ
φ ∧ (ψ ∨ χ) 6⇒ (φ ∧ ψ) ∨ χ

I Buggy rules can be recognized and reported with a
specialized feedback text

I Also: buggy strategies to describe procedural mistakes

[Faculty of Science
Information and Computing Sciences]

27

Strategy unfolding §4

I Strategies have a hierarchical structure
I Use structure to decompose an exercise

• First ask for the final answer
• If the answer is incorrect, decompose the problem into

subparts and let the user try again
• Example from linear algebra: split the Gaussian Elimination

method into a forward and a backward pass

I The structure of a strategy and its labels also provide a
way to adapt and customize the strategy

[Faculty of Science
Information and Computing Sciences]

28

How feedback is calculated §4

The main idea:
I A strategy describes valid sequences of rules
I View a strategy specification as a context-free grammar
I This turns tracking intermediate steps into a parsing

problem

Feedback service Parsing problem

ready is the empty sentence (ε) accepted?

provide hint compute the “first set”

worked-out solution construct a sentence

after a step try to recognize the rewrite rule that
was used, and parse this rule as the
next symbol of the input

[Faculty of Science
Information and Computing Sciences]

28

How feedback is calculated §4

The main idea:
I A strategy describes valid sequences of rules
I View a strategy specification as a context-free grammar
I This turns tracking intermediate steps into a parsing

problem

Feedback service Parsing problem

ready is the empty sentence (ε) accepted?

provide hint compute the “first set”

worked-out solution construct a sentence

after a step try to recognize the rewrite rule that
was used, and parse this rule as the
next symbol of the input

[Faculty of Science
Information and Computing Sciences]

29

5. Application domains

[Faculty of Science
Information and Computing Sciences]

30

Application domains §5

I Logic
I Mathematics
I Communication skills
I Infection and Immunology
I Programming

[Faculty of Science
Information and Computing Sciences]

31

5.1 Logic

[Faculty of Science
Information and Computing Sciences]

32

Proving equivalences §5.1

I Use strategies to prove the equivalence of logical
propositions

I Allow student to make forward steps and backward steps

¬ ((p → q)→ (p ∧ q))
⇔ {implication elimination}
¬ (¬ (p → q) ∨ (p ∧ q))
⇔ {De Morgan}
¬¬(p → q) ∧ ¬ (p ∧ q)
⇔ {double negation}

(p → q) ∧ ¬ (p ∧ q)
⇔ {De Morgan}

(p → q) ∧ (¬ p ∨ ¬ q)

[Faculty of Science
Information and Computing Sciences]

33

Proving equivalences (how) §5.1

I The strategy rewrites a pair of propositions
I Rewrite both parts to disjunctive normal form, and then

towards equal forms
I Two simple techniques simplify the generated proofs:

• Try to decompose the proof into subproofs by inspecting
the top-level operators

• Search for common subformulas

¬ ((p → q) → (p ∧ q))

⇔ {. . .}

(p → q) ∧ (¬ p ∨ ¬ q)

[Faculty of Science
Information and Computing Sciences]

34

5.2 Mathematics

[Faculty of Science
Information and Computing Sciences]

35

Mathematics §5.2

I We collaborate with the Freudenthal Institute to extend
their applets with our feedback facilities
• Covers most topics in secondary school mathematics:

polynomial equations, inequalities, calculating with powers,
derivatives, etc.

• Applets are used by many schools (and a popular textbook)

I We participated in the Math-Bridge project
• Large European consortium around the ActiveMath learning

environment
• Aims at providing a math bridging course to higher

education

I We try to apply our approach to different types of exercises

[Faculty of Science
Information and Computing Sciences]

36

DWO Math Environment (with feedback) §5.2

Tool by Peter Boon (Freudenthal Institute)

[Faculty of Science
Information and Computing Sciences]

37

Challenges in a math tutor §5.2

I Support for canonical forms
• To test for equality
• To control the granularity of steps
• To simplify terms

Examples:
• 2
√

2 versus
√

8, 3 1
2 versus 7

2 (or even 3.5)

• x+ (−3) versus x− 3

• pattern ax+ b versus 3− 5x

I Flexibility in strategies (customization)
I Parameterized rewrite steps (“divide both sides by 5”)

[Faculty of Science
Information and Computing Sciences]

38

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x

[Faculty of Science
Information and Computing Sciences]

38

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3

⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x

[Faculty of Science
Information and Computing Sciences]

38

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3

⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x

[Faculty of Science
Information and Computing Sciences]

38

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3

⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x

[Faculty of Science
Information and Computing Sciences]

38

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3

⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x

[Faculty of Science
Information and Computing Sciences]

38

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3

⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x

[Faculty of Science
Information and Computing Sciences]

38

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)

⇒ 12 ∗ x + 0
⇒ 12 ∗ x

[Faculty of Science
Information and Computing Sciences]

38

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0

⇒ 12 ∗ x

[Faculty of Science
Information and Computing Sciences]

38

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x

[Faculty of Science
Information and Computing Sciences]

