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Abstract

We study fluctuations in the holographic superconductor model, both above and below the crit-
ical temperature where the various fields involved are coupled. In particular, we introduce the
concept of intrinsic dynamics and explain its relevance to the problem. We then compute spectral
functions for the intrinsic dynamics of the scalar and gauge bulk field away from the probe limit,
in order to understand the effect of the coupling of the order parameter and the gauge field in
the superconducting phase and analyze the low-energy dynamical behavior of the holographic
superconductor model.
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Chapter 1

Introduction to gauge/gravity duality

Gauge/gravity duality, often referred to as AdS/CFT or holographic duality, is one of the most remarkable
achievements of string theory. First conjectured by Juan Maldacena in 1997 [15], it quickly developed into a
useful tool to study strongly interacting quantum field theories (QFT) and, in the last decade, it also made
its appearance into the field of condensed matter.

As the name itself suggests, the conjecture links together two seemingly unrelated theories of physics, gauge
field theories and the theory of (quantum) gravity in one higher dimension (the quantum field theory can be
thought as a projection of the gravitational theory in a lower dimensional space, hence the name holography).
In particular, it was first discovered as a correspondence between two theories with a particular set of
symmetries, Conformal Field Theories (CFT) and string theories in the maximally symmetric anti-de
Sitter (AdS) spacetime. After its first formulation, however, the conjecture has been extended to more
general theories and spacetime geometries. Nonetheless, the name AdS/CFT is still commonly used today
even to refer to these extended applications of the correspondence.

The usefulness of the relation lies in the fact that it represents a strong/weak duality. In informal terms,
what this means is that when one side of the correspondence is described by a weakly interacting theory
(e.g., classical gravity), the other side is characterized by strong interactions. Weakly interacting problems
are easier to treat, as they can be studied starting from a known and well understood free theory and slightly
modify it taking into account increasingly smaller corrections due to these interactions until one reaches the
desired accuracy (in what is called perturbation theory). When the interactions are strong, however, the
behavior of the system can quite drastically change with respect to its free counterpart, and it is not possible
anymore to understand the underlying physics by means of a simple perturbation expansion. A strong/weak
duality represents therefore an amazing tool to study hard to treat, strongly interacting problems by simply
shifting the focus on the weak side of the correspondence, where standard perturbation theory techniques
can be applied.

In the case of AdS/CFT, the main computational device was provided, shortly after Maldacena’s discovery,
by Gubser, Klebanov, Polyakov [5] and Witten [18]. This is known as the GKPW rule and, as we will
explain in details later, it provides a relation between a QFT generating functional and a partition function
in terms of fields defined in a higher dimensional gravitational theory.

In the remainder of this chapter, we give a brief introduction to the correspondence, focusing on the limit
of classical gravity and strongly interacting quantum theories (the large-N limit). This is the limit that
is considered in applications of the duality to condensed-matter systems, as for example the holographic
superconductor we consider in this work. In such context, string theory does not play a role, and we will
therefore not include it in the introduction, for the readers interested in learning more about the role of
string theory in AdS/CFT we refer to, for example [3]. In particular, we quickly review the main properties
of the AdS spacetime, we introduce the dictionary that relates the two sides of the correspondence and we
explain the role of symmetries in constructing holographic models.

In chapter 2 we present some detailed calculations of two-point functions for a CFT using the holographic dic-
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tionary, in order to provide the reader with a better understanding of the practical use of the correspondence
as well as to present some details that will be useful in the remaining chapters.

In chapter 3 we explain how to modify the geometry of the AdS spacetime in order to introduce a temperature
and a chemical potential in the quantum boundary theory, and we introduce the holographic superconductor
model. We describe how the model gives rise to a second order phase transition characteristic of a super-
conductor and present some numerical results showing the behavior of the order parameter across the phase
transition.

Chapter 4 contains the main results of this thesis. In this chapter we introduce the concept of intrinsic
dynamics and study fluctuations of the scalar and gauge fields in the holographic superconductor model,
providing the theoretical background for the calculations and presenting the numerical results for the spec-
tral functions for various temperatures, both above and below the critical point characterizing the phase
transition.

In the conclusive chapter, we shortly review the results obtained and give the outline of possible future
developments.

1.1 A brief tour of AdS/CFT

As mentioned in the preamble, the discovery of the correspondence comes from string theory. In particular,
Maldacena noticed that type IIB superstring theory on AdS5 × S5 (i.e., with 5 of the 10 dimension of the
theory compactified on a 5 dimensional sphere, leaving a (4 + 1)-dimensional anti-de Sitter spacetime for
the remaining dimensions) can be equivalently formulated as a N = 4SU(N) super-conformal Yang-Mills
theory in 3 + 1 dimensions. At first sight, one may wonder how this relation can be of any use in condensed
matter, especially due to a lack of a perturbative field theoretic formulation of string theory, trying to get
insights in a condensed-matter problem by means of string theory does not seem to be a winning approach.
However, we know the effective low-energy limit of string theory very well, it is just Einstein theory of general
relativity. It would, therefore, be useful to work in this low-energy limit on the gravity side, but what does
it imply on the dual quantum field theory? It turns out that the classical limit corresponds to taking the
N , in the SU(N) symmetry group of the Super-Yang-Mills theory to infinity, in the so-called large-N limit
together with the strong coupling limit of the CFT. We do not go into details of the derivation, but we
sketch a dimensional argument to explain why these limits are related.

On the gravity side, the string theory present three length scales, the AdS radius of curvature L, the Planck
length lP and the string scale ls. As previously mentioned, in this thesis we do not go into the details of
string theory underlying the correspondence, everything we need to know is that the low-energy effective
action is given by the Einstein-Maxwell action, plus a matter contribution, plus curvature corrections that
are higher order in the string scale ls:

SIIB ∼
1

GN

∫
√
gL+ Lmatter + l4sL

4 + · · · , (1.1)

with GN the gravitational constant in d+1 dimensions (the numerical value of which, of course, is not known
except for d = 3).

On the CFT side, the N = 4 Super-Yang-Mills theory has two dimensionless parameters, the N of the
gauge group SU(N) and the coupling constant of the theory gYM. In 1974 ’t Hooft realized that the large
N limit reorganizes the perturbation expansion in terms of a new effective coupling, that in the case of the
Super-Yang-Mills theory is given by

λ = g2
YMN , (1.2)

called the ’t Hooft coupling. The strength of the interaction for large value of N is then controlled by this
new parameter instead of gYM.
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The correspondence between the parameters of the two theories is

Ld−1

GN
∼
(
L

lP

)d−1

∼ N2 (1.3)

λ ∼
(
L

ls

)4

. (1.4)

From this we can see why AdS/CFT is a strong/weak duality. In order to work with classical gravity, both
loops and higher curvature correction must be suppressed, on the gravitational side. This implies λ� 1 and
N � 1. On the other hand, if we take a weakly interacting field theory, we have that ls � L and string
theory corrections are not suppressed anymore.

Of course what we presented is far from being a proof and it considers only a specific example of conformal
field theory. However, the statement is true in general: weakly coupled asymptotic AdS gravitational theories
are dual to strongly coupled quantum field theories with a large number of degrees of freedom.

Before continuing to explain the “dictionary rules” of the correspondence, let us quickly review some basics
notions about the anti-de Sitter spacetime and conformal field theories.

1.2 AdS spacetime and CFT

As is often the case in physics, in AdS/CFT symmetries play a key role, so let us start by briefly reviewing
the concept of symmetry in general relativity.

Mathematically, a d-dimensional spacetime is defined on a d-dimensional differentiable manifoldM, and the
metric is a symmetric (0, 2) tensor defined onM, encoding the information needed to describe its curvature.
In differential geometry, a symmetry of a manifold is a transformation mappingM to itself that leaves the
geometry invariant. Such a transformation is called isometry. Isometries of the spacetime are in one to one
correspondence with linearly independent Killing vectors, that we denote Kµ, defined by

∇µKν +∇νKµ = 0 , (1.5)

where ∇µ is the covariant derivative onM. To make sense of the above definition in the case of the metric,
let us take an infinitesimal coordinate transformation along the Killing vector xµ → x′µ = xµ + εKµ. Under
a coordinate transformation the metric transforms as a rank-2 tensor

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ , (1.6)

that gives1 to linear order in ε

gµν → gµν − ε(∇µKν +∇νKµ) +O(ε2) . (1.7)

If we want the metric to be invariant under such a coordinate transformation, we see that equation (1.5)
must hold.

A spacetime with the maximum number of independent Killing vectors is called maximally symmetric.
The simplest example of maximally symmetric spacetime is Rd. We know that translation and rotation are

1Details of the calculations: for ε small, we have up to linear order in ε:

gµν(x) =g′αβ(x′)
∂x′

α

∂xµ
∂x′

β

∂xν
= g′αβ(xλ + εKλ)

∂(xα + εKα)

∂xµ
∂(xβ + εKβ)

∂xν

=
[
g′αβ(x) + ε∂λg

′
αβ(x)Kλ

]
(δαµ + ε∂µK

α)(δβν + ε∂νK
β)

=g′αβ(x) + εg′αν(x)∂µK
α + εg′βµ(x)∂νK

β + ε∂λg
′
µν(x)Kλ = g′µν(x) + ε(∇µKν +∇νKµ) ,

where the last step can be verified by using the definition of covariant derivative. Inverting this relation by bringing the covariant
derivatives on the left-hand side, we obtain (1.7)
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isometries of the space. We have d independent axes along which we can perform a translation and therefore
d total translations. In order to count all the possible rotations, imagine fixing a point in Rd and put an
orthogonal set of axes on it, each independent rotation moves one of the axes into another. Of course, the
opposite action represents the same rotation (moving a into b is the same rotation as moving b into a). Since
we have d axes, after picking one we can choose one of the remaining d− 1 axes to rotate into, therefore we
have (d − 1)/2 independent rotations, giving a total of d(d + 1)/2 symmetries for Rd. Any d-dimensional
space with such a number of symmetries (i.e., any space with d(d + 1)/2 independent Killing vectors) is a
maximally symmetric space.

Anti-de Sitter spacetime (AdS in short) is one of only three possible solutions of the vacuum Einstein
equations that are maximally symmetric, alongside Minkowski and de Sitter spacetimes. These solutions are
characterized by the group formed by their Killing vectors. In particular, the Killing vector for d-dimensional
AdS form the group SO(2, d − 1). As we will shortly review, this is the same group of a d − 1-dimensional
conformal field theory.

For a maximally symmetric spacetime, the curvature must be the same everywhere and in every direction.
What this implies is that the Ricci tensor is constant and it locally completely characterizes the spacetime,
that is, knowing the Ricci scalar we can reconstruct the Riemann tensor of the spacetime. Since the curvature
is the same in every direction, the Riemann tensor cannot depend on derivatives, hence it takes the form

Rρσµν = C (gρµgσν − gρνgσµ) , (1.8)

with C a constant. Contracting both sides twice we obtain

R =gσνRσν = gσνgρµRρσµν = Cgσν(d− 1)gσν

=Cd(d− 1) .
(1.9)

The three maximally symmetric solutions are characterized by R being positive, negative or zero. The anti
de-Sitter solution corresponds to negative values of R. Analogously, it is often said that AdS is the solution
with a negative cosmological constant. We can see this from the vacuum Einstein equations

Rµν −
1

2
gµν(R− 2Λ) = 0 (1.10)

by contracting with the metric tensor to obtain, for d > 2,

R =
2d

d− 2
Λ , (1.11)

and therefore,

Rρσµν =
2Λ

(d− 1)(d− 2)
(gρµgσν − gρνgσµ) . (1.12)

A maximally symmetric spacetime is then equivalently locally completely specified by the cosmological
constant, and and the three different maximally symmetric solutions correspond to Λ > 0 (de Sitter), Λ = 0
(Minkowski) and Λ < 0 (anti-de Sitter).

These spaces have an analog in Euclidean signature; the solution with positive cosmological constant corre-
sponds to a d-dimensional sphere, Minkowski spacetime corresponds to Rd, while the anti-de Sitter solution
is the Lorentzian version of the Euclidean hyperboloid. As is well known, a hyperboloid in d-dimensional
Euclidean space is the solution to

−X2
−1 +X2

0 + · · ·+X2
d−1 = −L2 , (1.13)

that in Lorentzian signature then becomes

−X2
−1 −X2

0 +X2
1 · · ·+X2

d−1 = −L2 , (1.14)
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that defines the AdSd spacetime. This implies that AdSd has the same isometries of R2,d−1, and we then see
that its Killing vector forms the SO(2, d− 1) group. The positive constant L is called the AdS radius, and
it is related to the Ricci scalar, and therefore to the cosmological constant, by R = −2/L2.

A solution to (1.14) is given by

X−1 =L cosh ρ cos τ

X0 =L cosh ρ sin τ

X1 =L sinh ρ cos θ1

X2 =L sinh ρ sin θ1 cos θ2

...
Xd−2 =L sinh ρ sin θ1 sin θ2 · · · cos θd−2

Xd−1 =L sinh ρ sin θ1 sin θ2 · · · sin θd−2 ,

(1.15)

that gives the metric

ds2 = L2
(
− cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2

d−2

)
, (1.16)

with dΩd−2 the line element of Sd−2 (a d− 2-dimensional sphere). This metric with ρ ∈ R+ and τ ∈ [0, 2π]
covers the Minkowski hyperboloid exactly once, but we have a periodic time coordinate, giving closed timelike
curves (that is, if we take all the other coordinates to be constant, as τ → τ + 2π we get back to the same
spacetime point following a timelike path). This sounds quite peculiar, since an observer standing still would,
after a while, get back at the same point in time, giving room to all sort of paradoxes. However, this is not
a property of the spacetime itself but merely a consequence of our choice of the solution. The anti-de Sitter
spacetime is defined as the universal cover of this, where we take τ ∈ R, and there are no closed timelike
curves. Since these coordinates cover the entire spacetime, we call them global.

In order to better understand the topology of AdSd we can make the coordinate transformation ρ =
arcsinh tan θ with θ ∈ [0, π/2] (for d > 2). In these coordinates the line element becomes

ds2 =
L2

cos2 θ

(
dθ2 − dτ2 + sin2 θdΩ2

d−2

)
(1.17)

that is topologically equivalent to a cylinder, where θ is the radial direction, τ the longitudinal one, and
each point on this cylinder is a Sd−2 sphere. The metric is multiplied by a θ dependent conformal factor.
The interesting feature of this metric is that it shows that at infinity, corresponding to θ = π/2 in these
coordinates, the AdS spacetime presents a timelike boundary2 (a surface is called timelike if the vector normal
to the surface is everywhere spacelike).

There is another convenient set of coordinates for the anti de-Sitter spacetime, that is the one we will mostly
use in the next chapters, given by a d− 1 Lorentz (co)vector xµ and a coordinate r ∈ R+ ∪∞:

X0 =Lrt

Xi =Lrxi 1 ≤ i < d

X−1 =
1

2r

(
1 + r2

(
L2 + t2 −

∑
i

x2
i

))

Xd−1 =
1

2r

(
1− r2

(
L2 + t2 −

∑
i

x2
i

))
,

(1.18)

which gives a metric

ds2 = L2

(
dr2

r2
+ r2(ηµνdx

µdxν)

)
, (1.19)

2more precisely, it is a conformal boundary, i.e. a boundary of the conformally equivalent metric ds2/r2, but the adjective
conformal is often dropped
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called Poincaré patch.

What we see from this form of the metric is that spacetime slices of constant r are isomorphic to (d − 1)-
dimensional Minkowski spacetime, making it a suitable choice to describe a boundary field theory living
in Minkowski spacetime. It is interesting to notice that the Minkowski metric is multiplied by r2, that
is sometimes called the warp factor. This implies that moving along the radial direction, is equivalent to
rescaling all the lengths in the Minkowski slice by a factor of r. As we will see in more details later, this
property of the AdS spacetime gives an intuition on how to interpret the extra dimension from the point
of view of the boundary quantum field theory. Moving from the boundary to the interior, the length scale
in the Minkowski spacetime becomes increasingly larger (equivalently the energy scale becomes smaller and
smaller), so that one can think of moving through the extra dimension in the bulk as moving through the
energy scale of the theory. This intuitive interpretation turns out to be correct, in gauge/gravity duality the
radial extra dimension geometrically encodes the renormalization group flow of the boundary theory.

While the boundary is the surface at r = ∞, the point at r = 0 is a horizon, since it does not correspond
to a singularity, but to a surface where the Killing vector ∂t has norm equal to zero. It is important to be
aware of the fact that this choice of coordinates covers only half of the hyperboloid. Relating it to the global
coordinates (1.15) shows that the Poincaré patch covers the colored region in figure 1.1.

Figure 1.1: Topology of the AdS spacetime. Each point represents a d− 2 dimensional sphere. The colored
region is the Poincaré patch, that covers only portion of the spacetime.

There are alternative forms of the Poincaré patch, related to (1.19) by a redefinition of the radial coordinate.
Two commonly used are r = 1/z and r = eρ that give respectively

ds2 = L2

(
dz2 + ηµνdx

µdxν

z2

)
(1.20)

and

ds2 = L2
(
dρ2 + e2ρηµνdx

µdxν
)

(1.21)

where the boundary is mapped to z = 0 and ρ = ∞ and the horizon at z = ∞, ρ = −∞ (the first one in
particular is the preferred form for numerical calculations).

The Minkowski boundary of AdS inherits the symmetries of the spacetime, that is the group SO(2, d−1). If
we want to define a field theory on this boundary, it has to respect the symmetry of the spacetime, but as we
previously mentioned, SO(2, d− 1) is the same symmetry group of a d− 1 conformal field theory. Therefore,
the quantum field theory living on the boundary has to be invariant under conformal transformation, in other
words, it must be a conformal field theory. This argument of matching the symmetries, although certainly
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not a proof of the relation of the duality, plays an important role in a bottom-up approach to holography.
Requiring for consistency that symmetries of the boundary theory are related to symmetries in the bulk,
gives us important hints on how to match operators of the quantum field theory with the corresponding
classical fields in the bulk, providing a sort of “dictionary” to translate between the two theories.

Figure 1.2: Pictorial representation of the extra dimension of the bulk gravitational theory as an energy
scale. The deep interior determines the infrared behavior of the dual field theory, while moving towards the
boundary at r =∞ is equivalent to probe increasingly higher energies.

1.3 Conformal field theories

A conformal field theory is, of course, a theory that is invariant under conformal transformations. In
general, a conformal transformation of coordinates is an invertible map, that leaves the metric invariant up
to a local rescaling,

g′µν(x′) = Λ(x)gµν . (1.22)

Notice that the set of conformal symmetries contains isometries, corresponding to Λ(x) = 1, as well as scale
transformations corresponding to Λ(x) = C, where C is a generic constant. The field theories we are
interested in live in Minkowski spacetime and the metric in (1.22) is then just ηµν , where the isometries
are given by the usual Poincaré group, and the quantum field theory has the peculiar additional property
of being scale invariant. The most commonly studied quantum theories that present scale invariance, are
also invariant under the full conformal group. However, conformal invariance is a stronger requirement, as
it requires invariance under special conformal transformation. The full set of conformal transformation is:

· Translation: x′µ = xµ + aµ

· Rigid rotations: x′µ = Mµ
ν xν

· Dilatations: x′µ = Cxµ

· Special Conformal transformation: x′µ = xµ−bµx2

1−2bµxµ+b2x2

From this we can deduce the number of generators in d dimensions. As we noticed before, there are d
generators of translation and d(d − 1)/2 generators of rotations, for dilatations the number of generators
is clearly one, while for the special conformal transformation we have again d generators for a total of
(d+ 1)(d+ 2)/2 that is exactly the number of isometries of a AdSd+1 spacetime.
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In order to see why the boundary of the AdS is invariant under conformal transformations it is useful to
introduce the inversion I, a transformation defined by

I : xµ → x′µ =
xµ

x2
. (1.23)

The relevance of inversion is due to the fact that a special conformal transformation is equivalent to first
performing an inversion, then a translation, followed by another inversion (notice however, that this does
not imply that inversion is necessarily a symmetry of the theory). If we look again at the boundary of
AdS in Poincaré coordinates, it is clear that it possesses translational and rotational invariance (here we
are referring to rotations in Minkowski spacetime by including rotations of the time dimension), as well as
scaling symmetry

xµ → λxµ, r → r

λ
. (1.24)

The more subtle one to check is invariance under special conformal transformations. However, from the form
of the metric (1.20), we can easily verify that Poincaré coordinates are invariant under

xµ → r2xµ

1 + r2ηµνxµxν
, z → r

1 + r2ηµνxµxν
, (1.25)

that on the boundary r = ∞ reduces to inversion symmetry xµ → xµ

x2 . We therefore see that the AdS
boundary is indeed invariant under the full conformal group.

All these symmetries impose significant restrictions on the form of the correlation function of the field theory.
in particular, in a scale invariant theory an operator O(x) transform under dilatation x→ x′ = λx as

O(x)→ O′(x′) = λ−∆O(x) , (1.26)

where ∆ is called scaling or conformal dimension. Using the invariance under dilatations, the two-point
function of two scalar conformal operators O1 and O2 with scaling dimensions ∆1 and ∆2 transform as

〈O1(λx)O2(λx)〉 = λ−∆1λ−∆2 〈O1(x)O2(x)〉 . (1.27)

Moreover, due to Poincaré invariance, the two-point function 〈O1(x1)O2(x2)〉 can only depend on (x1−x2)2,
and we obtain that

〈O1(x1)O2(x2)〉 =
C

|x1 − x2|∆1+∆2
(1.28)

The full conformal invariance imposes additional constraints, in particular, by applying an inversion, we see
that the correlation function is zero unless both fields have the same scaling dimension.

