
As a first application of the general framework, which we call 
renormalized bosonization, we have determined
several quantities of the Bose gas as a function

of the two-body interaction strength.

Here the suitable approximation of a momentum and frequency independent effective 
interaction was used, which is determined from the renormalization group equations.

•	 It avoids troublesome logarithmic divergencies due to phase fluctuations
•	 The theory can be systematically improved using renormalization group
•	 It reduces to the Bogoliubov theory in the weak-coupling limit
•	 The exact single-particle propagator in the long-wavelength limit as derived  
 by [3] can be reproduced
•	 All quantities, such as the chemical potential, speed of sound, contact,   
 bound-state energy, and the many-body recombination rate, are found as a  
 function of two-body interaction strength
•	 Generalization to non-zero temperature is straightforward
•	 It might be applicable to other systems with broken continuous symmetries
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Bose-Einstein condensationWe present an analytical approach to describe the crossover of 
an  atomic Bose gas from weak to strong two-body interactions, 

which can be systematically improved with renormalization-
group methods and reduces to the Bogoliubov theory in the 

weak-coupling limit.

Strong interactions

Synopsis

At low temperatures a gas of bosons will form a Bose-Einstein 
condensate, i.e., the particles macroscopically occupy the lowest 
energy state. This was first achieved in weakly-interacting dilute 

cold atomic gases confined in a harmonic magneto-optical trap [1].

The momentum-space distribution as the temperature is lowered.

The interaction strength “a” as a function of the external magnetic field “B”.

In these systems also strong two-body interactions can be 
achieved using a so-called Feshbach resonance, 

which allows the interaction strength “a” to be tuned 
by an externally applied magnetic field.
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Universality
When the two-body interaction strength diverges, no length 

scale besides the interparticle distance is available and the gas is 
expected to display universal behavior, i.e., it is independent of 
the particle species and the details of the scattering processes.

For example, the chemical potential is then given by

with    a universal constant and the Fermi energy
is solely related to the density of the gas

and the mass of the particles, as in its fermionic definition.

Many-body corrections
To describe strong interactions many-body corrections need to 

be calculated, however, these corrections give rise to
troublesome logarithmic divergencies due to the linear (sound) 

mode in the excitation spectrum.

Similar to magnets, where a magnetization direction is spon-
taneosly chosen below a certain temperature, a Bose-Einstein 
condensate has a fixed phase, as is verified by the interference 

pattern of two overlapping BEC’s [2]:

The low-energy excitations of these systems correspond to fluc-
tuations in the spins or phase, respectively.

The linear mode in the excitation spectrum can be identified 
with the fluctuations in the phase of the BEC.

Phase fluctuations

Renormalized bosonization
To describe a strongly-interacting Bose gas we get rid of the 

troublesome logarithmic corrections by isolating
the phase fluctuations of the theory by writing the field as

where     explicitely does not contain phase fluctuations. This 
extraction of the phase is similar to bosonization for fermions.

The propagator of the non-phase fluctuations      is given by that 
of Bogoliubov theory without phase fluctuation contributions 
and is used to systematically improve the action of a Bose gas

using renormalization group.

In the end, the contribution of the phase fluctuations is
re-introduced using the exact form of

the phase fluctuation propagator.

Application of the theory

The chemical potential (thick), speed of sound (thin) 
and their weak-coupling results (dashed).

The universal one-particle density matrix (thick), its contri-
butions without non-phase fluctuations (thin), and for sev-
eral finite interaction strengths (dashed).

Important properties of the theory

[1]: E.A. Cornell & C.E. Wieman, NIST/JILA/CU-Boulder  [2]: M.R. Andrews, et. al., Science 275, 637-641 (1997)  [3]: Y. Nepomnyashchii and A. A. Nepomnyashchii, JETP 48, 493 (1978)


