
Nash Equilibria in the Response Strategy of Correlated Games

1. Abstract

→ In nature and society problems arise when different interests are difficult to reconcile. These can be

modeled by game theory. Most applications assume uncorrelated games, but a more detailed modeling

is necessary to consider the correlations that influence the decisions of the players. The current theory

for correlated games enforces the players to obey the instructions from a third party or "correlation

device" to reach equilibrium, but this cannot be achieved for all initial correlations.

→ We extend here the existing framework of correlated games and find that there are other interesting

and previously unknown Nash equilibria that make use of correlations to obtain the best payoff and go

beyond the correlated equilibrium and mixed-strategy solutions. We look particularly at the Snowdrift

Game, which we find to be describable by Ising Models in thermal equilibrium.

2. Snowdrift Game

� We study the Snowdrift Game, which has parameters 0 < s < 1 and 1 < t < 2.

The players must choose a strategy, i.e., a probability with which they will

play C and D. The players are symmetric, so the probabilities should be

similar for both players.

� In the uncorrelated case, there are two pure Nash equilibria, where one player

plays C and the other plays D. However, these equilibria are not reachable

because the players would need to have different strategies. Another

equilibrium exists, the mixed strategy Nash equilibria, that ensures that,

whatever the opponent plays, a player will not have any incentive to changes

their strategy. The mixed strategy is given, for both players, by

P∗
C
= s/(t + s − 1).

Figure 1: Payoff table for symmetric, two by

two coordination games.

3. Correlated Games

� Achieving the best possible strategy requires the introduction of correlations

between the players. To that end a correlation device is introduced, which

assigns a publicly known probability pμν to a certain state μν ∈ {C,D} and
then informs each player of what they should play to achieve it.

� If the correlation is such that each player has a better payoff, given by uiμν for

player i in the final state μν , by doing what the correlation device tells them

to, namely μ, than by doing anything else, μ̄, while the opponent always
follows their instructions, the game is in a "correlated equilibrium:∑

ν

uiμνpμν ≥
∑
ν

uiμ̄νpμν . (1)

� The existing theory predicts that they should always follow the correlation

device if it allows them to reach the correlated equilibrium, and otherwise

they should fall back to the uncorrelated mixed-strategy solution. This

ensures that the probabilities in correlated equilibrium coincide with the final

distribution of outcomes, such that they represent the actual statistics of the

game. However, we want to study if there is still possible to use the

correlations even if the parameters and correlation probabilities do not allow

for a correlated equilibrium.

5. Nash Equilibria

• A Nash equilibrium in the response strategy is achieved if there is no incentive

for player i to change the probabilities Pi
Fμ
. The intuition is that equilibrium is

reached when the payoff of the players cannot be improved anymore by

changing their own response probabilities while keeping those of the other

players fixed at the equilibrium values.

• Each slope is calculated assuming that the response probabilities of the other

players are in equilibrium, such that a self-consistent solution is obtained. We

find that the conditions where "always follow", i.e. PFμ = 1, is a stable solution

corresponde to the Bayes rational conditions of the correlated equilibrium,

but this is only one possible response equilibrium.

• Each renormalized set of probabilities generates a new correlated game for

which the response equilibrium exactly matches a new correlated equilibrium.

4. Response Strategy

→ We now allow the players to deviate from the instructions of the correlation

device in a controlled manner. The decisions to follow or not to follow the

instructions become the new actions that the players can take, while they are

still not able to communicate. To implement this, each player i can follow with

probability Pi
Fμ
, and thus not follow with probability Pi

NFμ
= 1 − Pi

Fμ
the

instruction μ that they receive. To these we call the "response probabilities".