Having quickly reviewed some of the basics of the anti-de Sitter spacetime and conformal field theories, we
now illustrate how the duality relates Green’s function on the boundary theory with the bulk gravitational
theory.

1.4 GKPW rule

In quantum field theory in the path integral formalism, the most relevant object is the partition function
ZQFT, that contains all the physical information of interest.

In order to compute an n-point function for a combination of local operators Oi(x), the trick is to perturb
the system with a source Ji(x) that couples linearly to the corresponding operator, so that the Lagrangian
becomes

L → L+
∑
j

Jj(x)Oj(x) . (1.29)
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With the inclusion of the source term, the partition function acts as a generating functional for the theory

ZQFT[J ] =
〈
ei

∫
ddx Ji(x)Oi(x)

〉
, (1.30)

and we can extract all n-point connected correlation functions by successive differentiation of the logarithm
of ZQFT and then take the limit of vanishing sources at the end of calculations:

〈O1(x1)O2(x2) · · ·On(xn)〉 =
1

in
δn

δJ1(x1)δJ1(x2) · · · δJn(xn)
lnZQFT

∣∣∣∣
J=0

. (1.31)

The Gubser-Klebanov-Witten rule explains how the generating functional of the field theory is encoded in
the boundary theory. By means of the correspondence, the QFT partition function is equal to the partition
function on the gravity side, however, how is a source represented in the bulk?
The key contribution of GKPW was to realize that the source in the field theory should be encoded by
a field in the gravitational theory, that reduces to the corresponding source term on the boundary of the
(asymptotically) AdS spacetime. Calling φ(x) the bulk field dual to the operator O(x) sourced by J(x) the
GKPW rule states:

ZQFT[J(x)] =

∫
Dφ eiSbulk[φ(x,r)]

∣∣
φ(x,r=∞)=J(x) , (1.32)

and we see that J(x) acts as a boundary condition for the field φ(x, r).

The reason we used the subscript QFT and we mention asymptotically AdS geometry, is that the validity of
the rule is not restricted to pure AdS spacetime dual to CFT, but is valid for spacetime geometries that are
asymptotically anti-de Sitter, corresponding to more general field theories where conformal invariance may
be broken (an example is the holographic superconductor we present in chapter 3).

The power of (1.32) is that, thanks to the strong-weak nature of the duality in the large-N limit mentioned
in section 1.1, it enables us to compute n-point functions for a strongly correlated field theories, by means of
simple (at least in principle) functional differentiation of classical fields in a gravitational action. Moreover,
in contrast with numerical methods used to study strongly correlated systems such as the quantum Monte
Carlo method, that only work with the Euclidean formalism3, gauge/gravity duality provides a tool for
computing physical quantities in the real-time formalism, avoiding possible difficulties in performing a Wick
rotation from imaginary time to obtain physically relevant results (remember that the dynamical properties
measured in an experiment correspond, of course, to quantities in the real-time formalism). Nonetheless, we
have to be a bit more careful with boundary conditions when working in real-time formalism in AdS/CFT, as
we will show in more detail in chapter 2, where we give examples of computations in both real and imaginary
time.

It is also interesting to notice that the GKPW rule is consistent with the interpretation of the radial dimension
as the energy scale of the theory. According to (1.32), the bulk fields on the boundary, corresponding to the
UV limit, give rise to the operators Oi(x) that are, in fact, the bare UV operators of the theory.

1.5 Holographic dictionary

Now that we have a mathematical rule explaining how to compute Green’s function from holography, we
would like to understand how to pair operators we want to consider in our field theory with the corresponding
classical field in the bulk. There is no general procedure, and sometimes in a bottom-up approach, it is a
matter of (smart) trials and errors. However, symmetries here play a fundamental role, as they give important
restrictions on the form of the dual fields.

3numerical methods uses the Euclidean formalism because the path integral in the real-time formalism is not a well defined
mathematical entity, and for numerical methods one needs a well defined convergent integral. In other words, in real-time
formalism the exponential is complex valued and it cannot be used as a real positive definite probability distribution.
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The first operator we should consider is the energy-momentum tensor Tµν as it is always present as a generator
of translation symmetries. The corresponding conservation law is ∂µTµν = 0. In a conformal field theory,
we also have symmetry under scaling. We can easily derive the conservation law related to this symmetry:
using the definition of the energy-momentum tensor (in Minkowski spacetime) Tµν ∝ δS

δηµν
and for the action

to be conserved under a variation δηµν we have

0 = δS =

∫
δS

δηµν
δηµν , (1.33)

for an infinitesimal scale transformation δηµν = Ω2ηµν , with Ω any constant, (1.34) gives

0 =

∫
δS

δηµν
Ω2ηµν ∀Ω . (1.34)

Scaling symmetry therefore implies tracelessness of the energy-momentum tensor ηµνTµν = 0 (more precisely,
at the quantum level, ηµν 〈Tµν〉 = 0). In summary, we have that Lorentz invariance projects out the spin-1
part, while scaling invariance project out the spin-0 part, and thus the energy-momentum tensor has the
degrees of freedom of a pure spin-2 operator. Since the boundary operator is just the asymptotic behavior
of the bulk field, it has to match the symmetries of the operator. Together with the fact that the scaling
dimension of the stress tensor ∆ = d implies that the bulk field is massless (more on this in the next chapter),
we can deduce the dual field in the bulk. The only consistent spin-2 massless field is the graviton

Tµν ←→ gµν . (1.35)

One apparent subtlety is that that gµν is defined in on a d + 1-dimensional manifolds, while the energy-
momentum tensor in a spacetime with only d-dimension, so the indices of gµν do not match with the one
of Tµν as the naively written relation (1.35) seems to imply. Here it is important to remember that gµν has
gauge degrees of freedom, these extra degrees of freedom are responsible for the non-matching of the indices,
but we can always choose a gauge where grµ = 0 with µ = 0, 1, · · · , r (and in application of AdS/CFT, this
is in fact almost always the most convenient choice).

In a similar fashion, if we want to introduce a global conserved current in the field theory ∂µJµ = 0, that has
the degrees of freedom of a pure spin-1 operator, we see that the corresponding field in the bulk is a massless
spin-1 vector field Aµ with local gauge symmetry, that we may use to set Ar = 0. For a scalar operator in
the field theory, it is then easy to predict that the dual field should be a scalar field.

From the examples above we can notice another property that is general to AdS/CFT: global symmetries
in the boundary theory are mapped to local gauge symmetries in the bulk. We summarize in the box below
the dictionary rule we learned up to now, along with one we will clarify in the next chapter.

CFT partition function ←→ Gravitational partition function
Scalar operator O(x) ←→ Scalar field φ(x, r)

Global conserved current Jµ(x) ←→ Maxwell field Aµ(x, r)
Energy-momentum tensor Tµν(x) ←→ Metric field gµν(x, r)

Conformal dimension ←→ Mass of the corresponding field

1.6 Remarks on application to condensed matter

The strong/weak nature of the correspondence surely sounds very exciting for condensed-matter physics,
where a prescription to study strongly correlated quantum theories is still missing, but we also notice that
the quantum field theory side of the duality has a high number of symmetries, and in addition, in the
tractable limit of classical gravity, we need to consider a very large number of degrees of freedom N . These
are certainly not very common properties of realistic condensed-matter systems. In condensed matter we
are usually interested in systems where supersymmetry is already explicitly broken by a finite temperature,
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a finite chemical potential etc. However, as we will see in chapter 3 this can be achieved by changing the
geometry of the spacetime in the deep interior to break conformal invariance in the low-energy limit, while
requiring that the spacetime geometry remains asymptotically AdS (i.e., the theory remains supersymmetric
in the UV limit).

The reason why it does make sense to study condensed-matter system using the holographic approach is that
we are interested in highly phenomenological theories that describe the emergent properties at low energy,
that might be independent of the details of the theory in the ultraviolet (UV independence) and on the
number of degrees of freedom N . How reliable these assumptions are is still an open question, nonetheless,
they have been tested on several systems where the infrared behavior of the strongly interacting field theory
is known and provided a solid qualitative description.
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Chapter 2

Examples of the AdS/CFT correspondence

In this chapter we present example calculations of two-point functions for conformal operators using the
GKPW rule of AdS/CFT. We start with a massive scalar field and show the relation between the mass of the
bulk field and the conformal dimension of the corresponding operator on the boundary of the AdS spacetime.
We give details of the calculations both in Euclidean and Minkowski signature, that allow us to introduce
one of the subtleties encountered in computing real-time correlation functions. We then move on to the
slightly more complicated example of a massless bulk gauge field. The aim of these examples is to guide the
reader through the general steps necessary to calculate Green’s function using the GKPW rule, as well as
analyse general features of the asymptotic behavior of these two types of fields, that appear in the holographic
superconductor model (as we will explain in more detail later, the holographic superconductor consists of
a gauge field minimally coupled to a complex scalar field and to gravity, in a different, but asymptotically
AdS, background metric).

2.1 Scalar field correlation function

In order to illustrate the procedure of computing the two point function from AdS/CFT we consider the
simple toy model of a massive scalar field φ(z, x) in AdSd+1 dual to a scalar operator O(x)

S = −1

2

∫
dd+1x

√
−g
(
∂Mφ∂

Mφ+m2φ2
)
. (2.1)

It is convenient to work in Poincaré coordinates where the metric takes the form

ds2 =
L2

z2

(
dz2 + ηµνdx

µdxν
)
, (2.2)

with the boundary at z = 0 and the Poincaré horizon at infinity.

To avoid confusion, in this chapter we adopt the convention of using capital Latin letter M,N,. . . as indices
of the full AdSd+1 spacetime coordinates, while small Greek letters µ, ν, . . . represent coordinates of a d-
dimensional spacetime slice transverse to the radial direction z, i.e., xm = (z, xµ). In the next chapters, for
convenience, we will abandon this convention as the range of the indices should be clear from the context.

2.1.1 Conformal dimension and mass relation

Upon variation of the action (2.1) up to first order we find

δS(1) =−
∫
dd+1x

√
−g
(
∂mδφ∂

mφ+m2φδφ
)

=

∫
dd+1x

√
−gδφ(�−m2)φ−

∫
dd+1x∂m(

√
−gδφ∂mφ)

=

∫
dd+1x

√
−gδφ(�−m2)φ−

∫
ddx
√
−hnmδφ∂mφ ,

(2.3)
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where in the last step we used Stoke’s theorem and the box operator is defined by � ≡ ∇µ∇µ. From the
above equation we can read the equation of motion of the scalar field(

�−m2
)
φ =

1√
−g

∂m
(√
−ggmn∂nφ

)
= 0 , (2.4)

that using the explicit form of the metric (2.2) reads

zd+1

L2
∂z

(
z−(d−1)∂zφ(z, kµ)

)
+
z2

L2
ηµν∂

µ∂νφ(z, kµ)−m2φ(z, kµ) = 0 . (2.5)

Fourier transforming the bulk field φ(z, x) only with respect to the spacetime coordinates of the d-dimensional
boundary theory

φ(z, x) =

∫
ddk

(2π)d
φ(z, k)eikµx

µ
(2.6)

with kµ =
(
ω, ki

)
we obtain

z2∂2
zφ(z, kµ)− z(d− 1)∂zφ(z, kµ)− (m2L2 + kµk

µz2)φ(z, kµ) = 0 . (2.7)

This equation can be exactly solved, but let us first analyze its asymptotic behavior. In the limit z → 0, the
term z2kµk

µφ in (2.7) can be neglected and the differential equation simply becomes:

z2∂2
zφ(z, kµ)− z(d− 1)∂zφ(z, kµ)−m2L2φ(z, kµ) = 0 for z → 0 (2.8)

Using the ansatz φ(z, kµ) = φ(kµ)z∆ we find an equation for ∆

∆(∆− 1)− (d− 1)∆−m2L2 = 0 (2.9)

that gives the two roots

∆± =
d

2
±
√
d2

4
+m2L2 ≡ d

2
± ν , (2.10)

and the asymptotic solution is then

φ(z, kµ) = φ0(k)
( z
L

)∆−
+ φ+(k)

( z
L

)∆+

+ · · · , (2.11)

where the dots stands for higher order terms in z. Moreover, since in the limit we dropped the k2 term in
(2.7), this asymptotic solution can be straightforwardly reformulated in position space

φ(z, xµ) = φ0(x)
( z
L

)∆−
+ φ+(x)

( z
L

)∆+

+ · · · . (2.12)

Usually, φ0 is the non-normalizable term, while φ+is the normalizable one. However this is not always the
case so let’s clarify a bit what we mean by normalizable. The inner product for two scalar field in curved
spacetime is defined as

〈φ1, φ2〉 = −i
∫

Σt

dzdd−1x
√
−ggtt (φ1∂tφ2 − φ2∂tφ1) , (2.13)

with Σt a constant time surface. Neglecting the dependence on the other variables, let us consider a solution
of the form φ(x) ∼ z∆, then the integrand in (2.13) goes as z2∆−d+1, and the integral is then convergent for
2∆−d+1 > −1→ ∆ > d/2−1. The solution ∝ z∆+ is then always normalizable since ∆+ = d/2+ν with ν
real and positive (we will see shortly why this is the case). On the other hand, there is a small window where
the norm of what we called non-normalizable solution is actually finite, that is for ν < 1, so in summary we
have:

z∆+ mode: always normalizable
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z∆− mode:

{
normalizable 0 ≤ ν < 1

non-normalizable ν ≥ 1

The non-normalizable mode defines the boundary value of the field

φ0(x) ≡ lim
z→0

z−∆−φ(z, x) . (2.14)

As explained in the previous chapter, the GKPW rule identifies the boundary value of the field with the
source term of the associated operator. This implies that the term we add to the lagrangian in the partition
function of the conformal field theory is∫

ddxφ0(x)O(x) =

∫
ddx lim

z→0
φ(z, x)z−∆−O(x) . (2.15)

Equation (2.15) identifies ∆+ as the scaling dimension of the boundary operator O(x). Recalling that the
conformal dimension of an operator is implicitly defined by its behavior under a global rescaling

xµ → x′µ = λxµ O(x)→ O′(x′) = λ−∆O(x) , (2.16)

we can use the bulk isometry of the AdS spacetime

xµ → x′
µ

= λxµ , z → z′ = λz , (2.17)

and the fact that the boundary action should be conformal invariant∫
ddxφ0(x)O(x) =

∫
ddx′ φ0(x′)O′(x′) (2.18)

to see that:∫
ddx′ φ0(x′)O(x′) =

∫
ddx′ lim

z′→0
z′∆−φ′(z′, x′)O′(x′) =

∫
dd(λx) lim

z→0
(λz)∆−φ(z, x)O′(x′)

=λ∆+

∫
ddxφ0(x)λ−∆O(x) ,

(2.19)

where we used the fact that φ(z, x) is a scalar and is therefore invariant under a change of coordinates, and
in the last equality ∆+ = d−∆−. In order for (2.18) to hold the conformal dimension ∆ of O(x) must then
be

∆ = ∆+ =
d

2
+

√
d2

4
+m2L2 . (2.20)

Hence, we just showed that the mass of the bulk field determines the scaling behavior of the operator in the
conformal field theory. In particular, we have the following three possibilities for a scalar operator:

• m2 = 0, ∆ = d⇒ O(x) is a marginal operator;

• m2 > 0, ∆ > d⇒ O(x) is an irrelevant operator;

• m2 < 0, ∆ < d⇒ O(x) is a relevant operator.

There is an interesting thing to notice from this mass-dimension relation. The interpretation of ∆+ as a
conformal dimension implies that it must be a real number. From the definition (2.10) we find that the
reality condition implies

m2 ≥ − d2

4L2
, (2.21)

that is, the mass squared can assume slightly negative values. Not only are negative values allowed, but
we have just seen that in order to have a relevant scalar operator in the boundary theory we must choose
negative values (relevant operators are the one of interest in the low energy, long wavelength limit).
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This may sound strange as negative mass squared are usually associated with tachyonic instabilities. This
is true in flat spacetime, where for a scalar QFT

∂2φ−m2φ = 0

and the second derivative of the potential around the vacuum expectation value is V ′′(φv) = m2 < 0, giving
an “upside down” potential, i.e., perturbation around the vacuum solution are unstable. However, this is not
true anymore in AdS, where the curvature of the spacetime can compensate for small negative values of m2.
A simple way to see this, it to consider the action (2.1) for a scalar field φ = φ(z), that becomes

S = −1

2

∫
dzddx

1

zd+1

(
z2∂zφ∂zφ+m2L2φ2

)
. (2.22)

redefining the field φ = zd/2ϕ and making a change of variable, y = ln z

S = −1

2

∫
dyddx

(
∂yϕ∂yϕ+

(
d2

4
+m2L2

)
ϕ2

)
, (2.23)

with metric

ds2 = L2
(
dy2 + ηµνdx

µdxν
)
. (2.24)

We can interpret the action for the scalar field φ as an action in flat spacetime with effective potential
Veff = d2/4m2L2, that is stable as long as (2.21), known as the Breitenlohner-Freedman bound, is satisfied.

It is interesting now to notice that when the Breitenlohner-Freedman bound is saturated, the boundary
operator has the lowest allowed conformal dimension ∆ = d/2. In conformal field theories however, the
unitary bound, that is the minimum scaling dimension of the conformal scalar operator, is ∆ > d/2 − 1, so
how can we describe operator with conformal dimensions in the range d/2 − 1 < ∆ < d/2? Well, we have
seen this value ∆ = d/2 − 1 already, it happens to be the lower limit of the interval where both fields are
normalizable. In this range, the association of the non-normalizable mode with the source on the boundary
is now a bit ambiguous. In this range, we can indeed choose which term corresponds to the source, and
which to the one-point function. Of course the choice has deep implications on the boundary theory we
describe, since choosing a different term as the source corresponds to a theory of operators with a different
conformal dimension. In particular, the choice of keeping the usual ∝ z∆− term as the source is called
standard quantization. In alternative quantization, the ∝ z∆+ solution act as a source and the conformal
dimension of the operator is determined by ∆−, that is bounded below exactly by the unitary bound.

2.1.2 Expectation value and two-point function

Now that we understand the boundary expansion, we can use the GKPW rule (1.32) to compute the corre-
lations function of the operator O(x). Here we use standard quantization, therefore we identify the source
with the coefficient of the leading term in the boundary expansion φ0(x), and the GKPW rule then reads

ZCFT [φ0(x)] = Zbulk

[
lim
z→0

z−∆+φ(z, x) = φ0(x)
]
, (2.25)

where Zbulk in the semi-classical limit is defined by the path integral

Zbulk =

∫
limz→0 z

−∆+φ(z,x)=φ0

DφeiS[φ] , (2.26)

with S[φ] the scalar action (2.1). In this limit we can compute the leading order partition function using the
saddle point approximation:

Zbulk = exp (iS[φc]) , (2.27)
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with φc the classical solution to the equation of motion (2.7) that satisfies the boundary conditions. From
the expansion of the action (2.1) up to first order we see that the bulk term vanish on the classical solution
(obviously, since the classical solution is defined by the vanishing of the first order bulk term) and we are
left with the contribution of the boundary term

S[φ(z, x)c] = −
∫
ddx
√
hnmφ(c)∂mφ(c)

∣∣∣∣z=∞
z=0

, (2.28)

where the subscript c is a reminder that we are evaluating the action on the classical solution. The metric
hµν = L2/z2ηµν is the boundary metric and nm =

√
gzzδmz is the unit vector orthogonal to the boundary

pointing outwards, so that the action becomes

S[φ(z, x)c] = −
∫
ddx

(
L

z

)d
φ(c)∂zφ(c)

∣∣∣∣z=∞
z=0

, (2.29)

and Fourier transforming to momentum space

S[φ(z, k)c] = −
∫

ddk

(2π)d

(
L

z

)d−1

φ(c)(k)∂zφ(c)(−k)

∣∣∣∣z=∞
z=0

. (2.30)

In order for the solution to be regular at infinity, we must impose φ(z =∞, x) = 0 and the action vanishes
at infinity, therefore we are left with evaluating (2.30) at the boundary. However, it seems that we have a
problem now, since we know from the boundary expansion (2.12) derived in the previous section that one of
the term diverges as z → 0. On second thought, this divergence should not come as a surprise. Approaching
the boundary we get closer and closer to the UV regime, and we already know from QFT that in the short
wavelength limit we generally encounter divergences, and we need to regularize them. When we presented
the GKPW rule in the previous chapter we did not address this issue, so to be precise, a more correct way
to write the computational rule for connected n-point function in the large-N limit, for a generic field Φ
sourced by φ(x), is

〈O1(x1) . . .On(xn)〉 =
δn logZ

(R)
bulk

δφ(x1) . . . δφ(xn)

∣∣∣∣
φ=0

=
δnS[Φc]

(R)

δφ(x1) . . . δφ(xn)

∣∣∣∣
φ=0

(2.31)

where the equality is between the renormalized partition function (identified by the superscript (R)) and the
classical action after having applied the regularization procedure.

