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QUANTUM GASES

Observation of isolated monopoles in
a quantum field
M. W. Ray,1* E. Ruokokoski,2 K. Tiurev,2 M. Möttönen,2,3† D. S. Hall1

Topological defects play important roles throughout nature, appearing in contexts as
diverse as cosmology, particle physics, superfluidity, liquid crystals, and metallurgy. Point
defects can arise naturally as magnetic monopoles resulting from symmetry breaking in
grand unified theories. We devised an experiment to create and detect quantum
mechanical analogs of such monopoles in a spin-1 Bose-Einstein condensate. The defects,
which were stable on the time scale of our experiments, were identified from spin-resolved
images of the condensate density profile that exhibit a characteristic dependence on
the choice of quantization axis. Our observations lay the foundation for experimental
studies of the dynamics and stability of topological point defects in quantum systems.

T
wo structures are topologically equivalent
if they can be continuously transformed into
one another (1, 2), such as the letters O and
P. Topological defects exist in a physical sys-
tem if its state is not topologically equivalent

to its ground state. Such defects can decay or
disappear only as a result of globally nontrivial
transformations, rendering them long-lived and
ubiquitous in the universe.
Line defects are among the most common

topological structures. In classical physics, for
example, dislocations in a crystal lattice (3) can
determine the strength and hardness of mate-
rials. In quantumphysics, a linedefect in a complex-
valued order parameter is accompanied by a phase
winding of an integer multiple of 2p. These quan-
tized vortices are regarded as the hallmark of
superfluidity (4, 5) and constitute a versatile tool
in the study of quantum physics. In contrast, the
roles played by point defects in three-dimensional
superfluids and superconductors remain less ex-
plored experimentally, although related objects
such as skyrmion solitons and boojums at domain
interfaces have been observed (6–9).
Homotopy theory (2, 10) is a mathematical tool

that classifies topological point defects according
to the behavior of the order parameter on closed
surfaces. Evaluation of the secondhomotopy group
reveals whether point defects can occur. Nematic

liquid crystals (11) and colloids (12) are examples
of classical systems for which the second homot-
opy group is nontrivial and point defects have
been observed [see also (13)]. Quantum systems
described bymultidimensional fields are also pre-
dicted to support point defects as stable elemen-
tary particles (2). The magnetic monopole (14, 15)
that emerges under broken symmetry in grand
unified theories (16) is one such example.
The polar phase of a spin-1 Bose-Einstein con-

densate (BEC) permits the existence of topologi-
cal point defects in the quantum mechanical
order parameter (17, 18). Although these defects
are not elementary particles, they are analogous
quantum objects often referred to as monopoles.
In our experiments, we create a topological

point defect in the spin-1 order parameter of an
87Rb BEC using a method originally suggested in
(19) and used to create Dirac monopoles in a fer-

romagnetic BEC in (20) [see related work in (21)].
The key technical difference relative to (20) is that
the condensate is initialized in its polar phase.
This seemingly minor modification leads to a
topological excitation with properties that are
fundamentally different from those of the recent-
ly observed Dirac monopole. The Dirac monopole
is not a pointlike topological defect in the order
parameter, as the second homotopy group of the
ferromagnetic phase contains only the identity
element (22). Consequently, Dirac monopoles are
attached to at least one terminating nodal line
(23), which renders the energetics and dynamics
of the excitation similar to those of vortices. No
such nodal line is attached to the point defect
structure we create here in the order param-
eter field, and hence we refer to it as an iso-
lated monopole.
A spin-1 condensate can be described by the

order parameter

FðrÞ ¼
ffiffiffiffiffiffiffiffiffi
nðrÞ

p
exp½ifðrÞ�zðrÞ ð1Þ

where n is the particle density, f is the scalar
phase, and the spinor is represented by a nor-
malized complex-valued vector z = (z+1 z0 z–1)

T.
Here, zm = 〈m|z〉 is the mth spinor component
along the quantization axis z. The most general
polar order parameter, for which the local spin
vanishes, is given by

F ¼
ffiffiffi
n

p
expðifÞffiffiffi
2

p
 −expð−iaÞ sin bffiffiffi

2
p

cos b
expðiaÞ sin b

!