The renormalized probability pRμν that a certain final state μν is reached is

given by the sum over the initial probability distribution weighted by the

probability that the initial states μ ′ν ′ gets converted to a specific final state μν
through the players’ response. Hence

pRμν =
∑
μ′,ν ′

P1μ←μ′P
2

ν←ν ′pμ′ν ′, (2)

with Piμ←μ′ the probability that player i is told to play μ ′ but plays μ. As an
example, the probability that the final state is CC is now

pRCC = P1FCP
2

FCpCC + P
1

FCP
2

NFDpCD + P
1

NFDP
2

FCpDC + P
1

NFDP
2

NFDpDD . (3)

→ The expected payoff of a player is given by the payoffs averaged over the

renormalized probabilities, which depends linearly on the response

probabilities of that player as

〈ui〉 =
∑
μ,ν

uiμνp
R
μν = CCP

i
FC + CDP

i
FD + CE . (4)

Here the coefficients CC , CD and CE depend linearly on the initial correlation

probabilities and on the response probabilities of the other player.

→ If the players choose the response probabilities such that they do not want to

change them anymore, then the renormalized probability will be in correlated

equilibrium. To this effects, we calculate the equilibria when the strategy

consists of always following C and sometimes follow D, for example, by

solving the following system of equations:

{
CC

(
pCC, pDD, 1, P

1∗
FD

)
> 0,

CD

(
pCC, pDD, 1, P

1∗
FD

)
= 0.

(5a)

(5b)

6. Results

Figure 2: In A we see the regions that contain different equilibria, which are schematic in B, as a function of the initial

correlations for the Snowdrift Game with parameters s = 0.5 and t = 1.2. Regions I and II contain the correlated

equilibrium, but we can see that not only is it not the only equilibrium in those regions, other regions also have equilibria

that make use of the correlations. As indicated by the central dot in all figures of B, all regions have the mixed strategy as

an equilibrium. A dot in a corner indicates an equilibrium given by a probability of 0 or 1 of always following the correlation

device, and an arrow indicates the existence of an equilibrium of which the value of the probability of following one of the

instructions will vary between one extreme of the interval and the mixed strategy value.

Figure 3: Best payoffs when comparing between the possible equilibria in each region. A and B correspond to the

Snowdrift Game with parameter s = 0.5 and t = 1.2, but the first does not include the payoff of the mixed strategy. C shows

the best payoffs for the same game with parameters s = 0.23 and t = 1.5. We see that for s < t − 1 and s > t − 1 there is a

qualitative difference between which equilibria exist and, within these, which represent the best payoff.

7. Ising Model

� We can map the previous results into an Ising Model, where playing C or D correspond to having a spin up or

down, and the correlations can be described as a Boltzman weight with an associate energy, since the renormalized

probabilities definitively describe the final statistics. If the initial probabilities are given by

pμν =
e−βHμν

Z
(6)

and each response probability is given by

Piμ←μ′ =
e
−βBi

μ←μ′

Zi
μ′
, (7)

we can rewrite the renormalized probabilities as

pRμν =
e−βH

R
μν

ZR
. (8)

with associated energy

HR
μν = − 1

β
ln

(∑
μ′ν ′

Z1

μ̄′Z
2

ν̄ ′e
−β

(
B1
μ←μ′+B

2

ν←ν ′+Hμ′ν ′
) )
, (9)

. The partition functions associated with each probability are given, respectively, by Z , Zi
μ′ and ZR.

� This mapping allows us to start tackling the problem of games played on a network, as the behavior of players in a

regular grid can be studied with the tools of statistical physics. It remains an interesting open question how well

this model describes the non-local effects.

8. Discussion and Conclusions

• The correlated equilibrium is only a particular response equilibrium and other Nash equilibria exist. These new

equilibria renormalize to a correlated equilibrium even if the initial game is out of correlated equilibrium, showing

that the players even then can still use the correlations to achieve a better payoff.

• The extra information in the correlations is two-fold: either the final distributions of outcomes informs us about an

underlying correlation structure, or the players can independently improve on externally imposed initial

correlations, motivated by stability and payoff maximization.

• Possible applications involve the study of new equilibria in Evolutionary Game Theory and modeling emergent

behavior when games are played on networks. While all the related research relies on numerical methods, our

approach may provide some analytical insight to the results.

• Bridging the gap between correlated and uncorrelated games will also prove useful to better model

decision-making in economics, since the response probabilities allow us to include interactions between agents that

influence their decisions.
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