We now need a way to regularize the boundary action. As the radial direction encoded the energy scale, the
standard way to proceed is to set a UV cutoff ε, that is, to evaluate the action at an infinitesimal distance
from the boundary z = ε and then modify the theory by adding counterterms defined on the d-dimensional
spacetime determined by z = ε, that cancel the divergences. Since these are only boundary terms, they
have no influence on the equation of motion, and at the end of the calculations, after having removed all the
divergent terms, we can safely perform the limit ε→ 0 to obtain the desired answer.

In the current example, following the procedure we find

S[φ(z, k)c] =
1

2
lim
ε→0

∫
ddk

(2π)d

(
L

z

)d−1

φ(c)(k)∂zφ(c)(−k)

∣∣∣∣
z=ε

= lim
ε→0

1

2

∫
ddk

(2π)d

(
L

z

)d−1(
φ0(k)

( z
L

)∆−
+ φ+(k)

( z
L

)∆+

+ · · ·
)
∂z

(
φ0(−k)

( z
L

)∆−

+ φ+(−k)
( z
L

)∆+

+ · · ·
)∣∣∣∣

z=ε

=
1

2
lim
ε→0

∫
ddk

(2π)d
L−1

(
∆−φ0(k)φ0(−k)

( z
L

)−2ν
+ ∆−φ+(k)φ0(−k)

+∆+φ+(−k)φ0(k) +O(z2ν)

)∣∣∣∣
z=ε

,

(2.32)
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and we can clearly see the divergent term ∝ z−2ν . It is not difficult to guess the the correct form of the
countertem

Scounter =− lim
ε→0

1

2L

∫
ddk

(2π)d
∆−
√
−hφ(k)φ(−k)

∣∣∣∣
z=ε

=− lim
ε→0

L−1

2

∫
ddk

(2π)d

(
∆−φ0(k)φ0(−k)

( z
L

)−2ν
+ 2∆−φ0(k)φ+(−k) +O(z2ν)

) ∣∣∣∣
z=ε

.
(2.33)

Our regularized boundary term then becomes

S(R)[φ(z, k)c] =
L−1

2
lim
ε→0

∫
ddk

(2π)d

(
2νφ0(k)φ+(−k) +O(z2ν)

)∣∣∣∣
z=ε

=
L−1

2

∫
ddk

(2π)d

(
2νφ0(k)φ+(−k)

) (2.34)

and we can compute the expectation value of O(k):

〈O(k)〉 = (2π)d
δS[φ(z, k)c]

δφ0(−k)

∣∣∣∣
φ0=0

=
2νφ+(k)

L
. (2.35)

The factor of L is not very relevant, as it could have simply be absorbed in a global normalization constant
for the action (2.1), an in what follows we will therefore neglect it (or more precisely, we choose to measure
z in units of L). From this result, we see that the expectation value of the corresponding operator is indeed
determined by the subleading term in the boundary expansion 〈O〉 ∝ φ+. In general, the coefficient of the
non-normalizable mode corresponds to the source of the boundary operator, while the normalizable mode
is proportional to the expectation value. If we are in the range of mass values where both solutions are
normalizable, which term corresponds to the source on the boundary depends on the quantization scheme
chosen. In standard quantization for ν < 1, leading and subleading term switch roles, and the source is then
given by the coefficient of the subleading term.

Moreover, the two-point function is given by the linear response of the one-point function to the source1 φ0:

〈O(k)〉 = G(k)φ0(k) (2.36)

and we then have

G(k) = 〈O(k)O(−k)〉 = 2ν
φ+(k)

φ0(k)
. (2.37)

To find the explicit expression, now we just have to determine the value of the coefficients of the expansion
by explicitly solving equation (2.7). This is usually very difficult or impossible analytically and one have
to rely on numerical methods, but this simple toy model is exactly solvable. However, there is still one
subtlety that we need to tackle, and is related to the solution in real-time formalism. What we did up to
know is equally valid in Euclidean signature, where we send ω → −iωe, where things are a bit simpler. In
the Euclidean formalism, (2.7) becomes

z2∂2
zφ(z, kE)− z(d− 1)∂zφ(z, kE)− (m2L2 + δµνk

µ
Ek

ν
Ez

2)φ(z, kE) = 0 (2.38)

with kE the momentum in Euclidean signature. This is a Bessel equation with two independent solutions in
terms of modified Bessel function (in units of L)

φ(z, kE) = c(1)zd/2Kν(z, kE) + c(2)zd/2Iν(z, kE) . (2.39)

1This is the reason why we do not have a factor of 1/2 in (2.35). The regularized boundary action has the form ∼ 1
2

∫
φ0Gφ0,

and performing a functional derivative with respect to φ0 gives a factor of 2 that cancels the 1/2.
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One of the two initial conditions needed, is given by an overall normalization that drops out in the final
answer, the other is a boundary condition in the interior. To fix it, we notice that the asymptotic behavior
of the Bessel functions Iν(x) and Kν(x) for x→∞ is

Iν(x) ∼ ex√
x

, Kν(x) ∼ e−x√
x

(2.40)

therefore, since Iν(kz) diverges in the limit z → ∞, we have to set c(2) = 0 in order to ensure regularity at
infinity, and we then have

φ(z, kE) = Czd/2Kν(kEz) , (2.41)

Using the asymptotic expansion of Kν(x) for x→ 0

Kν(x) =
Γ(ν)

2

(x
2

)−ν
(1 +O(x2)) +

Γ(−ν)

2

(x
2

)ν
(1 +O(x2)) for x→ 0 (2.42)

we obtain

φ(z, ke) =Czd/2

(
Γ(ν)

2

(
kez

2

)−ν
(1 +O(z2) +

Γ(−ν)

2

(
kez

2

)ν
(1 +O(z2))

)
(2.43)

=C

(
Γ(ν)

2

(
ke
2

)−ν
z∆− +

Γ(−ν)

2

(
ke
2

)ν
z∆−

)
for z → 0 , (2.44)

that is of the form of the boundary expansion (2.12). From (2.44) we extract the coefficients and we find

〈O(k)O(−k)〉 = 2ν
Γ(−ν)

Γ(ν)

(
ke
2

)2ν

. (2.45)

What does change in the real-time formalism? The problem is that in real time the solution of equation
(2.7) is given by Hankel functions (for k2 = −ω2 + k2 < 0, that is, for timelike k)

φ(z, k) = zd/2c(1)H(1)
ν (−ikz) + zd/2c(2)H(2)

ν (−ikz) (2.46)

that behaves for z → 0 as

H(1)
ν (x) ∼ e−ix

H(2)
ν (x) ∼ eix x ∈ R .

The problem is that now both solutions are regular in the interior and we have two possibilities, either
choosing the infalling boundary condition, corresponding to c(1) = 0, or the outgoing boundary condition,
c(2) = 0. The two possibilities reflects the two type of Green’s functions in real-time formalism, retarded
Green’s functions, associated with the infalling boundary condition, and advanced Green’s functions related
to the outgoing condition. In real-time formalism we therefore need to be a bit more careful with boundary
conditions and make a choice according to the correlation function we want to obtain. Usually we are inter-
ested in retarded Green’s functions, and after an expansion of the Hankel function H(2)

ν near the boundary,
similar to what we did for the Bessel function we find that the retarded correlator is

〈O(k)O(−k)〉R = 2νeiπνsgn(ω) Γ(−ν)

Γ(ν)

(
−ik

2

)2ν

. (2.47)

2.2 Vector field two-point function

With a similar procedure, we can compute the two-point function for a vector field, this will let us introduce
some feature that will be useful when considering the holographic superconductor model. In this section, we
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only derive the Green’s function in Euclidean formalism, nonetheless, as we have seen for the scalar field, the
computation in real-time formalism is very similar and just requires a bit of extra care with the boundary
conditions.

The metric is then given by (in units where L = 1)

1

z2

(
dz2 + δµνdx

µdxν
)
. (2.48)

The action for a vector field Am with Euclidean signature is given by:

SE = −1

4

∫
dd+1x

√
gFmnF

mn (2.49)

where Fmn = (∂mAn − ∂nAm), and we set µ0 = 1 for the vacuum permeability. The first order variation of
the action then reads

δSE =− 1

2

∫
dd+1x

√
gδFmnF

mn = −1

2

∫
dd+1x

√
g(∂mδAn − ∂nδAm)Fmn

=−
∫
dd+1x

√
g(∂mδAn)Fmn =

∫
dd+1xδAn∂m(

√
gFmn)−

∫
dd+1x ∂m(

√
gδAnF

mn)

=

∫
dd+1x δAn∂m(

√
gFmn)−

∫
ddx
√
hnmF

mnδAn

(2.50)

where, as usual, in the last line we used Stoke’s theorem. From (2.50) we can read off the equation of motion
for the gauge field:

∂m(
√
gFmn) = 0 (2.51)

Plugging in the metric (2.48), we obtain:

∂m

((
1

z

)d+1 z4

R4
δmlδnkFlk

)
= ∂z(z

3−dFzn) + z3−d∂µ(δµlFln) = 0 (2.52)

where we used √g = (1/z2)
d+1

2 = z−d−1. Multiplying everything by zd−3 and rewriting the equation in term
of the vector field Am we obtain

zd−3∂z(z
3−d(∂zAn − ∂nAz)) + ∂µ(δµl(∂lAn − ∂nAl)) = 0 (2.53)

Due to translational symmetry in the xµ direction (i.e. the direction parallel to the boundary) we can Fourier
transform the field

Am(z,x) =

∫
ddk

(2π)d
Am(z, k)eik·x (2.54)

with k · x = kµx
µ = δµνk

µxν , and we obtain the set of equations:

ikν(ikνAz(z, k)− ∂zAν(z, k)) = 0 (2.55)

zd−3∂z(z
d−3∂zAν(z, k)− ikνAz(z, k))− (kµkµAν(z, k)− kµkνAµ(z, k)) = 0 (2.56)

We now use gauge invariance to set Az = 0 so that (2.55) and (2.56) become:

kν∂zAν(z, k) = 0 (2.57)

zd−3∂z(z
d−3∂zAν(z, k))− (kµkµAν(z, k)− kµkνAµ(z, k)) = 0 . (2.58)

Again, we can fix the momentum in one of the spatial directions, let us call it x, so that k = (ωe, k̃, 0, . . . , 0, 0).
Calling τ the time component in Euclidean time, from the first equation we have that Aτ = −k/ωAx +
C(k̃, ωe), but after setting Az = 0, we still have freedom to choose a gauge in the kµ direction, so that we
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can use this freedom to set C(k̃, ωe) = 0, that corresponds to making the gauge choice kµAµ(z, k) = 0 (the
Lorentz gauge). Equation (2.58) then can be rewritten as

zd−3∂z(z
d−3∂zAν(z, k))− k2Aν(z, k) = ∂2

zAν(z, k) +
(3− d)

z
∂zAν(z, k)− k2Aν(z, k) = 0 (2.59)

Therefore, we can find the classical solution by solving the second order differential equation:

zA′′µ(z, k) + (3− d)A′µ(z, k)− zk2Aµ(z, k) = 0 (2.60)

where A′µ(z, k) ≡ ∂zAµ(z, k). But this equation looks exactly like the one for the scalar field, (2.7), with
m = 0 and a prefactor of (d − 3) instead of (d − 1) for the first order term. We then already know what
the solutions look like. But let us again first analyze its asymptotic behavior, in order to understand the
differences with the scalar case. Neglecting the the last term in (2.60) in the limit z → 0, the differential
equation becomes:

zA′′µ(z, k) + (3− d)A′µ(z, k) = 0 for z → 0 , (2.61)

that again using a ansatz ∝ z∆ gives the simple solution:

Aµ(z, k) = aµ(k) + bµ(k)zd−2 for z → 0 (2.62)

For d > 2, aµ(k) is the leading term in the limit z → 0, and it corresponds to the non-normalizable mode,
therefore it represents the source of the boundary current

lim
z→0

Aµ(z, k) = aµ(k) (2.63)

with no power of z. On the other hand, b(k) is the non-normalizable mode and for the gauge field we
therefore expect

〈Jµ〉 ∼ bµ(k) (2.64)

As a consistency check, we compute the conformal dimension of the conserved current Jµ to see if it matches
with the expected value of d− 1 (the fact that we expect d− 1 can be easily seen in the J0 component, that
represent the charge density. Since the charge has no dimension, the dimension of J0 is given by the density,
that has dimension d− 1 by definition). The conformal dimension of the current ∆ is implicitly defined by:

xµ → x′µ = λxµ Jµ(x)→ J ′µ(x′) = λ−∆Jµ(x) (2.65)

using the conformal invariance of the boundary action∫
ddx aµ(x)Jµ(x) =

∫
ddx′ a′µ(x′)J ′µ(x′) (2.66)

and paying attention that now we are dealing with a vector field, aµ(x), that under global scaling behaves as

xµ → x′µ = λxµ =⇒ aµ(x)→ a′µ(x′) = λ−1aµ(x) (2.67)

and from (2.66) we obtain∫
ddx′ a′µ(x′)J ′µ(x′) =

∫
dd(λx)λ−1aµ(x)λ−∆Jµ(x) =

∫
ddxλd−1−∆aµ(x)Jµ(x) =

∫
ddx aµ(x)Jµ(x)

(2.68)

that implies ∆ = d − 1 as expected. From this we can also infer the dimension of the two point function
〈Jµ(x1)Jν(x2)〉, that has to scale as ∼ x−2∆ = x−2(d−1) in position space, where x = x1−x2 (the correlation
function only depends on (x1− x2) due to translation invariance in the boundary). In momentum space the
k dependence becomes

〈Jµ(k)Jν(−k)〉 ∼
∫
ddx 〈Jµ(x1)Jν(x2)〉 e−ik·x ∼ x2−d ∼ kd−2 . (2.69)

20



2.2.1 Computation in momentum space

We now want to compute S(R)
E [A

(c)
m (z, k)] where SE is the action given in (2.49). By partial integration,

analogously to what we did for the variation we obtain:

SE [Am(z, x)c] =

∫
dd+1xA

(c)
n ∂m

(√
gFmn

(c)

)
−
∫

dd+1x∂m

(√
gA

(c)
n Fmn

(c)

)
=

∫
dd+1xA

(c)
n ∂m

(√
gFmn

(c)

)
−
∫

ddx
√
hnmF

mn
(c) A

(c)
n

=− lim
ε→0

∫
ddx
√
hnmF

mn
(c) A

(c)
n

∣∣∣∣z=∞
z=ε

,

(2.70)

where we inserted the UV cutoff ε to account for possible divergences. Plugging in the explicit form of the
AdS metric and the expression for the normal vector we obtain

SE [Am(z, x)c] =− lim
ε→0

∫
ddx
√
ggzzhµνF (c)

zµ A
(c)
ν

∣∣∣∣z=∞
z=0

=−
∫

ddx z3−dδµν
(
∂zA

(c)
µ

)
A(c)
ν

∣∣∣∣z=∞
z=ε

(2.71)

that in Fourier space is

SE [Am(z, k)c] = + lim
ε→0

∫
ddk

(2π)d
z3−dδµν

(
∂zA

(c)
µ (−k)

)
A(c)
ν (k)

∣∣∣∣
z=ε

, (2.72)

where the plus sign comes from the fact that we evaluated the action at z =∞ (as before, imposing regularity
at the horizon it evaluates to 0). Since the transverse sector completly decouples, we are only intereseted
in the terms in Aτ and Ax in the boundary action, in other words, we can set the sources of the transverse
compenents to zero without influencing the VEV of the longitutinal degrees of freedom, hence we obtain:

SE [Am(z, k)c] = + lim
ε→0

∫
ddk

(2π)d
z3−d

(
A′

(c)
x (−k)A(c)

x (k) +A′
(c)
τ (−k)A(c)

τ (k)
) ∣∣∣∣

z=ε

. (2.73)

The two terms are related by our gauge condition kµAµ = 0⇒ ωeAτ + k̃Ax = 0, from which we obtain

A′
(c)
τ A(c)

τ =
k̃2

ω2
e
A′

(c)
x A(c)

x

and we can rewrite (2.73) as

SE [Am(z, k)c] = + lim
ε→0

∫
ddk

(2π)d
z3−d

(
1 +

k̃2

ω2
e

)
A′

(c)
x (−k)A(c)

x (k)

∣∣∣∣
z=ε

. (2.74)

All what is left to do is to study (2.72) for z → 0 and regularize eventual divergences. In the case of the
gauge field we have, from the asymptotic behavior (2.62):

SE [Am(z, k)c] = lim
ε→0

∫
ddk

(2π)d

(
1 +

k̃2

ω2
e

)
z3−d

(
(d− 2)bx(k)zd−3

)(
ax(−k) + bx(−k)zd−2

) ∣∣∣∣
z=ε

(2.75)

= lim
ε→0

∫
ddk

(2π)d

(
1 +

k̃2

ω2
e

)
(d− 2)ax(−k)bx(k) + bx(k)bx(−k)zd−2) (2.76)

=

∫
ddk

(2π)d

(
1 +

k̃2

ω2
e

)
(d− 2)ax(−k)bx(k) (2.77)

for d > 2, and we see that there seems not to be any UV divergence. This however, is not true for any
number of dimensions, and we will get back to this point at the end of the section.
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From (2.75), we can read off the one-point function:

〈Jx(k)〉 = (2π)d
δSE [Am(z, k)c]

δaν(−k)

∣∣∣∣
aµ=0

= (d− 2)

(
1 +

k̃2

ω2
e

)
bx(k) (2.78)

that is indeed proportional to the normalizable mode bµ(k), as predicted. The Euclidean two point is then
given by

〈Jx(k)〉 = GxxE (k)ax(k) +GxτE (k)at(k) = 2GxxE (k)ax(k) (2.79)

where we used the gauge choice and the Ward identities in Euclidean space ωeG
ττ+k̃Gzτ = k̃Gzz+ωeG

τz = 0
and we have

GxxE (k) = 〈Jx(k)Jx(−k)〉 =
(d− 2)

2

(
1 +

k̃2

ω2
e

)
bx(k)

ax(k)
(2.80)

The explicit solution of the full equation (2.60), after imposing regularity at the horizon is:

Aµ(k, z) = Cµz
d/2−1K d

2
−1(kz) (2.81)

Using the asymptotic expansion (2.42) we obtain

(2.82)

Aµ(k, z) =Cµ

(
Γ(d/2− 1)

2

(
k

2

)−d/2+1

+
Γ(1− d/2)

2

(
k

2

)d/2−1

zd−2

)
for z → 0 (2.83)

and we can therefore extract the coefficients aµ(k) and bµ(k). Using the explicit value of the coefficients in
(2.80), we find that the 2-point function is:

〈Jx(k)Jx(−k)〉 =
d− 2

2d−1

(
1 +

k̃2

ω2
e

)
Γ(1− d/2)

Γ(d/2− 1)
kd−2 (2.84)

that shows the predicted kd−2 dependence. Similarly we could have computed the Gττ correlation function
that is obtained by simply switching ωe and k̃, and we can obtain Gτx = Gxτ using the Ward identities (we
indeed only have a single longitudinal degrees of freedom, as expected for a photon). The gauge choice we
made was particularly convenient because the differential equations decouple. When they are coupled, the
leading order for one component aµ̃ in general source a linear combination of all the operators Jν . We will
learn how to deal with this situation in chapter 4 where we study the Green’s function of the superconductor
model.

There is one important feature we naively glossed over. The Kν Bessel function expansion for z → 0 is valid
for ν /∈ Z. For the scalar field, the value of ν is a function of a continuous parameter, the mass of the field,
and in the cases we consider in the next chapters we always have a mass such that ν /∈ Z. However, for the
gauge field ν = d/2 − 1, that means, for an odd number of dimensions (even number of spatial dimensions
plus time) ν /∈ Z, but for d even (d/2 − 1) ∈ Z and the Bessel function present a logarithmic divergence
that needs to be regularized. When we expanded the action close to the boundary we used a power law
ansatz, but a logarithmic term of the form zd−2 log(z) is also a solution, and it indeed comes out from the
asymptotic behavior of the Bessel function for ν integer. For example in d = 3 + 1 dimensions, we have

K1(z) =
1

z
+ αz +

z

2
log
(z

2

)
+O(z3) . (2.85)

Adding the necessary counterterms modify the Green’s functions by adding contact terms cµν

Gµν ∝ bν

aµ
+ cµν . (2.86)

In chapter 4 we show the precise couterterms needed to regularize the gauge field in the holographic super-
conductor for d = 3 + 1, and we then derive the explicit form of the contact terms in that example, that turn
out to be real and they therefore do not influence the spectral function.
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2.2.2 Computation in position space

In position space there is an incredibly elegant trick to find the 2-point function due to Witten [18], that
is worth mentioning. As a first step, we want to find the bulk-to-boundary propagator, that is the “Green’s
function” K(z, x), regular in the bulk, that solves the equation of motion (EOM)Kµ(z, x) = 0, and reduces
to a delta function δ(x) approaching the boundary (i.e. for z → 0). Instead of solving the full equations of
motion as we did in momentum space, Witten proposed to pick a “point at ∞” and then use the isometry of
AdS to move the point to the boundary. For z → ∞ we approach the low infrared limit of the theory, and
choosing a point at infinity implies that the bulk-to-boundary propagator is x-independent K(∞)

µ (z, x) =

K
(∞)
µ (z). To understand this, we can see that in the limit z → ∞ the part of the metric transverse to the

radial component goes to 0

dxµdx
µ

z2
→ 0 for z →∞ (2.87)

therefore the spacetime “shrinks” to a single point and the propagator cannot depends on xµ. Then the
equations of motion in position space (2.53) simplify and become:

∂z(z
3−d(∂zK

(∞)
µ (z)) = 0 (2.88)

Since we are interested in the solutions that vanish for z → 0, we find:

K(∞)
µ (z) = cµz

d−2 (2.89)

This is the bulk-to-boundary propagator when the “bulk point” is the point at infinity. Witten proposed to
use the invariance of the AdS spacetime under inversions, transforming the point xm → x′m with

xm = x′
m
/(x′

n
x′n) (2.90)

that is:

xµ → xµ

z2 + x2
(2.91)

z → z

z2 + x2
(2.92)

that maps the point z =∞ to the boundary origin z = 0.