¼
ffiffiffi
n

p
expðifÞffiffiffi
2

p
 −dx þ idyffiffiffi

2
p

dz
dx þ idy

!
ð2Þ

where the Euler angles b(r) and a(r) refer to the
spin rotation of a spinor (0 1 0)T about the y and z
axes, respectively, and d̂ is a three-dimensional
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Fig. 1. Schematic representation of the experiment. (A) Magnetic field lines as Bz is decreased. The
zero point of the magnetic field is shown as a black dot. (B to D) Cross sections through the condensate
in the x′y′ plane (B) and in the x′z′ plane (C) showing the nematic vector field (thick arrows) defining our
isolated monopole structure, which is related to the hedgehog monopole structure (D) by a rotation of p
about the z′ axis,Rz(p). The primed coordinates are defined as x′ = x, y′ = y, and z′ = 2z; the gray arrows
depict magnetic field lines.
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real-valued unit vector field known as the nematic
vector. Equation 2 shows that the polar spin-1
condensate is simply described by the mean-field
order parameter

YðrÞ ¼
ffiffiffiffiffiffiffiffiffi
nðrÞ

p
exp½ifðrÞ�d̂ðrÞ ð3Þ

with its topological properties determined by the
factor exp½ifðrÞ�d̂ðrÞ (24). Note that any unitary
spin rotation imposed on the order parameter in
Eq. 2 corresponds to an identical rotation of d̂.
Thus, the nematic vector d̂ follows adiabatic
changes in the external magnetic field, much as
the direction of the spin follows the field in the
ferromagnetic case.
The initial atom number in the optically

trapped 87Rb BEC isN ≈ 2.1 × 105 with calculated
radial and axial Thomas-Fermi radii R = 7.2 mm
and Z = 5.4 mm, respectively, and corresponding
optical trapping frequencies wr ≈ 2p × 124 Hz
and wz ≈ 2p × 164 Hz, respectively. The creation
process begins with d̂ aligned with a uniform
magnetic field Bb(t) = BxðtÞx̂ þ ByðtÞŷþ BzðtÞẑ

(24). We use Bb(t) = Bz(t) ẑ here, but the experi-
mental results are independent of the choice of
direction. A quadrupole magnetic field Bq(r) =
bqðxx̂ þ yŷ − 2zẑÞ of strength bq = 3.7 G/cm is
then introduced; the zero point

r0ðtÞ ¼
−BxðtÞx̂ − ByðtÞŷ þ Bz ðtÞẑ

2
bq

ð4Þ

of the total magnetic field B(r,t) =Bq(r) +Bb(t)
is initially located well outside the condensate.
We then changeBb until r0 lies near the center
of the condensate (Fig. 1A). This “creation ramp”
is carried out nearly adiabatically (dBz=dt =
–0.25 G/s)—that is, d̂ðr; tÞ ≈ B̂ðr; tÞ—thereby
creating the isolated monopole structure in the
order parameter field shown in Fig. 1, B and C.
Nonadiabatic excitations and spin-exchange col-
lisions are measured to be relatively small (~10%)
for the experimental parameter values used here.
To select a quantization axis for imaging the

monopole structure, we apply a “projection ramp”
in which the magnetic bias field is rapidly in-

creased to |Bb|/bq >> {R, Z} along a direction of
our choice, ẑp, leaving the nematic vector essen-
tially unchanged. Subsequently, the spinor com-
ponents quantized along this axis, 〈mp|z〉, are
spatially separated and imaged in both the ver-
tical (̂z) and horizontal (ŷ) directions (24). In
Fig. 2, A and D, we show the corresponding ex-
perimentally obtained particle densities in the
simple case ẑp ¼ −ẑ. The theory [Eq. 2 with
d̂ðr; tÞ ¼ B̂qðrÞ] predicts hollow-core vortices
of opposite unit circulations in the m = T1 com-
ponents along z, in agreement with the ob-
served density “holes” in Fig. 2D. The unit phase
winding and the opposite circulations of the
two vortices are experimentally confirmed using
interferometric techniques (24) (figs. S1 and S2).
Furthermore, the data in Fig. 2, A and C, are in
qualitative agreement with Eq. 2 because the par-
ticle density in them = 0 component njz0j2 º d2

