Particle Number Fluctuations in a Bose-Einstein Condensate of Light

E.C.I. van der Wurff*, A.-W. de Leeuw, R.A. Duine, and H.T.C. Stoof

Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

Introduction

- Fluctuations/noise contain(s) a lot of information.
- Example: determination fractional charge quasiparticles quantum Hall effect by analyzing current fluctuations.
- Measuring fluctuating particle number in dilute atomic Bose-Einstein condensate is hard (particle number measurements destructive).
- 2010: first creation **condensate of photons** [2].
- 2014: dynamical measurements number fluctuations in photon condensate [3].

Main Results

FOM

• Given a condensate fraction \mathcal{X} and interaction strength \tilde{g} , solve self-consistently for chemical potential μ and plot $P(N_0)$:

- Photons confined in a **dye-filled optical microcavity**.
- Emission and absorption of photons with longitudional mode number q = 7 dominates over other emission processes
 - --> conserved number of photons in cavity
- Photon gas is equivalent to a 2D harmonically trapped massive Bose gas.
- Experiment at room temperature.

- Qualitatively: larger photon-photon interactions (𝔅 or 𝔅 flarger)
 → P(N₀) more peaked around ⟨N₀⟩
 → reduction number fluctuations
- Quantitatively: zero-time delay autocorrelation function: $g^{(2)}(0) \equiv \frac{\langle N_0^2 \rangle}{\langle N_0 \rangle^2}$
- Compare theory to measurements by using $\,\widetilde{g}\,$ as fitting parameter:

Hanbury Brown and Twiss experiment

measure number fluctuations

Condensate fraction

• One direct measurement interaction strength for similar parameters to purple curve: $\tilde{g} \sim 10^{-4} \longrightarrow$ agrees with theory!

Theoretical Description

Objective: probability distribution $P(N_0)$ for the number of photons in the condensate N_0

• Energy functional BEC with macroscopic wavefunction $\phi_0(\mathbf{x})$

 $\Omega[\phi_0(\mathbf{x})] = \int d\mathbf{x} \left[\frac{\hbar^2}{2m} \left|\nabla\phi_0(\mathbf{x})\right|^2 + V^{\text{ex}}(\mathbf{x}) \left|\phi_0(\mathbf{x})\right|^2 - \mu \left|\phi_0(\mathbf{x})\right|^2 + \frac{g}{2} \left|\phi_0(\mathbf{x})\right|^4\right]$ kinetic energy external chemical potential poten

- Variational Ansatz wavefunction: $\phi_0(\mathbf{x}) \propto \sqrt{N_0} \exp(-|\mathbf{x}|^2/2q^2)$
- Minimized variational parameter: $q_{\min} = q_{\ln 0} \sqrt[4]{1 + \frac{\tilde{g}N_0}{2\pi}}$
 - Physical interpretation: proportional to condensate radius

Possible Interaction Mechanisms

- 1) **Dye-mediated photon-photons cattering**: due to repeated absorption and emission of photons by dye molecules
- 2) Thermal lensing: due to temperature-dependent index of refraction
- Both mechanisms: \widetilde{g} too small
- \rightarrow Dimensionless interaction strength: $\tilde{g} \equiv mg/\hbar^2$
- In grand-canonical ensemble: $P(N_0) \propto \exp(-\beta \Omega[N_0])$
- Probability distribution for minimized energy:

$$P(N_0) \propto \exp[\beta N_0(\mu - \hbar\omega\sqrt{1 + \tilde{g}N_0/2\pi})]$$

References

*erikvanderwurff@gmail.com

[1] E.C.I. van der Wurff *et al.*, Phys. Rev. Lett. **113**, 135301 (2014)

[2] J. Klaers *et al.*, Nature **468**, 545 (2010).

[3] J. Schmitt et al., Phys. Rev. Lett. **112**, 030401 (2014).

Need systematic measurements for different dyes

Conclusions

- Condensate of photons: **new experimental possibilities**, previously not accessible with condensates in dilute atomic gases.
- Explained recent experiments by assuming **contact interaction** for photons in condensate.
- More experimental input necessary to determine **nature** of interaction between photons.
- If photons interact via a contact interaction at long wavelengths
 condensate is also a superfluid