The bulk-to-boundary propagator is a vector, and it must transform as such under the diffeomorphism:

K ′m(z′) = K
(∞)
n (z)

∂xn

∂x′m
(2.93)

using equation (2.90) we obtain

∂x′n

∂x′m
=

δnm
x′lx′l

− 2
x′nx′m

(x′lx′l)2
(2.94)

remembering that K(∞)
z (z) = 0, N only runs on the indices of the d-dimensional spacetime µ, and we obtain

(omitting the primes, i.e., renaming x ≡ x′, z ≡ z′):

Km(z, x) =− 2cµ
zd−2

(z2 + x2)d−1

(
δµm −

2xµxm

z2 + x2

)
(2.95)

That is the propagator from a point in the bulk to the point xµ on the boundary. We can see, that
limz→0Km = 0 unless x2 = 0, where the limit diverges, hinting to the fact that the propagator presents the
predicted δ-function behavior. Due to translation invariance, we can generalize the equations for two point
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x, x′ simply by replacing x→ (x− x′). We can then write the bulk-to-boundary propagator from a point in
the bulk xm = (z, xµ) to an arbitrary point at the boundary x̄ν = (x− x′)ν in terms of its components as:

Gzν(z, x, x′) =− 2C
zd−1(x− x′)ν

(z2 + (x− x′)σ(x− x′)σ)d
(2.96)

Gµν(z, x, x′) =C
zd−2

(z2 + (x− x′)σ(x− x′)σ)d−1

(
δµν − 2

(x− x′)µ(x− x′)ν
z2 + (x− x′)σ(x− x′)σ

)
(2.97)

where C now is just a multiplicative constant.

The solution of the equation of motion A(c)
m (z, x) can be written in terms of the Green’s function as

A
(c)
m (z, x) =

∫
ddx′Gmν(z, x, x′)aν(x′) (2.98)

where aν(x) = limz→0A
(c)
ν (z, x) is the source, as before. Plugging this into the Euclidean action (2.71) gives∫

ddx

∫
ddx′z3−dδµν∂zGµρ(z, x, x

′)aρ(x′)A(c)
ν (z, x)

∣∣∣∣z=∞
z=0

(2.99)

Therefore the two-point function for the conserved current in position space is given by

〈
Jµ(x)Jν(x′)

〉
=
δSE [Am(z, k)c]

δaµ(x)δaν(x′)

∣∣∣∣
aµ,aν=0

= lim
z→0

(
z3−d∂zGµν(z, x, x′)

)
(2.100)

Performing the derivative with respect to z and taking the limit we obtain

〈
Jµ(x)Jν(x′)

〉
= C(d− 2)

(
δµν

|x− x′|2(d−1)
− 2

(x− x′)µ(x− x′)ν
|x− x′|2d

)
(2.101)

and again we find that the two-point function presents the expected x-dependence ∼ x−2(d−1).

This method avoids to solve the full differential equation, however, it is restricted to AdS spacetime since it
is based on its isometries, while the computation in momentum space can be easily generalized to different
spacetime geometries.
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Chapter 3

Introduction to the holographic
superconductor

In this chapter we introduce the necessary ingredients to build a holographic superconductor model. We first
present how to set a nonzero temperature and chemical potential in the boundary theory, then we explain
how to modify the gravitational background to describe the second-order phase transition characterizing a
superconductor.

3.1 Black holes and finite temperature

In condensed-matter physics, we are often interested in systems at a nonzero temperature and entropy,
especially if we want to study a to study a phase transition at a nonzero critical temperature Tc as the
one describing a superconductor. We then need to understand how the notion of entropy and temperature
translate in the bulk gravitational theory. There is one idea that may immediately jump to the mind of
the reader with some background in black hole thermodynamics. As Hawking discovered, black holes are
thermal objects that radiate and possess a finite entropy SBH, called the Bekenstein-Hawking entropy. From
statistical physics we know that the entropy scales with the volume of the system, but the entropy of a black
hole is quite peculiar in this regard as it scales with the area of the black hole horizon:

SBH = kB
AH
4l2P

. (3.1)

This, however, is exactly what we need since the surface of d+ 1-dimensional object has the dimension of a
d-dimensional volume and we see that the entropy of a black hole has the correct scaling behavior to describe
a thermal field theory on the lower dimensional boundary1.

AdS supports black holes, in the sense that, as for Minkowski spacetime, black hole solutions exist that
modify the geometry of the spacetime but far enough from the black hole, it reduces to AdS. Inserting a
black hole, sets a cutoff scale in the radial dimension in the bulk rh > 0 (in Poincaré coordinates (1.19)),
and since we identified the radial direction with the energy scale, this idea is consistent with our intuition of
the effect of a finite temperature in the boundary theory. Turning on a temperature in a field theory sets an
energy scale that breaks conformal invariance, modifying the IR physics. The effects of excitations with an
energy lower than the scale set by the temperature are just modified by thermal excitations and only higher
energy effects, corresponding in the gravitational dual to scale r & rh, can be observed. On the other hand,
for energies much higher than this scale, the theory is not sensible to the effects of the finite temperature
and we recover the conformal field theory, that corresponds to the spacetime being asymptotically AdS for
r →∞.

1This feature, that the number of degrees of freedom of a gravitational system in d + 1 dimensions are encoded in a field
theoretical d-dimensional theory, is believed to be a more general property of quantum gravity called the holographic principle
and it formed the basis of AdS/CFT.
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We then have our first ingredient for constructing a holographic superconductor, a metric that represents a
black hole solution.

The temperature of the boundary theory corresponds to the Hawking temperature of the bulk black hole.
There are several ways for computing this quantity, and Hawking first derived it by quantizing matter fields
in a black hole background. Nonetheless, there is a simpler derivation that does not require field quantization.
In a general background geometry the Hawking temperature can be computed by performing a Wick rotation
to Euclidean gravity and requiring the black hole solution to be smooth.

The relation between a temperature and Euclidean time is known in QFT. To describe a system at finite
temperature T , we analytically continue to Euclidean signature, i.e. t → −iτ , and let τ to be periodic:
τ ∼ τ + ~β, with β = 1/kBT . Conversely, if the Euclidean continuation of a QFT is periodic in the
time direction, we can conclude that the QFT is at finite temperature. An intuitive way to think about
this seemingly weird analogy is by noticing that the partition function for a statistical system in thermal
equilibrium (in the grand canonical ensemble) has the form in the Schrödinger picture at a constant time
t = 0:

Z = Tr
[
e−βH

]
=
∑
ψ

〈ψ(0)| e−βH |ψ(0)〉 ,

with H the Hamiltonian of the system and we are summing over a complete set of states. On the other
hand, we know that time evolution of a state is given by |ψ(t)〉 = e−itH |ψ(0)〉, and we can then think of the
Boltzmann factor e−βH as a time evolution operator in imaginary time and write

Z = Tr
[
e−βH

]
=
∑
ψ

〈ψ(0)|ψ(−iβ)〉

where the left-hand side now represents the vacuum amplitude as we are evolving the state from τ = 0 to
τ = β, and requiring the final state to be the same as the initial state forces τ to be periodic. This is the
argument we are going to use to interpret the temperature of a black hole.

Here we present the computation for a particular black hole solution in asymptotically AdS spacetime, that,
as we will see, it will turn out to be the metric that describes the holographic superconductor. Anyhow, the
procedure is exactly the same for different geometries.

The metric we consider is

ds2 = −c2f(r)e−χ(r)dt2 +
1

f(r)
dr2 +

r2

L2
dx2

d−1 . (3.2)

We analytically continue the above metric with t→ −iτ

ds2
E = c2f(r)e−χ(r)dτ2 +

1

f(r)
dr2 +

r2

L2
dx2

d−1 (3.3)

and study the periodicity near the horizon.

At the horizon f(rh) = 0 and the metric (3.2) blows up. So we have to Taylor expand f(r) near the horizon.
We obtain:

f(r) ≈ f(rh) + f ′(rh)(r − rh) +O((r − rh)2) = f ′(rh)(r − rh) +O((r − rh)2) (3.4)

and the near-horizon metric becomes:

ds2
E ≈ c2f ′(rh)(r − rh)e−χ(rh)dτ2 +

dr2

f ′(rh)(r − rh)
+
r2
h

L2
dx2

d−1 (3.5)

if we now make a change of variable (τ, r)→ (θ,R) with

θ =c
f ′(rh)

2
e−

χ(rh)

2 τ ≡ Kτ (3.6)

R =
4(r − rh)

f ′(rh)
(3.7)
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the near-horizon metric can be written as

ds2
E ≈ R2dθ2 + dR2 +

r2
h

L2
dx2

d−1 (3.8)

so that the radial and time component are just Euclidean polar coordinates in R2. This metric presents a
conical singularity unless θ is periodic with period 2π (a way to visualize a conical singularity is to take a
piece of paper and cut off a circle. If the period is θ < 2π we remove a “slice” corresponding to a section with
an angle at the centre of the circle of 2π − θ, as depicted in figure 3.1. We can then glue together the two
ends and obtain a cone, that has a sharp tip at the end and cannot represent a smooth black hole horizon).
The periodicity of the θ implies that the Euclidean time must have the period

τ ∼ τ +
2π

K
(3.9)

and we then get2

T =
1

kBβ
=

~K
2πkB

=
~cf ′(rh)e−

χ(rh)

2

kB4π
. (3.10)

Figure 3.1: Pictorial representation of the origin of a conical singularity for periodicity θ < 2π

3.2 Nonzero density and chemical potential

Now that we know how to put the system at a nonzero temperature, the next step to build an interesting
condensed matter system is to introduce a nonzero density of particles ρa = Na/V , with Na the number of
particles of a species a, associated with a chemical potential µa. The reason we need to introduce a density is
that in a conformal field theory, in the absence of other scales, all nonzero temperatures are equivalent, and
in order to obtain a phase transition we then need to introduce another scale, and the choice of the chemical
potential is the natural one as we want to describe the condensation of matter leading to a superconductor
phase transition.

Conservation of the particles number in a QFT is described by a U(1) global symmetry associated to a
conserved current Jµa , with corresponding Noether charge Qa, so that Na = 〈Qa〉. In statistical physics,
a system at fixed temperature and volume, but where the number of particles is allowed to fluctuate is
described in the grand canonical ensemble, defined by the partition function

Zgrand = Tr
[
e−β(H−µaQa)

]
. (3.11)

In a field theory, this corresponds to modify the action by a term∫
ddxµaJ

t
a , (3.12)

2A caveat, the temperature of a black hole as felt by a stationary observer depends on its position with respect to the
black hole (this is a manifestation of the general fact, known as Ehrenfest–Tolman effect, that in curved spacetime at thermal
equilibrium the temperature is not constant, but depends on the curvature). For observer at some fixed r, the proper time t̃
is given by dt̃ =

√
f(r)dt, and the local temperature is then T̃ = Tf(r)−1/2. Notice that the local temperature diverges for

r → rh.
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and we already have enough hints to understand how to encode a finite density on the gravity side. The global
U(1) symmetry in the boundary theory translates to a local U(1) symmetry in the bulk, and the boundary
term (3.12) implies that, in the large-N limit, we need the time component of a classical gauge field Aaµ dual
to Jµa , that for a spatially uniform chemical potential, can only depend on the radial component. For a single
particle species, the bulk geometry dual to a finite density field theory is then given by the Einstein-Maxwell
theory in AdS

SEM =

∫
dd+1x

√
−g
(

c3

16πG
(R− 2Λ)− 1

4µ0c
FµνF

µν

)
(3.13)

with boundary conditions

lim
r→∞

At(r) = µ . (3.14)

If we are interested in a system with both finite temperature and density, we have to merge the presence of a
charge with the black-hole solution in the bulk. The first thing that comes to mind is to blend together the
two requirements and consider an electrically charged black hole solution of the Einstein-Maxwell equations,
the Reissner-Nordström black hole. This solution can be derived by variation of the action (3.13) that gives

ds2 =− c2f(r)dt2 +
1

f(r)
dr2 +

r2

L2
dx2

d−1 , (3.15)

At(r) =µ

(
1−

(rh
r

)d−2
)

, (3.16)

with,

f(r) =
r2

L2

(
1 +

Q2

r2(d−1)
− M

rd

)
(3.17)

µ =
µ0cQ

√
d− 1

2
√

2πG(d− 2)L2rd−2
h

(3.18)

where Q and M represent respectively the charge and the mass of the black hole.

The horizon radius is implicitly defined by f(rh) = 0 that in general has two distinct solutions. The Reissner-
Nordström black hole then presents two horizons, the inner and the outer horizon, denoted respectively with
r− and r+. In the context of gauge/gravity duality, it is the outer horizon that sets the temperature scale on
the boundary, while the inner horizon does not have any particular relevance, for this reason, from now on
we will always refer to the outer horizon simply as the black hole horizon and we will denote it with rh ≡ r+.

3.3 Holographic superconductor

We have presented almost all the ingredients necessary to build a model of a holographic superconductor,
we know how to define a temperature and a chemical potential, but we still miss the most important
characteristic of the superconducting phase transition, the spontaneous breaking of a U(1) symmetry. A
spontaneous symmetry breaking is described by the appearance of a nonzero expectation value of an order
parameter O without the presence of a source term. In the BCS theory, the order parameter is a bosonic
operator (a scalar) that represents the pairing of two fermions. In a holographic superconductor we do
not really know what the order parameter represent from a microscopical point of view, but in order for
the system to undergo a transition to a superconducting phase we still need a bosonic operator that can
represent the condensate.

As we have previously seen, a scalar operator is simply dual to a scalar field in the bulk. In chapter 2 we
studied the example of a real scalar field, however, we need our boundary system to have a global U(1)
symmetry, dual to a gauge symmetry in the bulk, and we therefore need the scalar field to be invariant under
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gauge transformations. This requirement means that the classical field in the bulk needs to be a complex
charged scalar field. A clever guess then, is to modify the Einstein-Maxwell action by minimally coupling
the scalar field to the gauge field and to gravity and we obtain the action (Einstein-Maxwell-Higgs action)

S =

∫
dd+1x

√
−g
(

c3

16πG
(R− 2Λ)− 1

4µ0c
FµνF

µν − |Dµφ|2 − V (φ)

)
(3.19)

with Dµ ≡ ∇µ − iq
~ Aµ, q the charge of the scalar field, is the gauge covariant derivative that minimally

couples the scalar field with the Maxwell field (and the spacetime covariant derivative ∇µ provides the
coupling with the gravity field).

We now have a model with everything we need. Why however does (3.19) represent a superconductor? How
is the characteristic phase transition encoded in the action?

First of all, a phase transition in the boundary theory has to be described by some changes in the geometry
of the interior. In particular, we are dealing with a second-order transition, where the entropy changes
smoothly across the transition. In terms of the geometry of the bulk, this suggests that the transition cannot
be described by a sudden change of the black hole area, since the area encodes the entropy of the thermal
boundary system. As the horizon area depends on both the charge and mass of the black hole, we do not
expect the transition to be described by an abrupt change of neither the metric or the gauge field. On the
contrary, in order to describe a second-order phase transition we need to turn on a vacuum expectation
value of the scalar operator dual to the complex scalar bulk field, that is nonzero even in absence of a source
(this is the concept of spontaneous symmetry breaking, a vacuum expectation value generated by a source
would break the symmetry explicitly). As we have shown in chapter 2, the leading and subleading order
of the boundary expansion of a bulk field are related respectively to the source and vacuum expectation
value (sometimes we will just refer to it as VEV) of the corresponding operator, so we need a solution of the
equation of motion for the scalar field that allows a boundary expansion with finite subleading term, but
with zero leading order.

To be able to discuss the scalar solution, we first have to fix the potential V (φ) in (3.19). In principle, the
exact form of the potential could be derived from consistent truncations and compactification of a theory of
quantum gravity in a top-down approach. Here, however, as in most of the AdS/CFT applications, we are
taking a phenomenological bottom-up approach, and we should choose a term that generates the solution we
are looking for. The simplest potential that is compatible with the description of a phase transition is just
the simple quadratic potential

V (φ) =
m2c2

~2
φφ∗ =

m2c2

~2
|φ|2 . (3.20)

The model with this form of the potential is called the minimal holographic superconductor since it ignores
higher order interaction of the fields and represents the simplest framework to understand holographic su-
perconductivity (this minimal model is an especially good approximation close to the critical temperature,
where the amplitude of the scalar field is small and higher order terms can be neglected). To summarize,
the holographic superconductor action we are going to study is:

S =

∫
dd+1x

√
−g
(

c3

16πG
(R− 2Λ)− 1

4µ0c
FµνF

µν − |Dµφ|2 −
m2c2

~2
|φ|2

)
. (3.21)

3.3.1 Normal and superconducting phase

In order to set a temperature on the boundary theory, we have to look for a black hole solution of the Einstein
equations associated to the action (3.21). Since in the normal phase (i.e., above the critical temperature
Tc) the system reduces to a normal finite temperature and density solution, the metric should reduce to the
Reissner-Nordström metric (3.15), so we look for a generalization of that metric, that is given by the ansatz

ds2 = −c2f(r)e−χ(r)dt2 +
1

f(r)
dr2 +

r2

L2
dx2

d−1 . (3.22)
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Moreover, we want a chemical potential and an order parameter that are constant everywhere on the bound-
ary, and we therefore choose for the gauge and the scalar field

Aµ = Aµ(r)δµt , φ = φ(r) . (3.23)

Varying the action (3.21) we can find the classical equation of motion for the “matter” fields (the gauge and
the scalar field)

∇µFµν − iq (φ∗Dνφ− φ(Dνφ)∗) =0 (3.24)(
DµD

µ −m2
)
φ =0 (3.25)(

D∗µD
µ∗ −m2

)
φ∗ =0 (3.26)

and the Einstein equations

Rµν −
1

2
Rgµν + Λgµν = −16πG√

−g
δSmatter
δgµν

. (3.27)

From the r component of the Maxwell equation (3.24) we obtain (defining ∂rφ ≡ φ′)

φ∗φ′ = φ(φ∗)′ ⇒ the phase θ is constant, (3.28)

and we can therefore, without loss of generality, set the phase to zero and consider a real scalar field φ = φ∗.
Explicitly writing the equations using the ansätze we obtain:

f ′ +

(
d− 2

r
− χ′

2

)
f +

16πG

(d− 1)c3
r

(
eχA′t

2

2µ0c3
+
m2c2

~2
φ2

)
− rd

L2
=0 (3.29)

χ′ +
32πG

(d− 1)c3
r

(
φ
′2 +

q2eχ

~2c2f
A2
tφ

2

)
=0 (3.30)

φ′′ +

(
f ′

f
+
d− 1

r
− χ′

2

)
φ′ −

(
m2c4 − q2A2

t
eχ

f

~2c2f

)
φ =0 (3.31)

A′′t +

(
d− 1

r
+
χ′

2

)
A′t − 2

q2µ0cφ
2

~2f
At =0 . (3.32)

Solutions to these equations of motion define the equilibrium phases of the theory.

The first phase we look for, is the unbroken phase i.e., the phase describing the system above the critical
temperature. This corresponds to the solution with φ = χ = 0. The metric (3.22) reduces to the Reisnner-
Nordström metric (RN) (3.15) and the action becomes the Einstein-Maxwell action, with solutions:

At(r) =
µ

q

(
1−

(rh
r

)d−2
)

(3.33)

and

f(r) =
r2

L2
−
(rh
r

)d r2

L2
+

8πG

µ0c6

d− 2

d− 1

(
µ

q

)2 [(rh
r

)2(d−2)
−
(rh
r

)d−2
]

(3.34)

that has the form of the RN solution (3.17) and (3.18).