z

vanishes in the z = 0 plane, and the other two
componentsnjzT1j2 º d2

x þ d2
y accumulate in its

vicinity. This agreement constitutes the primary
evidence for the existence of the monopole.
We modeled the experimental creation and

imaging process numerically by solving the full
three-dimensional dynamics of the mean-field
spinor order parameter from the spin-1 Gross-
Pitaevskii equation (19). Figures 2 and 3 show
one-to-one comparisons of the numerically ob-
tained particle density distributions to the ex-
perimental results without any free parameters.
The good quantitative agreement between the
simulations and the experiments reinforces the
congruence between the experiments and the re-
sults of the analytic theory, thereby providing
complementary evidence for the realization of an
isolated monopole structure in the order param-
eter. Discrepancies between the numerical and
experimental results—for example, the density peak
in the m = 0 component in Fig. 2F—may arise
from the experimental noise and the choice of
imaging technique that are not taken fully into
account in the simulations (24).
Particle densities identical to those shown in

Fig. 2 for our isolated monopole are expected for
the topologically equivalent hedgehog monopole
structure shown in Fig. 1D, as the only difference
between the spinors of the two configurations
is the sign of the m = T1 components (see Eq. 2
and Fig. 1, C and D). In fact, after the projection
ramp ẑp ¼ Tẑ, the order parameter oscillates
between the two configurations because of the
350-kHz Larmor precession of the nematic vec-
tor about ẑ. Because the other condensate dy-
namics occur on much longer time scales, the
experiment also accurately produces the hedgehog
monopole, as confirmed by the numerical sim-
ulations shown in fig. S3.
One characteristic feature of a quantum me-

chanical point defect is that arbitrary rotations
of a properly chosen coordinate system, D, can
be compensated by rotations in the order pa-
rameter space, D̂ , and vice versa. We study
whether the created point defect has this prop-
erty by imposing a spin rotation D̂p on the spin
state of the defect |z〉 such that we choose the
direction of the projection ramp, ẑp, defined by
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Fig. 2. Experiment com-
pared to numerical
simulations following a
projection ramp along –z.
(A and D) Experimentally
obtained images of the
condensate taken along the
horizontal (y) axis (A) and
the vertical (z) axis (D).
(B and E) Results of the
corresponding numerical
simulations. In each panel,
the top image gives a false-
color composite, in which
the color intensity repre-
sents the particle density of
each spinor component
integrated along the
respective imagingaxis.The
lower three sets of images
show the densities for the
individual components.
(C and F) Quantitative
comparison of experimen-
tal (solid lines) and simu-
lated (dashed lines) column
density, ñ, for cross
sections.The field of view is
288 mm × 288 mm for
images along the horizontal
axis and 219 mm × 219 mm
for those along the vertical
axis.The peak column
density in all images is ñp =
12.9 × 108 cm–2. Color and
intensity scales are shown
at bottom of figure.
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the coordinate rotation (xp, yp, zp) =Dp
–1(x, y, z).

The projection of the original spinor onto the
new zp-quantized basis is equal to the projection
of the rotated spinor onto the z-quantized basis:

〈mpjz〉 ¼ 〈mpjD̂†
pD̂pjz〉 ¼ 〈mjD̂pjz〉 ð5Þ

Thus, the rotational compensation property given
above demands that there exists a rotationDv into
a new coordinate system (xv, yv, zv) = Dv(x, y, z)
such that Eq. 2, with (x, y, z) replaced by (xv, yv, zv),
yields the observed spinor components. Below,
we analytically find the new coordinate system
for both the hedgehog monopole and our iso-
lated monopole in the case of an arbitrary pro-
jection axis, and show matching experimental
observations.
The hedgehog monopole is characterized by

the nematic vector d̂h ¼ −r̂ ′, where the primed
coordinates are defined as (x′, y′, z′) = (x, y, 2z).
Because the radial vectors in any two rotated
coordinate systems coincide, r̂ ′(x′p, y′p, z′p) =
r̂ ′p(x′p, y′p, z′p), we can choose (x′v, y′v, z′v) = (x′p,
y′p, z′p) (i.e., Dv = Dp