39

Similar problems §5.2

I Economy of rules: I want to describe
a ∗ (b + c) ⇒ a ∗ b + a ∗ c

but preferably not also:
a ∗ (b − c) ⇒ a ∗ b − a ∗ c
−a ∗ (b + c) ⇒ −a ∗ b − a ∗ c

I Canonical forms: a + (−b) should be presented as a − b
I Granularity: users at different levels need different

granularity of rules
I Recognizing user steps: when showing steps to users, we

want to apply some simplifications automatically. When
recognising steps, however, such simplifications are not
obligatory

[Faculty of Science
Information and Computing Sciences]

40

Views §5.2

A view views an expression in a particular format:

I a match function returns an equivalent value in a different
format, for example:

match plusView (a − b) ⇒ a + (−b)
match plusView (−(a + b)) ⇒ −a +−b

I a build function to return to the original domain, for
example:

3 ∗ (4 ∗ x − 1)
⇒ { match plusView on 4 ∗ x − 1 }

3 ∗ (4 ∗ x + (−1))
⇒ { distribute ∗ over + }

3 ∗ 4 ∗ x + 3 ∗ (−1)
⇒ { simplify using rationalView }

12 ∗ x − 3

[Faculty of Science
Information and Computing Sciences]

41

Views and rules §5.2

I Many rules use one or more views for matching on the
left-hand side

I Many rules use one or more views to clean up a result
expression after rewriting

I Views and parametrized rules solve the problem of making
all steps in solving an exercise explicit

[Faculty of Science
Information and Computing Sciences]

42

5.3 Serious games

[Faculty of Science
Information and Computing Sciences]

43

A communication skills game §5.3

[Faculty of Science
Information and Computing Sciences]

44

Editing scenario’s §5.3

[Faculty of Science
Information and Computing Sciences]

45

An infection and immunity game §5.3

[Faculty of Science
Information and Computing Sciences]

46

5.4 Programming

[Faculty of Science
Information and Computing Sciences]

47

Programming §5.4

We have developed programming tutors for

I Evaluating functional expressions
I Learning functional programming
I Learning imperative programming

More about this in the third lecture about ideas.

[Faculty of Science
Information and Computing Sciences]

48

6. Lab assignment

[Faculty of Science
Information and Computing Sciences]

49

Ideas tutorial §6

Visit http://ideas.cs.uu.nl/tutorial/

http://ideas.cs.uu.nl/tutorial/

[Faculty of Science
Information and Computing Sciences]

50

Lab assignment §6

Start version, see http://ideas.cs.uu.nl/tutorial/, has,

I Simple arithmetic expression language
I Two evaluation rules

data Expr = Add Expr Expr | Negate Expr | Con Int

1. Add multiplication to the expression language (and extend
the evaluation strategy)

2. Add distribution rules to the strategy
3. Add support for calculating with fractions (e.g. 5

7 + 1
2)

• Find the least common multiple of the denominators
• Rewrite top-heavy fractions to mixed fractions (e.g. 1 3

14)

http://ideas.cs.uu.nl/tutorial/

[Faculty of Science
Information and Computing Sciences]

51

About the Ideas framework §6

I Latest release: version 1.5 (May 2016)
I Over 10,000 lines of Haskell code (in 110 modules)
I http://hackage.haskell.org/package/ideas

How to interact with a domain reasoner?

I Develop a client that calls the (server/cgi) domain reasoner
I Use the Haskell interpreter (ghci)
I Compile to a cgi binary (with support for HTML) and

deploy on your localhost; use a browser
I Compile and send a request from the command-line (file)

http://hackage.haskell.org/package/ideas

[Faculty of Science
Information and Computing Sciences]

52

Domain reasoner in browser §6

[Faculty of Science
Information and Computing Sciences]

53

More information §6

Bastiaan Heeren and Johan Jeuring. Feedback services for
stepwise exercises. Science of Computer Programming Special
Issue on Software Development Concerns in the e-Learning
Domain, volume 88, 110 - 129, 2014.

Bastiaan Heeren, Johan Jeuring, and Alex Gerdes. Specifying
rewrite strategies for interactive exercises. In Mathematics in
Computer Science 3(3), 349 - 370, 2010.

[Faculty of Science
Information and Computing Sciences]

54

I You can discuss the lab amongst each other, but you
cannot reuse code from somebody else

I Hand in your solution via email to me on or before 28/9

[Faculty of Science
Information and Computing Sciences]

55

7. Concluding remarks

[Faculty of Science
Information and Computing Sciences]

56

Concluding remarks §7

I We introduced a strategy language to make the procedure
for solving an exercise explicit

I This language is what differentiates us from other tools
I Feedback is calculated from the strategy by turning

feedback services into parsing problems
I Strategies can be used in many learning tools

	Introduction
	Procedural skills
	Strategy specification language
	Feedback services
	Application domains
	Logic
	Mathematics
	Serious games
	Programming

	Lab assignment
	Concluding remarks