Below the critical temperature the phase is characterized by the full solutions with φ, χ 6= 0. Often these
equation are considered in the probe limit, that is the limit q → ∞, keeping qφ and qAt fixed. In this
limit the matter terms in the Einstein equations can be neglected and the problem therefore decouples from
gravity. In the following, however, we want to consider the full background, and we proceed to integrate the
equations numerically.
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3.3.2 Boundary conditions and degrees of freedom

To simplify the equations, we first introduce dimensionless fields and coordinates:

(
r̃, t̃, x̃

)
= (r, ct,x) /L

m̃ = cL
~ m

Ãt̃ =
√

16πG
µ0c6

At

φ̃ =
√

16πG
c3

φ

q̃ =
√

µ0c6

16πG
L
~cq

. (3.35)

This eliminates G, µ0 and L from the equation of motions. Under this change of coordinates the action
changes as

S/~ =
c3Ld−1

16πG~
S̃ ≡ NGS̃ , (3.36)

with S̃ the dimensionless action that does not contain any factor of G, µ0 and L and NG a dimensionless
constant, related to the parameter N of the large-N limit. From now on, we will always use dimensionless
quantities, unless stated otherwise, omitting the tilde for convenience. Notice that in this coordinates energies
are measured in units of ~c/L and length scales are measured in terms of L.

In order to integrate the equations of motion from the boundary to the horizon defined by f(rh) = 0 we need
to fix the boundary conditions. Since we have two first order differential equations and two second-order
ones, we need in total six initial conditions. First of all, we have that the time component of the metric is
null at the horizon gtt(rh) = −f(rh)e−χ(rh)/2 = 0 that implies

lim
r→rh

A2(r) = lim
r→rh

Aµ(r)Aµ(r) = lim
r→rh

gtt(r)At(r)At(r) =∞ (3.37)

for any nonzero value of At(rh). If we want the norm to be finite we must impose At(rh) = 0 (one may argue
that the bulk gauge field is not a physical field, so there seems to be no reason why it cannot diverge at the
horizon. However, we have to keep in mind that the field is dual to the physical current on the boundary
theory). Multiplying the Maxwell equation by f and evaluation at the horizon gives the constraint

f ′(rh)φ′(rh) = m2φ(rh) , (3.38)

and we are left with four independent boundary values

rh, χ(rh), A′t(rh), φ(rh) . (3.39)

However, in order to use the AdS/CFT correspondence we know that our spacetime has to be asymptotically
anti-de Sitter, that requires χ(∞) = 0. Using the isometries of the spacetime, in the numerical calculation
we can set the initial condition χ(rh) = 0 and then rescale the solution using

eχ → C2eχ , t→ Ct , At → At/C , (3.40)

with C = e−χ(∞)/2. In the same way we can use the symmetry of the equation of motions under a scaling

r → ar , (t,x)→ (t,x) /a , f → a2f , At → aAt , (3.41)

to set rh = 1, and we are left with a two free boundary conditions. On the boundary, there are five parameters
that fully describe the theory, the chemical potential µ and charge density ρ, the leading and sub-leading
coefficient of the scalar field at the boundary φ0, φ+ and M the mass of the black hole that defines the
energy density of the field theory. Integrating the equations of motion then defines a map(

A′t(rh), φ(rh)
)
7→ (µ, ρ, φ0, φ+, M) , (3.42)
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for each fixed value of the free parameters d, m2, and q.

However, as we previously discussed, a spontaneous symmetry breaking corresponds to a nonzero expectation
value of O in the absence of a source term, that means, in order to study the phase transition we have to
impose an extra constraint, the vanishing of the source term dual to the scalar field. In chapter 2 we have
seen that there is a range of values for the mass where both modes on the boundary can act as a source, in
this range we are then free to choose which term to set to zero. In this thesis, even for values of the mass
inside that range, we will always choose the canonical quantization, i.e., we will always consider φ0 as the
source term and φ+ ∝ 〈O〉, giving the constraint φ0 = 0 (numerically, we impose the condition using the
shooting method3 ).

The map (3.42) reduces to a one parameter family of solutions (for a choice of d, m2 and q), that fix the
scale, we can choose it to be the dimensionless quantity T/µ. We can think of it as being the temperature
of the theory at a fixed chemical potential (working in the grand canonical ensemble).

3.3.3 Instability and phase transition

In section 3.1 we computed the temperature associated to the metric

T =
~cf ′(rh)e−

χ(rh)

2

kB4π
. (3.43)

Using the same procedure, we can compute the the temperature associated to the RN solution, that gives

T =
~cf ′(rh)

kB4π
=

d

L2
rh −

8πG(d− 2)2

µ0c6(d− 1)

µ2

q2rh
, (3.44)

that in terms of the dimensionless variables becomes

T = drh −
(d− 2)2

2(d− 1)

µ2

q2rh
.

This solution exists for every T/µ ≥ 0, and it therefore exists also for temperatures smaller than the critical
temperature, so why do we expect the system to undergo a phase transition? First of all, we can notice
that the T = 0 solution corresponds to rh = r+ = r−, i.e., to the extremal Reissner-Nordström black hole.
The term extremal derives from the fact that the T = 0 solution corresponds to a black hole with all the
mass due to the electromagnetic charge of the black hole, as one can see by rewriting the T = 0 condition in
terms of the mass M and charge Q as in (3.15). It should be now clear why this solution corresponds to zero
temperature. The black hole, due to the conservation of its electric charge cannot reduce its mass further
via thermal Hawking radiation. The extremal black hole however, has a finite radius, and therefore a finite
Bekenstein-Hawking entropy S ∝ A ∝ rd+1

h , that means our field theory on the boundary is characterized
by a finite entropy at zero temperature and it is then a very unstable state.

What triggers the instability when lowering the temperature is the violation of the Breitenlohner-Freedman
bound. In chapter 2 we derived this BF bound for a scalar field in AdSd+1 spacetime

m2L2 ≥ −d
2

4
. (3.45)

3The shooting method is a procedure to reduce a boundary value problem (setting φ0 = 0 on the boundary) to an initial
value problem (giving initial conditions at the horizon). For a second-order ordinary differential equation, we can illustrate it
as follows. Defining

y′′(x) = f(x, y(x), y′(x)), y(x0) = y0, y(x1) = y1

the boundary value problem, we denote y(x;α) the solution corresponding to the initial value problem

y′′(x) = f(x, y(x), y′(x)), y(x0) = y0, y′(x0) = α .

We can then define a function F (α) ≡ y(x1;α)− y1. Each root α̃ of F (α) gives a initial condition y′(x0) = α̃ that corresponds
to a solution of the boundary value problem
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Figure 3.2: Critical temperature as a function of the charge q (scaled by µ to make it dimensionless) for
m2 = −3.5. For larger value of q the gauge term provides a smaller (i.e., more negative) contribution to the
effective mass giving a larger value of the critical temperature. As we keep increasing q, the contribution of
the mass of the scalar field becomes negligible and the critical temperature approaches a constant value. For
q = 0 Tc is very small, but non zero.

If we now look at the part of the action (3.21) describing the scalar field

Sφ = −
∫
dd+1x

(
|Dµφ|2 +m2|φ|2

)
= −

∫
dd+1x

(
|∂µφ|2+

[
q2AµA

µ +m2
]
|φ|2

)
(3.46)

we see that the coupling with the gauge field gives an effective mass term, m2
eff = q2gttA2

t + m2. Since
gtt < 0 and At ∈ R, the extra term act as a negative mass squared. Near the AdS boundary, the extra
term is subleading as gttA2

t ∝ µ2/(q2r2) for r → ∞, and the vacuum is stable as long as the mass satisfies
the BF bound. Close to the horizon on the other hand, the negative mass squared contribution becomes
more important as the temperature is lowered (notice that for the extremal black hole solution f ′(rh) = 0
and we have f(r) ∼ f ′′(rh)(r − rh)2 for r → rh making gttA2

t = const), and for large enough value of q it
will eventually break the BF bound making the scalar field unstable. Based on this reasoning we expect the
critical temperature to be higher for higher values of the charge q.

In figure 3.2 we plotted the critical temperature for a fixed mass as a function of the charge that shows
the expected behavior. However, we find a small but nonzero value of the critical temperature even for a
neutral operator (i.e., for q = 0). The reason is that the gttA2

t term is not the only contribution to the
instability, especially at very low temperature. The BF bound (3.45) is valid in AdSd+1, but the presence
of the RN black hole modifies the geometry in the deep interior. First, we should notice that the horizon
(hyper)surface in asymptotically AdS spacetime is not spherically symmetric as for Minkowski solution, but
it is a d-dimensional membrane, and a more proper term would then be black brane. Nonetheless, in the
context of gauge/gravity duality, it is common to refer to it as black hole despite the non-spherical symmetry,
simply because the emphasis is on the casual structure more than on the actual shape of the horizon. In
particular the RN extremal black hole has a geometry Rd−1×AdS2, that means that the BF bound near the
horizon becomes m2L2

2 ≥ −1/4 (the relation between curvature radius is L2 ≡ L2
d+1 = L2

2d(d + 1)/2) and
we have an interval of values of the mass parameter, − d2

4L2 ≤ m2 ≤ −d(d+1)
8L2 , where the field is stable in the

AdSd+1 geometry close to the boundary, but tachyonic near the horizon. Since the critical temperature for
q = 0 is very small, the near horizon geometry is close to the Rd−1 ×AdS2 of the extremal solution, and the
geometry of the spacetime drives the instability even in the absence of a charge.

When the system becomes unstable, the solution with a nontrivial scalar profile is energetically favorable.
This solution is rather complicated and we have to resort to numerical methods to solve it, nonetheless, we
can have an idea of what happens qualitatively. From the asymptotic behavior near the boundary we know
that the scalar profile (in standard quantization) vanishes as φ ∼ r−∆+ , on the contrary, on the horizon,
where we already set all the other fields to zero f(rh) = At(rh) = χ(rh) = 0, we can see from the near
horizon behavior of (3.31) that the scalar field goes to a constant at the horizon φ(rh) ∝ 1. This is quite
remarkable, the superconducting phase corresponds to a black hole with scalar hair. The energy density

33



� ��� ��� ��� ��� ����

�

�

�

�

�/��

ϕ

(a) Scalar field solution φ

� ��� ��� ��� ��� ����

���

���

���

���

���

���

�/��

�	
�

μ

(b) Gauge field solution (qAt/µ

Figure 3.3: Profile of the scalar field and the gauge field solutions for the broken phase with q = 3, m2 = −3.5
in d = 3 + 1 dimensions. The temperature is fixed at T = 0.56Tc. We can see that most of the scalar field
energy is concentrated deep in the interior, close to the horizon, and then decreases towards the boundary,
as we would expect from the interpretation of the radial direction as an energy scale, since the UV limit is
not affected by the condensate in the ground state.
The profile for the gauge solution has been made dimensionless by rescaling it with q/µ. We can see from
the plot the asymptotic behavior At ∼ µ/q for large r.

of the atmosphere of scalar hairs that form in the broken phase is responsible for the the nonzero order
parameter in the boundary theory. This may sound a bit confusing at first because in general relativity we
are familiar with the no-hair theorem that forbids hairy black hole solutions, however, the conjecture is not
true in asymptotically anti-de Sitter geometries where these solutions are allowed.

In figure 3.3 we show the profile of the scalar and gauge field for a fixed value of q, d and m2. We can see
that the scalar field energy is mostly concentrated in the IR regime close to the horizon where it has its
maximum, and then decrease towards the boundary, a clear manifestation of the fact that, moving towards
the UV regime, the influence on the solution of the presence of a broken phase in the low energy regime is
negligible.

In figure 3.4 we plotted different solutions for the scalar field at a temperature just slightly below Tc and
for the same value of q and m2, corresponding to different initial conditions for the scalar field at the
horizon. This is due to the fact that in general there is more than one initial condition corresponding to
the same boundary value problem, in our example it means that there are several values for φ(rh) that
give an unsourced solution, φ0 = 0, on the boundary. The more thermodynamically stable solution is the
strictly positive solution that corresponds to the higher critical temperature (and then to the less stable
solution against scalar field fluctuations). This is intuitive since the positive solution corresponds to a higher
energy of the scalar atmosphere around the black hole that compensates the instability of the RN solution.
Numerically integrating all the three scalar profiles we find that the solution with two nodes is the one with
the least energy, and we see that it indeed corresponds to the lowest critical temperature. In the results that
follow, we will always use the initial condition corresponding to the least stable solution.

Now that we have chosen a solution, we can look at the behavior of the vacuum expectation value of order
parameter with d = 3 + 1, presented in figure 3.5, and we can see the curve is very similar to the one of
BCS theory. Looking closely at temperature close to Tc (figure 3.6) we find the square root dependence
〈O〉 ∝ (T − Tc)

1/2 typical of the mean-field theory description of a second-order phase transition. This
mean-field behavior is present in all dimensions d ≥ 3, including d = 2 + 1. This sounds a bit strange,
since we do not expect a mean-field theory description of the phase transition in 2 spatial dimensions4.
The reason behind this strangeness resides in the large-N limit implicit in the classical gravity dual of the
AdS/CFT correspondence. Thermal fluctuations of the order parameter are suppressed in this limit, forcing

4In d ≤ 2 spatial dimensions the Coleman-Mermin-Wagner theorem states that a continuous symmetry cannot be broken
at finite temperature
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Figure 3.4: Three solution for the scalar field φ for q = 3, m2 = −3.5 and d = 3+1. Each profile corresponds
to different initial conditions at the horizon that gives a solution with φ0 = 0 (i.e. an unsourced expectation
value). The temperature is fixed slightly below the critical temperature, so that the scalar field is small.
The positive solution (blue line) is the one with the more thermodynamically stable with the higher value
for Tc/µ, followed by the solution with only one node (yellow line), and the two nodes solution (green line).
This is consistent with the fact that, numerically integrating the profiles, we find the positive solution to be
the one with the higher energy density while the two nodes solution has the lower value.

a mean-field behavior even for dimensions where usually fluctuations destroy the long-range order in the
low-temperature phase.
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Figure 3.5: Plot of the dimensionless ratio 〈O〉
1/∆+

Tc
as a function of temperature for a fixed chemical potential

(i.e., in the grand canonical ensemble). In the plot we used the solution for q = 3, m2 = −3.5 in d = 3 + 1
dimension. The profile shows the typical behavior of a second-order phase transition in mean-field theory.
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Figure 3.6: Details of the expectation value of the order parameter 〈O〉 close to Tc for q = 3, m2 = −3.5 in
d = 3 + 1 dimension. The blue dots repesent the numerical solution while the dashed red line is a fit of the
form (x− 1)1/2 that shows the mean-field behavior 〈O〉 ∝ (T − Tc)1/2.
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Chapter 4

Fluctuations in the holographic
superconductor

In this chapter we study fluctuations of the scalar and gauge fields on top of the superconducting background.
We introduce the concept of intrinsic dynamics and explain its relevance from a physical point of view.
We then present numerical results for the spectral functions describing the intrinsic dynamics of the order
parameter and analyze how they differ from what we expect from a standard superconductor. Next, we
proceed to study how the spectral function changes as we include the coupling with the fluctuations of the
gauge field into the description.

4.1 Holographic superconductor dynamics

The background solution of the gravitational theory that is dual to a superconductor captures the equilibrium
properties of the theory. If we want to study dynamical properties we have to consider non-stationary
solutions in the bulk, that is, we have to introduce fluctuations of the classical field on top of the background
solutions:

φ→ φ+ δφ , Aµ → Aµ + δAµ , gµν → gµν + δgµν . (4.1)

Since all the fields are coupled at low energies, introducing fluctuations of any of the fields sources fluctuations
in all the others and we have to deal with a coupled problem, this is the holographic equivalent of operator
mixing from a field theory point of view.

In chapter 2 we showed how to compute retarded Green’s function from the gravitational theory, however,
we presented examples where the equations of motion for the fluctuations were not coupled. In the following,
we explain how to generalize the procedure for a system of coupled equations.

Let us consider a general set ofM fields {ΦI}I=1,··· ,M , with I denoting the different fields, and a corresponding
action

S
[
ΦI
]

=

∫
dd+1xL[ΦI ] .

As for the uncoupled case, in order to extract the retarded Green’s function we have to expand the action
up to second order in fluctuations of the fields ΦI → ΦI + δΦI . After partial integration and application of
Stokes’ theorem, the part of the action containing second order terms, that we denote with S(2), assumes
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the form of a bulk term plus a boundary contribution1

S(2) = S
(2)
bulk + S

(2)
bdy = −1

2

∫
dd+1x δΦ†G−1

B δΦ + S
(2)
bdy , (4.2)

with Φ = (Φ1, · · · ,ΦM )T the vector containing all the fields ΦI and the matrix operator G−1
B defining the

linearized equation of motion (the equations of motion for the fluctuations δΦI) in the bulk as

G−1
B δΦ = 0 . (4.3)

If the operator is diagonal we have an uncoupled problem, while in a more general case (4.3) defines a system
of M coupled differential equations.

The next step to extract the Green’s function is to find the asymptotic behavior of the fields by studying
the linearized equations of motion in the limit r →∞. A general boundary expansion takes the form

δΦ(r, x)I ∼ δΦs(x)Ir−∆I
− + δΦv(x)Ir−∆I

+ for r →∞ (4.4)

where ∆I
± depends on the field considered and ∆I

− < ∆I
+, so that δΦ(x)Is is the coefficient of the leading term

and it represent the change in the source related to the field ΦI , hence the subscript s, while the coefficient
of the subleading order is related to the change of the VEV of the corresponding operator and we denote it
as δΦ(x)Iv ∝ δ〈OI〉. In a theory with translation invariance we can Fourier transform the field to obtain a
set of M second order ordinary differential equations in r. We define the Fourier transform as:

δΦ(r, x)I =

∫
ddk

(2π)d
δΦ(r, k)Ieikµx

µ
, (4.5)

with xµkµ = ηµνx
µkµ and kµ = (ω,k). The regularized boundary term S

(2)
bdy then assumes the form

S
(2)
bdy =

1

2

∫
ddk

M∑
I=1

δ〈OI〉 δΦI
s , (4.6)

from which we can extract the fluctuations of the vacuum expectation values δ〈OI〉 for each operator.

In the uncoupled problem, we know that in linear response theory we could define GOOδΦs = δ〈O〉 and
extract the retarded Green’s function by simply taking the ratio of expectation value obtained from (4.6)
and the corresponding source term. In the fully coupled problem, however, a change in any of the operators,
for example δ〈OJ〉, is given by a linear combination of changes in all the source terms

δ〈OJ〉 (k) =
M∑
I=1

GROJOI (k)δΦI
s(k) , (4.7)

and we can then rewrite the boundary term as

S
(2)
bdy =

1

2

∫
ddk

(2π)d

M∑
I,J

δΦI
sG

R
OIOJ

δΦJ
s ≡

1

2

∫
ddk

(2π)d

M∑
I,J

δΦsG
RδΦs , (4.8)

where we defined the retarded Green’s function matrix GR as GR
IJ = GROIOJ .

The big difference is due to the fact that when the sources are coupled, a single solution of the linearized
equations of motion is not enough. In order to extract the Green’s functions, we need M independent
solutions. So how do we proceed to extract these independent solutions?

1Here when we refer to the boundary term we consider the finite boundary term that we obtain after the renormalization
procedure explained in chapter 2. As a brief reminder, when using the Stokes’ theorem after partial integration we evaluate the
integrand at a finite cutoff Λ� 1, we then introduce boundary terms to cancel the divergent terms in the limit Λ→∞ and we
then perform this limit to obtain a regularized boundary action.
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The linearized equations of motion (4.3) define a system of M second order linear ordinary differential
equations (in general, we can have N ≤ M coupled differential equations, and then we would need only N
independent solutions), and we therefore need to provide two initial conditions to solve them. As explained
in chapter 2, a crucial part in the holographic computation of retarded Green’s functions is the choice of the
correct boundary conditions at the horizon. In real-time formalism, the solution close the horizon assumes
the form

ΦI ∼ αI(k)(r − rh)±βI for r → rh (4.9)

with αI(k) a prefactor that cannot depend on r, and βI a complex number. In many cases the exponent
assumes the form β = iω

4πT (however, this is not always true as we will see, for example, for the time component
of the gauge field in our model). We then have two possibilities, corresponding to the different sign at the
exponent, ingoing and outgoing boundary conditions. In order to obtain the retarded time correlators, we
have to impose the ingoing wave condition at the horizon. With the Fourier convention we have chosen, this
corresponds to picking the solution with the minus sign as it can be seen by restoring the time dependence
in the solution2. Choosing the ingoing solutions accounts for one of the two degrees of freedom we have
in imposing the boundary conditions for the second order differential equations, the other is determined by
fixing the prefactors αI(k). Due to the linearity of the differential equations, of course in the uncoupled
problem the prefactor does not play any role in the solution, however, when the equations are coupled, a
linearly independent set of prefactors generates independent solutions. A solution is therefore completely
determined by all the M prefactors, that we can organize in a vector

α ≡ (α1, α2, · · · , αm) , (4.10)

and we then have a map between independent solutions to the linearized equations of motion and linearly
independent vectors α.

In order to generate the necessary solutions to extract the Green’s function we then just have to define a set
of linearly independent vectors that we can choose for example as:

α(1) =(1, 1, 1, · · · , 1) ,

α(2) =(1,−1, 1, · · · , 1) ,
...

α(J) =(1, 1, 1, · · · , −1︸︷︷︸
Jth element

, · · · , 1) ,

...