–1). Together with Eq. 2,
this shows that the vortices in the mp = T1 com-
ponents of the hedgehog configuration always
align with the projection axis ẑp. To find how
the vortices will be oriented in the case of our
isolated monopole, we make use of the property
that the hedgehog monopole is obtained from
the isolated monopole configuration by a con-
tinuous p-rotation about the z axis (Fig. 1, C and
D); that is, R̂zðpÞjzm〉 ¼ jzh〉 andRzðpÞd̂m ¼ d̂h.
By writing the observed spinor component as

〈mpjzm〉 ¼ 〈mpjR̂zðpÞ†R̂zðpÞjzm〉
¼ ½〈mpjR̂zðpÞ†�jzh〉 ð6Þ

we find that a proper choice of the new coordinate
system is (xv, yv, zv) = Rz(p)(xp, yp, zp). Thus, the
vortices are aligned with ẑv ¼ RzðpÞẑp.
The isolated monopole (Fig. 1, B and C) is

topologically equivalent to the hedgehog struc-
ture (Fig. 1D) and has the same topological
charge and stability properties. However, the
fact that the projection axis and the vortex axis
are not always alignedmakes the isolatedmono-
pole an ideal object to demonstrate that the
observed vortices are not technical artifacts of
the projection ramp. The corresponding experi-
mental results are shown in Fig. 4. In agreement
with the result ẑv ¼ RzðpÞẑp derived above, we
observe that the two axes, ẑv and ẑp, are pa-
rallel when they lie in the xy plane (Fig. 4A)
and rotate in opposite directions in the xz plane
(Fig. 4B).
Both monopole structures are expected to ex-

hibit an instability toward a formation of a vor-
tex ring (25). Although this and other instabilities
(26, 27) occur slowly enough not to disturb the
creation and imaging process (24), observation of
the resulting decay dynamics and implementa-
tion of a system in their absence are interesting
research directions. Furthermore, studies of the
interaction between monopoles and other topo-
logical defects, such as domainwalls and skyrmions
(7), may yield additional insights into high-energy
physics and cosmology (28). A related goal is to

create a topological point defect that also gen-
erates the synthetic magnetic field of a mono-
pole, thereby combining the scenarios of Dirac

(23), ’t Hooft (14), and Polyakov (15). Finally, the
observation of non-Abelian monopoles (29, 30)
remains an important goal.
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Fig. 3. Experiment com-
pared to numerical
simulations following a
projection ramp along –y.
(A) Experimentally
obtained images of the
condensate taken along the
horizontal (y) axis. (B)
Results of the correspond-
ing numerical simulations.
See Fig. 2 for further
description. (C and D) As
above, but for images
taken along the vertical (z)
axis.The field of view is
288 mm × 288 mm in (A)
and (B), 219 mm×219 mm in
(C) and (D).The peak col-
umn density is ñp = 12.9 ×
108 cm–2.

Fig. 4. Experimental
results for different
choices of the pro-
jection axis. (A) The
angle of the vortices in
the |m = T1〉 states, jv,
resulting from projec-
tions in the xy plane
with azimuthal anglejp.
Condensates are
imaged along the z axis
andjv is extracted from
the alignment of the
density profile in the
|m = 0〉 state, as shown
in the insets (see also
figs. S4 to S7).Typical
uncertainties are indi-
cated by the error bars
shown.The dashed line
shows the theoretical
result.The black arrows
in the insets show the
projection axes, zp,
and the chevrons show
the expected orienta-
tion of the vortex axes,
zv. (B) Same as (A) but
for angles qv resulting
from projections in the
xzplanewith polar angle
qp and imaging axis y.
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FERROELECTRICS

Observation of a periodic array of
flux-closure quadrants in strained
ferroelectric PbTiO3 films
Y. L. Tang,1* Y. L. Zhu,1* X. L. Ma,1† A. Y. Borisevich,2 A. N. Morozovska,3 E. A. Eliseev,4