α(M) =(1, 1, 1, · · · ,−1) ,

(4.11)

and solve the linearized equations of motion M times, one for each αI . From each solution, using the
boundary expansion (4.4), we can extract the sources of every operator and construct a vector of sources
fluctuations

δΦI
s ≡ (δΦI

s,1, δΦ
I
s,2, · · · , δΦI

s,m) , (4.12)

corresponding to solution I. Putting all the solutions together, we can construct a matrix A, where each
line is vector of sources fluctuations corresponding to different solutions, that is:

A =


δΦ1

s,1 δΦ1
s,2 · · · δΦ1

s,m
δΦ2

s,1 δΦ2
s,2 · · · δΦ2

s,m
...

...
. . .

...
δΦm

s,1 δΦm
s,2 · · · δΦm

s,m

 . (4.13)

2Restoring the time dependence e−iωt at the horizon the solution behaves as ∼ e−iω
(
t± log(r−rh)

4πT

)
. Defining the new coordinate

r̃ = log(r− rh)/(4πT ), that sets the horizon at −∞ and the boundary at +∞, the near horizon behavior is ∼ e−iω(t±r̃) and we
see that the solution with the minus sign describes a wave moving towards the horizon as t grows.
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In a similar way we construct a matrix of the changes in the vacuum expectations value that we obtain from
(4.6)

B =


δ〈O〉11 δ〈O〉12 · · · δ〈O〉1m
δ〈O〉21 δ〈O〉22 · · · δ〈O〉2m

...
...

. . .
...

δ〈O〉m1 δ〈O〉m2 · · · δ〈O〉mm

 . (4.14)

Now, in matrix form, equation (4.7) reads

AGR = B (4.15)

and all that is left to do to obtain the Green’s functions is to invert the matrix A and compute GR = A−1B.
Since a matrix M is invertible if and only if its determinant is nonzero, we see that the poles are the same
for all the Green’s functions and they are determined by det[A(k)] = 0, where we have explicitly written the
momentum dependence of the matrix A as a reminder that the coefficients are not constant in k.

In order to better understand the procedure, in the remainder of the chapter we will go through the steps of
the computation for the gauge and scalar field fluctuations in the holographic superconductor model.

4.2 Fluctuations and intrinsic dynamics

The action describing the minimal model of the holographic superconductor presented in chapter 3 is

S =

∫
dd+1x

√
−g
(

c3

16πG
(R− 2Λ)− 1

4µ0c
FµνF

µν − |Dµφ|2 −
m2c2

~2
|φ|2)

)
, (4.16)

that depends on three fields: the metric tensor gµν , the gauge vector field Aµ and the complex scalar field
φ, coupled to the other two through covariant derivatives. As we have just seen, what this implies is that
when we consider fluctuations of one field, we necessarily have to turn on fluctuations of the other two.
This problem is in principle quite straightforward, but it involves solving a very large set of coupled ODE
that becomes a very challenging task numerically, so we start with a simplification. We study what we
call intrinsic dynamics. We define it as the dynamics of a less coupled problem obtained by neglecting
fluctuations of some of the fields involved, that is for example, the intrinsic dynamics of the order parameter
can be obtained by letting the complex scalar field fluctuates φ → φ + δφ but considering the other fields
static (i.e., simply setting the other fields fluctuations to zero). This is surely a good approximation very
close to the critical temperature where the order parameter that regulates the coupling is small, however, as
we lower the temperature the strength of the coupling becomes more and more relevant and the contributions
due to the interactions with other fields fluctuations completely change the dynamics and they cannot be
ignored to obtain the physical solution. So why are we interested in the intrinsic dynamics?

The reason is that looking at the intrinsic dynamics gives us insight into the contribution of each field
fluctuations to the fully coupled problem. What we expect, from the Dyson equation, is that even at low
temperature, where the coupling can completely change the behavior of the solution, we can still write, at
least for the long-wavelength dynamics, the Green’s function of the full problem as composed by the Green’s
function of the intrinsic dynamics, plus a self-energy contribution due to the coupling that will change the
behavior of the system. That is, if we call G0 the Green’s function of the intrinsic dynamics, for example
of the scalar field, we expect to be able to write the Green’s functions of the scalar sector of the the fully
coupled problem G as

G−1 = G−1
0 − Σ . (4.17)

with Σ the self-energy due to the coupling3.
3Remember that the Dyson equation is G = G0 +G0ΣG.
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This is important because it gives an idea of how each term in the model contributes to the pole structure,
moreover, when the coupling is strong, for example at low temperature for the gauge and scalar field coupling,
we must rely on numerical methods to obtain the Green’s function as we cannot do a perturbation expansion.
One of the shortcomings of numerical solutions to a problem with several variables involved is that it may be
extremely difficult to extract a mathematical model that correctly describes the result, as this depends on
many variables and the exact contribution of each of them is not known and may be hard to understand from
a physical perspective. If (4.17) holds, studying the intrinsic dynamics gives us a procedure to start from a
simpler problem, and once we understand it, we can build from it by gradually introducing the contributions
of the coupling with other fields until we understand the full problem.

4.3 Fluctuations of the scalar and gauge field

In this thesis we study the intrinsic dynamics of the scalar field and the gauge field, that is, we neglect
fluctuations of the metric tensor. Notice that this is different from the probe limit where we send the charge
q to infinity while keeping the qAµ and qφ fixed. In this limit, the metric decouples from the other fields,
and we can indeed neglect metric fluctuations. However, in the following we use a fully coupled background
solution defined by the equations (3.29)-(3.32) for q ∼ 1, that is different from the background in the probe
limit.

Since the metric is kept fixed, we can focus our attention on the matter part of the action

S = −
∫
dd+1x

√
−g
(

1

4
FµνF

µν + (Dµφ)∗Dµφ+m2φ∗φ

)
(4.18)

Upon variation of the fields, the terms second order in fluctuations give S(2) = S
(2)
bulk + S

(2)
bdy with

δS
(2)
bulk = −1

2

∫
dd+1x

√
−g
[
− δφ∗

(
DµD

µ −m2
)
δφ− δφ

(
DµD

µ −m2
)
δφ∗

+ δAµ
(
gµν

(
−�+ 2q2φ2

)
+∇µ∇ν

)
δAν

+ δφ
(
−iqφ∗∇ν − 2iq∂νφ∗ + 2q2Aνφ∗

)
δAν + δAµ

(
iqφ∗∂µ + 2q2Aµφ∗ − iq∂µφ∗

)
δφ

+ δφ∗
(
iqφ∗∇ν + 2iq∂νφ+ 2q2Aνφ

)
δAν + δAµ

(
−iqφ∂µ + 2q2Aµφ+ iq∂µφ

)
δφ∗
]
,

(4.19)

that can be conveniently rewritten in matrix form (notice the change of sign in the prefactor)

δ2Sbulk =
1

2

∫
dd+1x δΦ†G−1

B δΦ , (4.20)

with

δΦ =

 δφ
δφ∗

δAν

 δΦ† =
(
δφ∗ δφ δAµ

)
, (4.21)

and

G−1
B =

 DµD
µ −m2 0 −iqφ∇ν − 2iq∂νφ− 2q2Aνφ
0 D∗µD

µ∗ −m2 iqφ∗∇ν + 2iq∂νφ∗ − 2q2Aνφ∗

iq∂µφ∗ − 2q2Aµφ∗ − iqφ∗∂µ −iq∂µφ− 2q2Aµφ+ iqφ∂µ gµν
(
∇σ∇σ − 2q2φ2

)
−∇ν∇µ

 .

(4.22)

As explained in the previous section, the linearized equations of motions are defined by G−1
B δΦ = 0.
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The boundary term, before regularization, is

δS
(2)
bdy = −1

2

∫
dd+1x

√
−g∇µ

(
iqφ∗δAµδφ− iqφδAµδφ∗ + (∂µδφ

∗ + iqδφAµ) δφ+ (∂µδφ− iqδφAµ) δφ∗

−∇νδAµδAν +∇µδAνδAν
)

.

(4.23)

Using Stokes’ theorem and inserting a high energy cutoff r = Λ we can rewrite it as

δS
(2)
bdy = − lim

Λ→∞

1

2

∫
ddx
√
−hnµ [hνσFµσδAν + δφ(∂µφ

∗ + iqAµφ
∗) + δφ∗(∂µφ− iqAµφ)]

∣∣∣∣
Λ

, (4.24)

where we used the fact that the integrand is zero when evaluated at the horizon, due to the initial conditions
of the background fields.

To make calculations simpler, we choose a gauge where δAr = 0. Notice that this does not completely fix
the gauge as we are still free to make a gauge transformation that does not depend on r.

Now the first step consists of Fourier transforming the fields and writing down the linearized equations of
motion in terms of the background ansatz presented at the beginning of chapter 3. For the Fourier transform,
we choose the convention (4.5) for all the fields. Notice that this means that we treat δφ and δφ∗ as two
different fields and we use the same sign in the exponent of the Fourier transform: δφ(x) ∝

∫
ddk δφ(k)eikµx

µ

and δφ∗(x) ∝
∫
ddk δφ∗(k)eikµx

µ . We could just as well choose to use the complex conjugate Fourier transform
for δφ∗ and in the end we would obtain the same results as long as we stay consistent all along the computation
(in particular we have to be careful at which solution corresponds to ingoing boundary condition at the
horizon, changing convention requires a change in the sign of the exponent in the ingoing boundary condition).
First of all, thanks to rotational invariance we can set the momentum in one direction, without loss of
generality let us pick the x direction so that kµ = (ω, k, 0, · · · , 0), this simplifies the linearized EOM and
from (4.22) with the metric ansatz (3.22) we obtain:

0 = fδφ′′ +

(
f ′ +

(d− 1)f

r
− fχ′

2

)
δφ′ +

(
eχω2

f
− k2

r2
+

2qeχωAt
f

+
q2eχA2

t

f
−m2

)
δφ

+
qkφ

r2
δAx +

(
qeχωφ

f
+

2q2eχφAt
f

)
δAt

(4.25)

0 = fδφ∗′′ +

(
f ′ +

(d− 1)f

r
− fχ′

2

)
δφ∗′ +

(
eχω2

f
− k2

r2
− 2qeχωAt

f
+
q2eχA2

t

f
−m2

)
δφ∗

− qkφ

r2
δAx −

(
qeχωφ

f
− 2q2eχφAt

f

)
δAt

(4.26)

0 = δA
′′
x +

(
f ′

f
− χ′

2
+
d− 3

r

)
δA′x +

(
eχω2

f2
− 2q2φ2

f

)
δAx +

eχkω

f2
δAt +

qkφ

f
(δφ− δφ∗) (4.27)

0 = δA
′′
t +

(
χ′

2
+
d− 1

r

)
δA′t −

(
k2

r2f
+

2q2φ2

f

)
δAt −

kω

r2f
δAx −

qωφ

f
(δφ− δφ∗)− 2q2φAt

f
(δφ+ δφ∗)

(4.28)

0 =
eχω

f
δA′t +

k

r2
δA′x + qφ

(
δφ′ − (δφ∗)′

)
+ qφ′ (δφ∗ − δφ) (4.29)

0 = δA
′′
i +

(
f ′

f
− χ′

2
+
d− 3

r

)
δA′i +

(
eχω2

f2
− k2

r2f
− 2q2φ2

f

)
δAi , (4.30)

where the last line is a set of d− 2 equations, one for each transverse components xi 6= t, x. These equations
are decoupled from all the others and do not play any significant role in the holographic superconductor
description (since they are decoupled from the order parameter fluctuations they do not affect the dynamics
of the order parameter in the superconducting phase), so we will not consider them further.
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What we are interested in is then a set of five coupled equations in four unknowns, so it looks like there is
one extra equation. The five equations, however, are compatible and later we will see that the constraint
equation (4.29) has a nice interpretation on the boundary, it gives the Ward identities of the theory.

As the next step, we do the same for the boundary term, inserting the expression for the metric in (4.24)
and considering the gauge choice we obtain

S
(2)
bdy = − lim

Λ→∞

1

2

∫
ddx rd+1

[
r−2ηνσδA′σδAν + δφ(δφ∗)′ + δφ∗δφ′

] ∣∣∣∣
r=Λ

, (4.31)

that in Fourier space becomes

S
(2)
bdy = − lim

Λ→∞

1

2

∫
ddk

(2π)d
rd+1

[
r−2ηνσδA′σ(r, kµ)δAν(r,−kµ) + δφ(r, kµ)δφ∗′(r,−kµ) + δφ∗(r, kµ)δφ′(r,−kµ)

] ∣∣∣∣
r=Λ

.

(4.32)

We now need to find the boundary behavior of the fields involved. This can be done by studying the
equations (4.25)-(4.29) in the limit r → ∞. However, we have done this already. The result is equivalent
to the boundary behavior of the zero temperature solution since the spacetime is asymptotically AdS and
the the different geometry in the bulk does not influence the expansion for r → ∞. We have already seen
in chapter 2 the asymptotic solution for both the scalar and the gauge field in AdS. For a scalar field it is
given by

δφ = δφs(ω, k)r−∆− + δφv(ω, k)r−∆+ + · · · (4.33)

with

∆± =
d

2
±
√
d2

4
+m2 . (4.34)

Notice that now we are considering fluctuations of the order parameter as a response to a source, so we do
not want to put the source term to zero as it was for computing the VEV of the scalar operator.

For the gauge field on the other hand, in chapter 2 we first derived the boundary expansion using a power
law ansatz, but as we notice at the end from the full solution in AdS, this ansatz fails to capture a divergent
logarithmic term in boundary theories with an even number of dimensions d ∈ 2N (as a reminder, the solution
close to the boundary is proportional to the Bessel function ∝ Kd/2−1, that for integer indices, i.e., for d
even, contains a term r−2 log(r)). We postponed the treatment of the correct renormalization procedure
until now, but we will explain it in detail below. Up to this point, we decided to treat everything in terms
of a general number of dimensions d, in order to be able to quickly adapt our results for systems of different
dimensions. The most commonly studied superconductor model is in d = 2 + 1, mostly because several
high-temperature superconducting materials are effectively two-dimensional. Nonetheless, in the following,
we will work in d = 3 + 1, with the example in mind of a Fermi gas at unitarity. In such a number of
dimensions, the asymptotic behavior of the gauge field becomes

δAµ(r, ω, k) = δaµ(ω, k) + δbµ(ω, k)r−2 + δcµ(ω, k)r−2 log (r) + · · · , (4.35)

where the dots denote higher order terms (the argument of the logarithm is, in general, the dimensionless
quantity r/rh, but we used the isometries of AdS to set rh = 1). The three momentum dependent coefficients,
are not all independent. Inserting this boundary expansion into the linearized equation of motions and
matching coefficients of the same order in r give:

δct =− k

2
(ωδax + kδat) (4.36)

δcx =
ω

2
(ωδax + kδat) . (4.37)
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Substituting the boundary expansions of the field in the boundary action we have

S
(2)
bdy = lim

Λ→∞

1

2

∫
d4k

(2π)4

[
ηµσ

(
2δbσδaµ + 2δcσδaµ log (r) + δcσδaµ +O(r−2 log2(r))

)
+
(
∆−δφsδφ

∗
sr

2ν + ∆+δφsφ
∗
v + ∆−δφvφ

∗
s +O(r−2ν)

)
+
(
∆−δφ

∗
sδφsr

2ν + ∆+δφ
∗
sφv + ∆−δφ

∗
vφs +O(r−2ν)

) ]∣∣∣∣
r=Λ

,

(4.38)

and we can now clearly see that there are divergent terms in the action, both for the scalar field components
and the gauge field. The counterterms that respect the symmetries of the action and cancel the divergences
are

Sc.t. φ = −
∫
ddx
√
−h∆−φφ

∗
∣∣∣∣
Λ

(4.39)

Sc.t. A =
log(Λ)

4

∫
ddx
√
−hFµνFµν

∣∣∣∣
Λ

, (4.40)

and after expanding in fluctuations of the fields we find

S
(2)
c.t. φ = −1

2

∫
d4x
√
−h2∆−δφδφ

∗
∣∣∣∣
r=Λ

S
(2)
c.t. A =

1

2

∫
d4x log(Λ)

√
−hδAν∇µδFµν

∣∣∣∣
r=Λ

,
(4.41)

that in k-space and in the boundary limit become:

S
(2)
c.t. φ = −1

2

∫
d4k

(2π)4

(
2∆−δφsδφ

∗
sr

2ν + 2∆−δφsδφ
∗
v + 2∆−δφ

∗
sδφv +O(r−2ν)

) ∣∣∣∣
r=Λ

(4.42)

δ2Sc.t. A =
1

2

∫
d4k

(2π)4
log (Λ) ηµρηνσδaν (kµkρδaσ − kµkσδaρ) +O(r−2 log2(r))

∣∣∣∣
r=Λ

(4.43)

. (4.44)

Given the explicit form of cµ (4.36) and (4.37) the second counterterm can be written as

S
(2)
c.t. A =

∫
d4k

(2π)4

[
log (r) (−k(kδat + ωδax)δat − ω(kδat + ωδax)δax) +O(r−2 log2(r))

] ∣∣∣∣
r=Λ

=

∫
d4k

(2π)4

[
log (r) (2δctδat − 2δcxδax) +O(r−2 log2(r))

] ∣∣∣∣
r=Λ

=−
∫

d4k

(2π)4

[
log (r) ηµσ (2δcσδaµ) +O(r−2 log2(r))

] ∣∣∣∣
r=Λ

.

(4.45)

Adding the counterterms to (4.38), we obtain the regularized boundary action and we can perform the limit
Λ→∞ and read off the fluctuations in the expectation values4

S
(2),R
bdy =

1

2

∫
d4k

(2π)4

[
(−2δbt(ω, k) + δct(ω, k)) δat(−ω,−k) + (2δbx(ω, k)− δcx(ω, k)) δax(−ω,−k)

+ 2νδφv(ω, k)δφ∗s(−ω,−k) + 2νδφv(ω, k)δφ∗s(−ω,−k)

]∣∣∣∣
r=Λ

=
1

2

∫
d4k

(2π)4

∑
I

δ〈OI(ω, k)〉 δΦI
s(−ω,−k) ,

(4.46)

4Remember that the 1/2 in front of the boundary action should not be included in the expectation value. In a Taylor
expansion up to second order we have S[Φ + δΦ] = S[Φ] + δS[Φ]

δΦ
δΦ + 1

2
δ2S[Φ]
δΦδΦ

(δΦ)2, and the 1/2 in front of the integral is exactly
that factor in front of the second order term in the expansion. However, the expectation value from the GKPW rule is defined
by a functional derivative of the action δS[Φ]/δφs and it is therefore clear that the right relation is (4.6).
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Now we that we know the form of the boundary terms, the only thing left to do is to finally solve the coupled
system of differential equations (4.25)-(4.27) and extract the coefficients of the expansion. In order to impose
initial conditions at the horizon, we expand the solution for r → rh, and use the power law ansatz (r− rh)β .
For all the fields there are going to be to possible solutions for β, corresponding to the incoming and outgoing
wave condition. With the convention we chose for the Fourier transform, the incoming boundary conditions
corresponds to the negative solution for β. We then obtain

δAx ∼ αx(r − rh)−
iω

4πT

δAt ∼ αt(r − rh)1− iω
4πT

δφ ∼ αφ(r − rh)−
iω

4πT

δφ∗ ∼ αφ∗(r − rh)−
iω

4πT ,

(4.47)

where the coefficients are not all independent, but related by the constraint equation, that gives:

αt = i

(
k

r2
h

αx + qφ(rh)(αφ − αφ∗)
)
e−χ(rh)/2

1− iω
4πT

. (4.48)

This seems to generate a problem, since we now have only three independent coefficient to set for the initial
conditions, and we can only generate three different solutions. There is however, a fourth solution that comes
from a gauge transformation

δax = −k , δat = ω , δφ = −qφ(r), δφ∗ = qφ(r), (4.49)

and we can then construct the matrix A of sources as

A =


δa1
t δa1

x δφ1
s δφ∗s

1

δa2
t δa2

x δφ2
s δφ∗s

2

δa3
t δa3

x δφ3
s δφ∗s

3

−ω k 0 0

 . (4.50)

where in the last line we used the fact that φ(r) is unsourced. Similarly we write the corresponding matrix
of expectations value

B =


δ
〈
J t
〉

1
δ〈Jx〉1 δ〈O〉1 δ〈O∗〉1

δ
〈
J t
〉

1
δ〈Jx〉2 δ〈O〉2 δ〈O∗〉2

δ
〈
J t
〉

3
δ〈Jx〉3 δ〈O〉3 δ〈O∗〉3

0 0 −q 〈O〉 q 〈O〉

 (4.51)

=


−2δb1t 2δb1x 2νδφ1

s 2νδφ∗1s
−2δb2t 2δb2x 2νδφ2

s 2νδφ∗2s
−2δb3t 2δb3x 2νδφ3

s 2νδφ∗3s
0 0 −q 〈O〉 q 〈O〉

+


−k

2 (ωδa1
x + kδa1

t ) −ω
2 (ωδa1

x + kδa1
t ) 0 0

−k
2 (ωδa2

x + kδa2
t ) −ω

2 (ωδa2
x + kδa2

t ) 0 0

−k
2 (ωδa3

x + kδa3
t ) −ω

2 (ωδa3
x + kδa3

t ) 0 0
0 0 0 0

 (4.52)

(notice that in the last line 〈O〉 is the equilibrium VEV and not the δ〈O〉). We can define B ≡ B̃+C where
B̃ is the matrix of the subleading coefficient in the expansion in (4.52), while C is the matrix containing the
terms coming from the regularization of the gauge field.

The full set of Green’s function

GR =


Gtt Gxt GOt GO

∗t

Gtx Gxx GOx GO
∗x

GtO GxO GOO GO
∗O

GtO
∗

GxO
∗

GOO
∗

GO
∗O∗

 (4.53)

is found by inverting the matrix A

GR = A−1B = A−1B̃ +A−1C = A−1B̃ +K (4.54)
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where we can easily show that

K =


−k2

2 −kω
2 0 0

−kω
2 −ω2

2 0 0
0 0 0 0
0 0 0 0

 . (4.55)

Notice that the terms coming from the renormalization of the gauge field only add a real contribution to the
gauge Green’s functions, therefore they do not influence the spectral function, A(ω, k), that is related to the
imaginary part of the Green’s function:

A(ω, k) = − 2

π
Im [GR(ω, k)] . (4.56)

In section 4.6 we show the results obtained by numerically solving the linearized equation of motion and
extracting the coefficients of the leading and subleading term in order to construct the matrix A and B̃.
However, let us first take a look at some simpler cases, namely, the intrinsic dynamics of the scalar field and
the optical conductivity.

4.4 Intrinsic dynamics of the scalar field

In this section we present the results for the intrinsic dynamics of the order parameter fluctuations. Remember
that this means we have to ignore the coupling of the scalar field fluctuation with both the metric and the
gauge field fluctuations. Since we already ignored the metric fluctuations in the previous section, this accounts
to setting δAµ = 0 in the S(2) derived before, equation (4.32). The operator GB in (4.3) reduces to a 2× 2
diagonal matrices

Gintr
B,OδΦ =

(
DµD

µ −m2 0
0 D∗µD

µ∗ −m2

)(
δφ
δφ∗

)
(4.57)

that defines two uncoupled linearized equations of motion. Since they are related by complex conjugation,
we can focus on one of them, for example

(DµD
µ −m2)δφ = 0 . (4.58)

Setting the gauge fluctuations to zero in the regularized boundary term (4.46) leaves us with

S
(2),R
bdy =

1

2

∫
d4k

(2π)4

[
2νδφv(ω, k)δφ∗s(−ω,−k) + 2νδφv(ω, k)δφ∗s(−ω,−k)

]
, (4.59)

with the difference that now, since the equations are decoupled fluctuations of the expectation values of the
order parameter δ〈O〉 (ω, k) = 2νδφv(ω, k) are only sourced by the corresponding source term δφs and we
can extract the Green’s function by simply taking a ratio of the subleading and leading order in the boundary
expansion

GintrOO (ω, k) = 2ν
δφv(ω, k)

δφs(ω, k)
. (4.60)

Before showing the numerical results, we briefly review what we should expect in the low-energy limit from
a Ginzburg-Landau theory of standard superfluid.
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4.4.1 Ginzburg-Landau theory of superfluidity

As we have seen at the end of chapter 3, we are dealing with a second-order phase transition that resembles
the usual phase transition of superfluidity, this suggests that we can model the order parameter dynamics
with an effective Ginzburg-Landau theory.

In order to understand the phenomenology of the symmetry breaking, is enough to consider a simple model
with only temperature dependence, described in d = 3 + 1 by the action

S = −
∫
d4x

(
α(T )|O|2 +

β(T )

2
|O|4

)
, (4.61)

with α ∈ R and β ∈ R+. For α ≥ 0 the action clearly presents a minimum for 〈O〉 = 0, but for α < 0,
the stationary point at 〈O〉 = 0 becomes a maximum and new minima occur at 〈O〉 =

√
−α/βeiθ, and we

now have an infinitely degenerate ground state. Choosing one of the configurations (i.e., fixing a phase θ)
accounts for the spontaneous symmetry breaking for T < Tc. Here we pick 〈O〉 =

√
−α/β, in accordance to

our choice of a real background field φ(r) in the holographic theory.

As in mean-field superfluidity, we showed that the holographic results behaves as 〈O〉 ∝ |T − Tc|1/2 for
T ≈ Tc and we can therefore choose α(T ) ≈ α0(T − Tc) and β(T ) ≈ β0 to obtain the observed temperature
dependence near Tc.

In order to study the low-energy dynamics of the order parameter fluctuations, however, we obviously need
to introduce a space and time dependence in the model (4.61). The time-dependent low-energy effective
Ginzburg-Landau model, consistent with the symmetries of the problem is

S = −
∫
dt

∫
d3x

(
iaO∗∂tO + γ|∇O|2 + α|O|2 +

β

2
|O|4

)
. (4.62)

It is a low-energy limit as it only accounts for the lowest order terms in the gradient expansion, and is
then valid for small values of ω and k. The coefficient a is complex, and it relates to dissipation of the order
parameter due to thermal fluctuations that can break the condensed pair. As we are interested in fluctuations
of the order parameter, we let it fluctuates around its equilibrium expectation value O = 〈O〉+ δO.

In the unbroken phase we have 〈O〉 = 0, and in Fourier space we get

S(2) =
−1

(2π)4

∫
dω

∫
d3k δO∗(ω, k)

(
aω + γ

∣∣k2
∣∣+ α

)
δO(ω, k) , (4.63)

and we obtain the Green’s function

GOO∗(ω, k) =
1

aω + γ|k|2 + α
, (4.64)

where close to Tc we can write α = α0(T − Tc). This results predicts a quadratic mode

ω = −Re(a)

|a|2
(
|k|2 + α

)
+ i

Im(a)

|a|2
(
|k|2 + α

)
and we see that the minimum of this mode moves towards ω = 0 as T → Tc since α→ 0 in this limit.

On the other hand, as we lower the temperature below Tc, the system acquires a non zero expectation value
〈O〉 =

√
−α/β. Using this value in the expansion, the action with terms second order in fluctuations reads

S(2) =
−1

(2π)4

∫
dω

∫
d3k δO∗(ω, k)

(
aω + γ

∣∣k2
∣∣− α)

2
δO(ω, k) + δO(−ω,−k)

(
−a∗ω + γ

∣∣k2
∣∣− α)

2
δO(−ω,−k)

− α

2
(δO∗(ω, k)δO∗(−ω,−k) + δO(ω, k)δO(−ω,−k))

=
−1

2(2π)4

∫
dω

∫
d3k

(
δO∗(ω, k) δO(ω, k)

)
G−1
R

(
δO(−ω,−k)
δO∗(−ω,−k)

)
(4.65)
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with

G−1
R =

(
−a∗ω + γ

∣∣k2
∣∣+ α −α

−α aω + γ
∣∣k2
∣∣− α

)
. (4.66)

The pole of GOO∗ are given by the zeros of the determinant of G−1
R

det
[
G−1
R

]
= −|a|2ω2 + γ|k|2

(
γ|k|2 − 2α

)
+ 2iIm(a)ω

(
γ|k|2 − α

)
(4.67)

and are then defined by

ω =
1

|a|2

(
iIm(a)

(
γ|k|2 − α

)
±
√
|a|2γ|k|2(γ|k|2 − 2α)− Im(a)2(γ|k|2 − α)2

)
. (4.68)

Here we see that, at nonzero temperature where Im(a) < 0, for small value of k such that γ|k|2 � |α| the poles
become purely imaginary. We therefore expect to see strongly overdamped mode for k ≈ 0, corresponding to
broad regions of non zero values in the spectral function. As we lower the temperature Im(a) → 0, and we
should see this overdamped mode becoming increasingly sharp in the spectral function, and when we reach
T = 0, they become the two sound modes known as Anderson-Bogliubov modes, given by ω = ±

√
2|γ||k|/|a|.

In figure 4.1 we show qualitatively what the poles looks like in this model, that is, we fix some values for the
coefficients γ, α and Re(a) and plot the spectral function as we send Im(a) to zero. Of course this is just an
oversimplification since we are not taking into account the actual temperature dependence of the parameters
other than Im(a), however it gives us a good qualitative understanding of what to expect when we study the
order-parameter dynamics.

4.4.2 High-temperature solution

In the unbroken phase, that is for temperatures greater than Tc, the dynamics of the gauge fluctuations,
described by (4.58), is defined on a Reissner-Nordström background and the equation of motion explicitly
written in terms of the metric components can be obtained from (4.25) by setting the fields φ(r) = 0 and
χ(r) = 0 (and their derivatives):

fδφ′′ +

(
f ′ +

(d− 1)f

r

)
δφ′ +

(
ω2

f
− k2

r2
+

2qωAt
f

+
q2A2

t

f
−m2

)
δφ = 0 (4.69)

where f(r) and At(r) are given by the RN solutions (3.17) and (3.18) respectively.

Notice that in this background the fluctuations decouple, and the dynamics of the order parameter is therefore
independent of the gauge field fluctuations.

We solved the equation numerically for several values of ω and k, and for each extracted the coefficients of
the boundary expansion δφs(ω, k) and δφv(ω, k) to obtain the Green’s function from (4.60). In particular
we are interested in the spectral function (4.56), as it gives the density of states. In figure 4.2a and 4.2b we
show the numerical results for T = 3.5Tc and T = 1.5Tc. The color gradient shows the absolute value of the
spectral function, rescaled by µ2ν to make it dimensionless.

In the short-wavelength limit, when the energy scale becomes larger than the scale set by the chemical
potential and the temperature, the system does not feel the presence of this low-energy scale and we should,
therefore, recover the AdS result we obtained in chapter 2. In figure 4.3 we plotted the spectral function for
this AdS result for comparison (the absence of a color scale is due to the fact that in the AdS solution there is
not a scale and only relative values matter), and we can notice that as we move to larger ω in the holographic
superconductor spectral function we indeed recover the AdS result. However there are some important
differences, first of all, in the AdS solution the spectral function is symmetric and nonzero everywhere inside
the lightcone |ω| = |k|, the spectral function for the superconductor model is shifted by the presence of the
chemical potential that moves the lightcone to |ω + µ| = |k| and generates an asymmetry in the spectral
weight for positive and negative values of ω. Furthermore, for the holographic superconductor model, the
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(a) Im(a) = −1 (b) Im(a) = −1/4

(c) Im(a) = 10−6

Figure 4.1: Qualitative behavior of the spectral function in the G-L model for fixed α = −1, γ = 1/2, and
Re(a) = 1 as we decrease the value of |Im(a)|. Notice that this does not precisely represent the actual behavior
of the model as we are neglecting the temperature dependece of all the parameters but Im(a), however it
gives a qualitative idea of the shape of the spectral function. As Im(a) → 0, we see the appereance of the
Anderson-Bogoliubov modes.
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lightcone is not filled by the spectral weight but we see a gap opening up, that becomes increasingly evident
as we raise the temperature as we can see in figure 4.2a. The reason is that in the AdS conformal solution
there is no notion of temperature and even low-energy levels are accessible. As we turn on a temperature,
we see a gap opening, consistent with the order parameter being massive.

As we move towards the critical temperature, we can see the large-wavelength behavior of the system,
described by the effective Ginzburg-Landau theory. In particular, in figure 4.2b we see the predicted quadratic
dispersion relation shifted up by the value of α > 0.

0

1

2

3

4

(a) T = 3.5Tc

0

1

2

3

4

(b) T = 1.5Tc

Figure 4.2: Absolute value of the spectral function for the intrisic dynamics of the order parameter for two
values of T > Tc. In this plots q = 3, m2 = −3.5 and the spectral function has been rescaled by µ2ν to make
it dimensionless.

Figure 4.3: Absolute value of the spectral function for the AdS scalar field solution.
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4.4.3 Superfluid phase solution

In the superfluid case, we have to restore the background fields φ(r) and χ(r), while setting to zero δAµ,
µ = x, t in (4.25), in order to consider the intrinsic dynamics. The defining equation then becomes

fδφ′′ +

(
f ′ +

(d− 1)f

r
− fχ′

2

)
δφ′ +

(
eχω2

f
− k2

r2
+

2qeχωAt
f

+
q2eχA2

t

f
−m2

)
δφ = 0 (4.70)

with f(r) now determined by the full background (3.29), that we solved numerically.

The results for different values of the temperature are shown in figure 4.4.

We can notice that for T = 0.99Tc where we are very close to the phase transition the spectral function
resembles the one for the solution in the unbroken phase, where the quadratic mode is clearly visible, and it
has a minimum positioned at ω = 0, consistent with the fact that α ≈ 0 in the Ginzburg-Landau model for
T ≈ Tc.

As we lower the temperature, we see the quadratic peak getting sharper, until it becomes a delta function
peak as T → 0, and in order for the peak to be visible in 4.4 for T = 0.03Tc we needed to add a small
imaginary part ω → ω + iε. We can also notice that the spectral weight for lower temperature moves inside
a cone |ω| < cs(k)|k|, where the speed cs is a function of mometum. In particular we have that at low
temeperature the cs ≈ 0.85, while it grows for higher momenta and asymptically approach cs = 1. This
coincide with the effective speed of light in the deep interior of the bulk (see figure 4.5). From the metric
(3.22), we see that the slice of constant r is described by

ds2 = −f(r)e−χ(r)dt2 + r2dx2
d−1 . (4.71)

For a fixed r, massless particle have an effective speed defined by ds2 = 0:

c(r) =

√
f(r)e−χ(r)

r2
(4.72)

that approaches the speed of light in the limit r →∞ as f(r) ∼ r2 and χ(r) ∼ 0 in this limit.

None of the observed results coincide with the prediction of the standard Ginzburg-Landau model. In [17],
Plantz, Stoof and Vandoren propose a large-N Ginzburg-Landau model to describe the qualitative behavior
of the order parameter intrinsic dynamics.

They propose that the boundary field theory should be described by an effective theory of N complex order
parameter On

∣∣
n=1,··· ,N . The gravitational dual only contains one complex scalar field with a U(1) symmetry,

therefore the holographic model only describes the breaking of one of the order parameter on the boundary.

With N order parameters the Ginzburg-Landau model becomes

S = −
∫
dt

∫
d3x

N∑
n=1

(
iaO∗n∂tOn + γ|∇On|2 + α|On|2 +

β

2N

N∑
m=1

|On|2|Om|2
)

(4.73)

where we do not have mixed terms of the form OiO
∗
j with i 6= j as we want to respect the U(1) symmetry

for each operator. We call O1 the operator that condensed, that is, O1 ∈ R and

〈O1〉 =

√
−αN

β
(4.74)

in the superfluid phase, while 〈Oi〉 = 0 for i 6= 1.

Above the critical temperature, the terms second order in fluctuations are (in momentum space)

S = − 1

(2π)4

∫
dω

∫
d3k

N∑
n=1

[
δO∗n

(
aω + γ|k|2 + α

)
δO′n

]
(4.75)
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Figure 4.4: Absolute value of the spectral function for the intrinsic dynamics of the order parameter for
different values of the dimensionless temperature, with q = 3 and m2 = −3.5. For T = 0.03Tc a small
imaginary part was added to the frequency in order to observe the quadratic dispersion.
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Figure 4.5: Effective speed of light in the bulk as a function of r for T = 0.03Tc.

that, defining a vector δO = (δO1 δO
∗
1, · · · , δON δO∗N ), gives the Green’s function as

S = −1

2

1

(2π)4

∫
dω

∫
d3k δO†G−1

N δO (4.76)

and we obtain a 2N × 2N matrix, with 2× 2 submatrices on the diagonal of the form(
1

aω+γ|k|2+α
0

0 1
−a∗ω+γ|k|2+α

)
(4.77)

and we then have

GO∗iOi =
1

aω + γ|k|2 + α
, (4.78)

reproducing the correct results of the standard Ginzburg-Landau model above Tc if we define the order
parameter described by the boundary theory as

O =
1√
N

N∑
i=1

Oi (4.79)

and take the large-N limit. Repeating the procedure below the phase transition, however, gives a Green’s
function

GN =

(
G1 0
0 GN−1

)
(4.80)

with

GN−1 = IN−1 ⊗

(
1

aω+γ|k2| 0

0 1
−a∗ω+γ|k2|

)
(4.81)

and G1 reproducing the normal Ginzburg-Landau results

G1 =
1

|a|2ω2 − γ|k|2
(
γ|k|2 − 2α

)
− 2iIm(a)ω

(
γ|k|2 − α

) ( a∗ω − γ|k|2 + α α

α −aω − γ|k|2 + α

)
.

(4.82)

However, we see that in this large-N model, since 〈O∗O〉 = 1
N

∑
i 〈O∗iOi〉 this last term is suppressed by a

factor of 1/N , and when taking the large-N limit we obtain

GO∗O =
1

aω + γ|k|2
(4.83)
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that describes the observed quadratic mode. Notice that as we move towards zero temperature, we expect
the imaginary part of a to vanish and the peak to get a delta function peak, as observed in the numerical
results. Within this model, we can think of the parameter N as different species of fermions. The cone
structure with the effective speed of light may be interpreted as free fermions of species that are not gapped
by 〈O1〉 6= 0, with the effective speed due to strong interactions among them.

4.5 Optical Conductivity

One of the transport properties we would like to study for a superconductor is the optical conductivity, that
is, the linear response to a small external electric field J(ω) = σ(ω)E(ω). This is a simpler version of the
coupled problem defined by (4.3), since here we are interested in a fixed values of the momentum, and in
particular we can choose k = 0 as it is the easiest to probe experimentally (in a system in a laboratory
typically one has to deal with particles with momentum way less than the speed of light k � c). Setting
k = 0 the equations decouple and we can focus on the electric current Jx dual to fluctuations of Ax, without
worrying about the coupling with fluctuations of the other fields (actually, the Ax fluctuations are coupled
to fluctuations of the metric element gtx, but we are ignoring them in this chapter)

δA
′′
x +

(
f ′

f
− χ′

2
+
d− 3

r

)
δA′x +

(
eχω2

f2
− 2q2φ2

f

)
δAx = 0 . (4.84)

What we can see is that the effect of the condensate is to introduce a mass term proportional to q2φ2. Since
the equation decouples, the response of the current expectation value to a small perturbation is simply

δ〈Jx〉 = Gxxδax . (4.85)

However, we want to express the source of the perturbation δax in terms of the electric field. Remember that
the x component of an electric field is δEx(ω, k) = δFxt(ω, k) = ikδAt + iωδAx. Then the relation (4.85) in
terms of a small applied electric field becomes

δ〈Jx〉 =
Gxx

iω
δEx . (4.86)

and we find the conductivity

σ(ω) =
δ〈Jx〉
δEx

=
Gxx

iω
. (4.87)

For d = 3 + 1 we can read off the conductivity from the boundary expansion (4.46)

σ(ω) =
2δbx − δcx
iωδax

= 2
δbx
iωδax

+ i
ω

2
. (4.88)

We solved equation (4.84) numerically and extracted the coefficients from the asymptotic behavior. The plot
of the real part of the conductivity for different values of the temperature is shown in figure 4.6. The real
part is the inverse resistivity of the system. It is the physical part, in the sense that it is directly measurable
and is related to the amount of work needed to run a current at a given frequency. The imaginary part is the
reactive part and it is related to the real part by the Kramers-Kronig relation for retarded Green’s function

Im[GR(ω)] = −P
∫ +∞

−∞

dω′

π

Re[GR(ω)]

ω′ − ω
, (4.89)

Re[GR(ω)] = P
∫ +∞

−∞

dω′

π

Im[GR(ω)]

ω′ − ω
. (4.90)

Let us first make some observation about the expected behavior of the conductivity. First of all, in chapter
2, we showed that the conformal dimension of the current ∆ = d−1 implies that the current-current Green’s
function for the conformal field theory scale as Gxx(ω, k = 0) ∼ ωd−2. Therefore, we expect the conductivity
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at large frequencies (high energies), where the theory forgets about the breaking of conformal symmetries
in the IR, to scale as σ(ω) ∼ Gxx/ω ∼ ωd−3. This asymptotic behavior is clearly seen in figure 4.6 where
d = 3 + 1 and the conductivity becomes linear for large ω as well as in the d = 2 + 1 case in figure 4.9, where
the conductivity asymptotes to a constant value.

For high temperature T � µ the presence of the chemical potential is less important (from the gravitational
point of view, as we raise the temperature we recover a Schwarzschild black hole solution) and real part of
the conductivity quickly get to its linear (or constant in d = 2 + 1) behavior. As the temperature is lowered,
Re[σ(ω)] develops a minimum for ω → 0. As we lower the temperature further below its critical value,
Re[σ(ω)] start developing a gap where Re[σ(ω)] ≈ 0 but still finite. For T → 0 the gap appears to become a
hard gap in the sense that the real Re[σ(ω)] is exactly zero in the gap5.

This is remarkably similar to the standard weakly interacting superconductor described by BSC theory, where
a gap opens up in at T = 0 due to a macroscopic condensation of Cooper pairs. However, there are important
differences. The most important one is that BCS theory describes a system characterized by weak interaction,
while we are considering a strongly interacting system thanks to the weak-strong nature of the duality. The
size of the gap in the holographic superconductor is related to the VEV of the order parameter, however,
contrary to the weakly interacting theory where it is determined by the energy necessary to break a Cooper
pair 2∆ = ECooper, there seems not to be such a simple relation in the holographic theory (notice that in
general 〈O〉 does not even have dimensions of an energy, but a meaningful relation cannot be established even
after matching the dimensions). Unfortunately, the holographic approach only provides phenomenological
results, and it does not shed lights on the microscopic interpretation of the order parameter.