W. Y. Wang,1 Y. J. Wang,1 Y. B. Xu,1 Z. D. Zhang,1 S. J. Pennycook5,6

Nanoscale ferroelectrics are expected to exhibit various exotic domain configurations, such as
the full flux-closure pattern that is well known in ferromagnetic materials. Here we observe not
only the atomic morphology of the flux-closure quadrant but also a periodic array of flux
closures in ferroelectric PbTiO3 films, mediated by tensile strain on a GdScO3 substrate.
Using aberration-corrected scanning transmission electron microscopy, we directly visualize
an alternating array of clockwise and counterclockwise flux closures, whose periodicity
depends on the PbTiO3 film thickness. In the vicinity of the core, the strain is sufficient to
rupture the lattice, with strain gradients up to 109 per meter. Engineering strain at the
nanoscale may facilitate the development of nanoscale ferroelectric devices.

A
tomic-scale information is of critical im-
portance for understanding intrinsic char-
acteristics of advanced functional materials
such as ferroelectrics, magnets, supercon-
ductors, and catalysts. For example, it is

often the small deviations from symmetry in
atom positions and the resultant strains that
allow ferroelectric oxides, used in computermem-
ory chips, to store charge and information or to
resonate withmagnets as compositemultiferroics.
Ferroelectric crystals feature asymmetric or polar
structures that are switchable under an external
field, holding promise for random access mem-
ories, thin-film capacitors, and actuators (1). For
integration into silicon chips, practical ferroelec-
tric memories take the form of nanoscale films
(1). Nanoscale ferroelectrics have been predicted
to undergo unusual phase transitions and exhib-
it distinctive domain patterns, such as closure
quadrants with closed head-tail dipolemoments,
known as flux closures (2–7). These flux-closure
domains should be switchable and may give rise
to an unusually high density of bits (2), and they
can undergo vortex-polarization phase transfor-
mation (6). These domains are also predicted to
be potentially useful as mechanical sensors and
transducers (7). Similar domains are well known
in ferromagnetic materials (8–10), and their topo-
logical properties and dynamics are under inves-

tigation (9, 10). However, in ferroelectricmaterials,
particularly in tetragonal ferroelectrics, the cou-
pling of polarization to spontaneous strain would
be so pronounced that formation of a closure
quadrant with its resultant severe disclination
strains could be impossible (11, 12). Although
closure quadrants were reported recently in tetra-
gonal ferroelectric BaTiO3 (13–16), PbZr0.42Ti0.58O3

(17), and PZN-12PT (18), they are mostly com-
posed of shape-conserving 90° stripe domains or
twins within each quadrant to accommodate
the disclination strains. In such cases, the closure
quadrants may not always involve continuous
dipole rotations, as have been observed directly
in half of a closure quadrant in PbZr0.2Ti0.8O3

(19) andBiFeO3 (20) by aberration-correction trans-
mission electron microscopy (TEM) or scanning
TEM (STEM). The atomic-scale characterization
based on STEM imaging has been validated to be
capable of directly displaying ionic displacement
maps (19–24), whereas approaches based onpiezo-
response force microscopy are not able to do so be-
cause of lower spatial resolution (11, 14–18, 25, 26).
In this study, we have grown PbTiO3/SrTiO3

(PTO/STO)multilayer films on aGdScO3 substrate
with a lattice parameter larger than the a value of
PTO (27). Using aberration-corrected high-angle
annular dark-field (HAADF) Z-contrast STEM im-
aging, we visualize, at the atomic scale, the exis-
tence of periodic twin-free flux-closure quadrants.
PbTiO3 has a tetragonal structure (Fig. 1A).

Both the oxygen octahedra and the Ti4+ have dis-
placements from the center of the Pb2+ tetragonal
cell that give rise to the spontaneous polarization
(Fig. 1, B and C). The shifts of Ti4+ (denoted as dTi
in Fig. 1B) can be used to determine the polar-
izations of PTO unit cells. In HAADF images, the
Pb2+ columns appear as the brightest dots be-
cause the intensity of atom columns is approxi-
mately proportional to Z2, where Z is the atomic
number (20, 21, 23, 24). The Ti4+ columns show
weaker contrast. The displacement vectors of
Ti4+ (dTi) relative to the center of mass of the
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