One of the most peculiar features of superconductivity is that the DC conductivity (i.e., conductivity at
ω = 0) diverges (and then the resistivity is zero). In Re[σ(ω)] this is represented as a delta function δ(ω),
but it is not possible to see it from the numerics. Nonetheless, from the Kramers-Kronig relation (4.89) we
see that a delta function at ω = 0 corresponds to a pole 1/ω in the imaginary part, that is clearly visible in
figure 4.7, where the red line is the numerical result of Im[σ(ω)] for T ≈ 0.03Tc.

One, however, can argue that the peak in the conductivity in not a feature of superconductivity, but it is
a simple consequence of translation invariance of the theory. Every system with translation invariance does
indeed present an infinite DC conductivity, as the momentum is conserved and it cannot relax, so even for a
small applied electric field, the charges in the conductor keeps accelerating. In our model, however, we fixed
the background metric by neglecting metric fluctuations and this means that we do not take into account
the conservation law ∂µδ〈Tµν〉 = 0 associated to metric fluctuations. Neglecting these Ward identities is the
reason why we do not see a pole in the imaginary part of the conductivity for T & Tc, as shown by the
blue line in figure 4.7. It is similar to the analysis in the probe limit in [7], where they argue that fixing
the metric in the probe limit breaks translation invariance. Here we are not considering the probe limit, but
we fix the background by neglecting fluctuations, breaking the abovementioned conservation law, that has a
similar effect.

This is analogous to the standard computation of conductivity in fluids with a conserved current ∂µJµ =
0 = ∂tρ+∇ · J , but neglecting conservation of energy and momentum (in real materials this is in general a
good assumption, as momentum conservation degrades quickly due to scattering with impurities, and, since
diffusion is the slowest process, on a large enough timescale momentum conservation can be neglected). In
the low-energy limit, from a derivative expansion we can obtain the constitutive relation J = −D∇ρ

J = −D∇ρ = −D∂ρ

∂µ
∇µ = DχE = σE , (4.91)

with both D and χ real constants for ω = 0. Based on this reasoning, we see that by neglecting the metric
fluctuations we should find a conductivity Re[σ(ω = 0)] = Dχ as we observe in the numerical results. Notice,
moreover, that we expect Im[σ(ω = 0)] = 0, as we obtained in figure 4.7.

Including metric fluctuations for k = 0 does not alter the qualitative behavior of the results presented above,
as all it does is to renormalize the mass term in equation (4.84) by adding a term ∝ A′t

2 (see for example [7]),
5With numerical methods there are always going to be numerical precision issues, that is why we cannot really prove that

Re[σ(ω)] = 0 exactly in for T = 0.
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restoring the neglected Ward identities. As a result, the metal described in this case is a perfect conductor
and a pole in the imaginary part can be observed even in the unbroken phase, as we show in figure 4.8. In
the superconducting phase, however, the pole at ω = 0 is a combination of translation invariance and the
results of the system becoming a superconductor, and the delta function due to the superconducting nature
would remain even if we would explicitly break translation invariance.
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Figure 4.6: Real part of the conductivity for several value of T . The value of Re[σ(ω)] has been rescaled by
a factor µ2 to make it dimensionless. We can see that as we lower the temperature below Tc we observe a
gap opening, that eventually becomes a hard gap at T = 0.
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Figure 4.7: Imaginary part of the conductivity for T → T+
c (blue line) and T = 0.03Tc, rescaled by a factor

of µ2 to make them dimensionless. We can clearly see the pole ∼ 1/ω for the low-temperature solution,
corresponding to the superconducting delta function in Re[σ(ω = 0)]. On the other hand Im[σ(ω)] is smooth
across ω = 0 in the unbroken phase, as the conservation law ∂µδ〈Tµν〉 = 0 is implicitely broken by neglecting
metric fluctuations. The dashed line represent the respective real part of the conductivity.
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Figure 4.8: Imaginary part of the conductivity including metric fluctuations for T → T+
c , rescaled by a

factor of µ2 to make it dimensionless. We can see that including metric fluctuations, and hence restoring the
conservation law ∂µδ〈Tµν〉 = 0, gives a pole ∼ 1/ω even for T above Tc, as expected for a conductor without
disorder (i.e., with translation invariance).
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Figure 4.9: Real part of the conductivity for several value of T in d = 2+1 dimensions. The value of Re[σ(ω)]
has been rescaled by a factor µ2 to make it dimensionless. The long-wavelength behavior is determined by
the scaling dimension of the gauge field, that gives σ ∼ ωd−3 ∼ 1 for d = 2 + 1.

4.6 Gauge field fluctuations

In this section we finally consider the more general case of gauge fluctuations for different values of the
momentum k and compute the spectral function arising for different values of the temperature.

First we present the high-temperature solution where the scalar field φ = 0 and there is therefore no cou-
pling with the scalar field fluctuations (see equations (4.27) and (4.28) where the coupling with the scalar
fluctuations is determined by φ2). Nonetheless, the time component At and the spatial component Ax of the
gauge field are coupled together, and in order to extract the Green’s functions we still need to perform the
procedure for coupled fields we explained in the introduction. We will see that this gives rise to the usual
gauge invariant form in terms of a single scalar Green’s function Π(ω, k).

4.6.1 High-temperature solution

As we did for the scalar field, we can find the linearized equation of motion for the gauge field in the unbroken
phase by simply setting φ = χ = 0 in equations (4.27) and (4.28), giving:

0 = δA
′′
x +

(
f ′

f
+
d− 3

r

)
δA′x +

ω2

f2
δAx +

kω

f2
δAt , (4.92)

0 = δA
′′
t +

d− 1

r
δA′t −

k2

r2f
δAt −

kω

r2f
δAx . (4.93)

We can also notice that in the high-temperature solution the constraint (4.29) becomes

ω

f
δA′t +

k

r2
δA′x = 0 . (4.94)

Remember that in the high-temperature case f(r) is given by the Reissner-Nordström solution (3.34).

As always, we first make use of the fact that the boundary behavior is independent of the geometry in the
deep interior of the bulk to realize that the boundary expansion for the Reissner-Nordström solution is the
same as the one we already computed given by (4.46). Since scalar fluctuations and transverse components
of the gauge field are decoupled we only focus on longitudinal terms

S
(2),R
bdy =

1

2

∫
d4k

(2π)4

[
(−2δbt(ω, k) + δct(ω, k)) δat(−ω,−k) + (2δbx(ω, k)− δcx(ω, k)) δax(−ω,−k)

]
=

1

2

∫
d4k

(2π)4

[
δ〈Jx〉 δax + δ

〈
J t
〉
δat

]
,

(4.95)
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and we can then read off the fluctuations in the density and current expectation values

δ〈Jx〉 (ω, k) =2δbx(ω, k)− ω

2
(ωδax(ω, k) + kδat(ω, k))

δ
〈
J t
〉

(ω, k) =− 2δbt(ω, k)− k

2
(ωδax(ω, k) + kδat(ω, k)) ,

(4.96)

where we used the expressions for the ci coefficients (4.36) and (4.37).

In the high-temperature phase, linear response theory gives

δ〈Jx〉 (ω, k) =Gxx(ω, k)δax(ω, k) +Gxt(ω, k)δat(ω, k) (4.97)
δ
〈
J t
〉

(ω, k) =Gtt(ω, k)δat(ω, k) +Gtx(ω, k)δax(ω, k) (4.98)
(4.99)

and given two independent solutions, we can solve the linear system(
δa1
t δa1

x

δa2
t δa2

x

)(
Gtt Gxt

Gtx Gxx

)
=

(
δ
〈
J t
〉

1
δ〈Jx〉1

δ
〈
J t
〉

2
δ〈Jx〉2

)
. (4.100)

As we did before, we now need to solve the equation of motion for the fluctutions imposing incoming-waves
conditions at the horizon. These are simply given by (4.47)

δAx ∼ cx(r − rh)−
iω

4πT (4.101)

δAt ∼ ct(r − rh)1− iω
4πT , (4.102)

with the constraint obtained from (4.48) after setting cφ = cφ∗ = 0:

ct = i

(
k

r2
h

cx

)
e−χ(rh)/2

1− iω
4πT

. (4.103)

As for the full problem, we then see that the two coefficients are not independent and we can only generate
one solution for the linearized equation of motion. The second solution we need, is a pure gauge solution
due to the residual gauge freedom remained after fixing the gauge Ar = δAr = 0. It is easy to verify that
the ansatz

δat = λω, δax = −λk (4.104)

with λ a constant, does indeed solve the linearized equation of motion for the high-temperature solution,
(4.92) and (4.93). The gauge solution does not source any response, and after numerically computing the
non-trivial solution, extracting the sources δai and the responses δ

〈
J i
〉
, we can write (4.100) as(

Gtt Gxt

Gtx Gxx

)
=

(
δat δax
λω −λk

)−1(
δ
〈
J t
〉

δ〈Jx〉
0 0

)
, (4.105)

that gives the Green’s functions in terms of the coefficients of the boundary expansion (using (4.96))

Gtt(ω, k) =− 2kδbt
ωδax + kδat

− k2

2

Gxt(ω, k) =
2kδbx

ωδax + kδat
− ωk

2

Gtx(ω, k) =− 2ωδbt
ωδax + kδat

− ωk

2

Gxx(ω, k) =
2ωδbx

ωδax + kδat
− ω2

2
.

(4.106)
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These solutions may at first seem a bit strange, as for example, it is not apparent that Gxt = Gtx as required
by time inversion symmetry. However, let us take a look at the constraint equation in the boundary limit

ω

f
δA′t +

k

r2
δA′x = 0 . (4.107)

Inserting the expansion for the gauge field and using f(r) ∼ r2 for r →∞ we can rewrite it as

0 = −ω(−2δbt + δct) + k(2δbx − δcx) = 2ωδbt + 2kδbx = −ωδ
〈
J t
〉

+ kδ〈Jx〉 , (4.108)

and we see that the constraint equation is simply the Fourier transform of current conservation for the
fluctuations of the expectation values ∂µδ〈Jµ〉 = 0. From this, we find that δbx = −ω

k δbt and we can rewrite
(4.106) as (multiplying and dividing Gµν by kµ/(k2 − ω2))

Gtt(ω, k) =
k2

k2 − ω2

[
2(ωδbx + kδbt)

ωδax + kδat
− k2 − ω2

2

]
(4.109)

Gxt(ω, k) =
kω

k2 − ω2

[
2(ωδbx + kδbt)

ωδax + kδat
− k2 − ω2

2

]
(4.110)

Gtx(ω, k) =
ωk

k2 − ω2

[
2(ωδbx + kδbt)

ωδax + kδat
− k2 − ω2

2

]
(4.111)

Gxx(ω, k) =
ω2

k2 − ω2

[
2(ωδbx + kδbt)

ωδax + kδat
− k2 − ω2

2

]
(4.112)

, (4.113)

where the numerators are in terms of the coefficients of the expansion of the gauge invariant electric field
Ex = Fxt = ikAt + iωAx, that defines the scalar Green’s function Π(ω, k) containing all the information of
the gauge field Green’s functions.

We could have indeed computed the Green’s functions by realizing that the two equations (4.92) and (4.93)
can be combined in a single equation for the variation of the electric field δEx. Summing the two and using
the constraint relation we obtain the equation (in d = 3 + 1)

δE′′x +
r2ω

r2ω2 − k2f

(
ωf ′

f
− 3k2f

r3ω
+
ω

r

)
δE′x +

(
ω2

f2
− k2

r2f

)
δEx = 0 , (4.114)

where the electric field has a boundary expansion

δEx = δEx,0 + δEx,1r
−2 +

k2 − ω2

2
r−2 log(r) + · · · (4.115)

The response to the electric field perturbation δEx is related to the scalar Green’s function Π(ω, k), that
we can extract following the usual procedure. From it, we can then recover the gauge field Green’s function
using the Ward identities, that give

Gµν(ω, k) =
kµkν

k2 − ω2
Π(ω, k) . (4.116)

Notice that the Ward identities can be derived from the boundary limit of the constraint −ωδ
〈
J t
〉
+kδ 〈Jx〉 =

0 by using the expression for the linear response (4.97) giving(
−ωGtt + kGxt

)
δat +

(
−ωGtx + kGxx

)
δax = 0 (4.117)

that has to be valid for every value of the sources, that implies:

−ωGtt + kGxt =0

−ωGtx + kGxx =0 .
(4.118)
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The approach in terms of the gauge invariant field can be better in this situation as it requires to solve a
single equation instead of a coupled system that usually requires a higher computational time and gives a
lower precision when solving numerically. However, the first procedure is more general and can be used to
derived the Green’s function of any set of coupled operators, moreover, even for a theory with a gauge field
it may often be highly non trivial how to reduce the equations for At and Ax to one single equation for the
electric field.

In figure 4.10 we show the resulting spectral function for T = 1.5Tc. We can see that the spectral function fills
the light cone, and there is no gap in the high-temperature solution, as we already noticed in the conductivity,
whose real part is related to the spectral function Re[σ(ω)] = π

2ωA(ω, k = 0).

In the next section we study how the spectral function changes in the broken phase due to the coupling with
the scalar field.

Figure 4.10: Absolute value of the spectral function for Gxx in the normal phase, rescaled by a factor of µ2

to make it dimensionless. There are no quasinormal modes, as we only have a diffusive pole ω = −iDk2.

4.6.2 Broken phase solution

Below the critical temperature we turn on the scalar field in the bulk and we now have to deal with the full
set of differential equations (4.25) to (4.28) presented in the introduction to this section (remember that we
are studying the intrinsic dynamics and ignoring the fluctuations of the metric).

Before presenting the solutions let us take a look at how the constraint equation is modified in the super-
conducting phase. For φ 6= 0, that is given by (4.29), and we rewrite here for convenience:

eχω

f
δA′t +

k

r2
δA′x + qφ

(
δφ′ − (δφ∗)′

)
+ qφ′ (δφ∗ − δφ) = 0 .

Taking the boundary limit of this equation and substituting the boundary behavior of the fields we find

−ωδ
〈
J t
〉

+ kδ〈Jx〉 = q 〈O〉 (δφs − δφ∗s) = 2iq 〈O〉 δηs , (4.119)

where we defined δη as the imaginary component of the scalar field fluctuations: δη = Im[δφ]. We can then
see that the right hand side only depends on the source of phase fluctuations of the operator O. To see that
the imaginary part corresponds to phase fluctuations, we can write

δφ = δ
(
ρeiθ0

)
= δρeiθ0 + iδθρeiθ0
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where θ0 is the phase of the condensate, and we set θ0 = 0 by imposing O to be real. We therefore obtained

δσ ≡ Re[δφ] = δρ , δη ≡ Im[δφ] = ρδθ . (4.120)

In real space, the relation assumes the form

∂µδ〈Jµ〉 = −2q 〈O〉 δηs (4.121)

that describes particles flowing into and out of the condensed phase.

From this, we can also obtain the Ward identity in the superconducting phase

−ωGtt + kGxt =0

−ωGtx + kGxx =0

−ωGtO + kGxO =2q 〈O〉
−ωGtO∗ + kGxO

∗
=− 2q 〈O〉

(4.122)

and we can see that among all the Green’s functions we obtain, we only have 4 independent ones. As we
noticed above, since the poles are given by the zeros of the determinant of the matrix of sources, all the
Green’s functions present the same pole structure. Below we show the results of the absolute value of the
spectral functions we are mostly interested in, the one related to Gxx (that determines all the Green’s function
in the gauge sector) and the GOO∗ , to understand how the dynamics of the order parameter is changed by
the effect of the coupling.

What we can see is that as T → T−c the spectral function of the scalar field is the same as the one obtained
from the intrinsic dynamics in 4.4 as we would expect because the coupling with the gauge field is regulated
by the order parameter and as we approach Tc the effect of the coupling becomes negligible.

Lowering the temperature, a gap is opening in the spectral function of the gauge field for low frequency, as
we already observed when we studied the conductivity. The main feature we notice in the spectral function
coming from GO∗O, is that the quadratic mode seen in the intrinsic dynamics disappeared and it has been
replaced by a linear mode, particularly evident at positive frequencies. The spectral function at higher
energies resembles the one seen in 4.4, but combined with a quadratic peak that is symmetric with respect
to the origin, implying it is a contribution coming from the gauge field.

It is interesting to notice, that this quadratic peak does not sharpen as we lower the temperature, and
it therefore represent states with a finite lifetime even at zero temperature. On the other hand, the peak
corresponding to the linear modes that reside outside the lightcone is always narrow and it does not smoothen
out as we increase the temperature, corresponding to long-living modes even at nonzero temperature.

Below we include some more plots, showing the variation of the speed of the linear mode with the temperature,
as well as some 3-dimensional plot in which the linear mode is more easily observed.

4.6.3 Linear modes formation and speed of sound

As the temperature approaches its critical value from below, the coupling with the gauge field becomes
smaller and we observed that we recover the result obtained by studying the intrinsic dynamics of the scalar
field, that is, a quadratic mode at low energies. As we lower the temperature, this quadratic mode transforms
into two linear modes by the effect of the coupling, that therefore have a nonzero speed of sound. We then
expect the speed of sound to increase as we move from Tc, where the speed of sound is cs = 0, towards
lower temperatures. In figure 4.16, we show the linear mode appearing as we move away from the critical
temperature.

In figure 4.17, we analyze the speed of sound as a function of T/Tc. As expected, cs → 0 as T/Tc → 1,
however, we see that it asymptotes to a constant value as T → 0.
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(a) Spectral function from Gxx at T = 0.99Tc. (b) Spectral function from GO∗O at T = 0.99Tc.

Figure 4.11: Absolute value for the spectral function with the coupling of the gauge and scalar field, and
for q = 3, m2 = −3.5 and T = 0.99Tc. The spectral function from the Gxx component, here as in the plots
below has been rescaled by µ2 to make it dimensionles, while the one from the scalar sector by µ2ν . We can
see that for temperature close to Tc, where the coupling between the gauge and the scalar field is weak, the
solution for GO∗O is similar to the one obtained from the intrinsic dynamics.

4.6.4 Details of the spectral function for the scalar component

Here we check if the structure of the coupled dynamics of the scalar field is related to the intrinsic dynamics
behavior. To do so, we take the 2× 2 lower matrix of GR, corresponding to the scalar sector, and we invert
it. The idea is to check if we can write this inverse matrix G−1

s as

G−1
s = G−1

0 + Σ

with G−1
0 the matrix from the intrinsic dynamics of the scalar field, as explained in 4.2

Preliminary results seems to indicate that for (ω, k)→ 0, G−1
s assumes the form

G−1
s = G−1

0 + C (4.123)

with C a 2× 2 constant matrix, hinting at a coupling of the current with the phase of the order parameter,
represented in the low-energy effective action by a term ∝ (O + O∗)∂µJ

µ. This behavior is already enough
to generate linear modes at low energies, however further results are needed for a better understanding of
the form of this effective low-energy coupling to see if it correctly fits the numerical results.
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(a) Spectral function from Gxx at T = 0.56Tc (b) Spectral function from GO∗O at T = 0.56Tc

Figure 4.12: Absolute value for the spectral function with the coupling of the gauge and scalar field, and for
q = 3, m2 = −3.5 and T = 0.56Tc. We can see a long-lived linear mode in both figures. The plot for the
scalar function resembles the one for the intrinsic dynamics with the additional contribution of 2 symmetic
quadratic peak from the coupling with the gauge field.

(a) Spectral function from Gxx at T = 0.03Tc (b) Spectral function from GO∗O at T = 0.03Tc

Figure 4.13: Absolute value for the spectral function with the coupling of the gauge and scalar field, and for
q = 3, m2 = −3.5 and T = 0.03Tc. In the spectral function for the scalar component we can see two linear
modes, the one that we observe in the plot above at higher temperature, and one defining the cone structure
we already saw in the intrinsic dynamics.
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(a) 3D spectral function from Gxx at T = 0.03Tc (b) 3D spectral function from GO∗O at T = 0.03Tc

Figure 4.14: 3D version of the plot for the absolute value of the spectral function for T = 0.03Tc. Here it is
easier to observe the linear mode as it is clearly visible from the high peaks. The discretness of the peaks is
due to numerical discretization.

(a) 3D spectral function from Gxx at T = 0.56Tc (b) 3D spectral function from Gtt at T = 0.56Tc

(c) 3D spectral function from Gtx at T = 0.56Tc (d) 3D spectral function from GxO at T = 0.56Tc

Figure 4.15: Plots of the 3 gauge spectral functions and the one associated to GxO for T = 0.56Tc, for q = 3
and m2 = −3.5. In the gauge spectral functions we can clearly see behavior related to the Ward identities,
that imposes Gµν ∼ kµkνΠ(ω, k).
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(a) T = 0.999Tc (b) T = 0.975Tc

(c) T = 0.944Tc (d) T = 0.902Tc

Figure 4.16: Absolute value of the spectral function associated to GO∗O for different temperatures close to
Tc. As we lower the temperature, we can see the quadratic mode from the intrinsic dynamics turning into
two linear modes.
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Figure 4.17: Speed of sound as a function of T/Tc. We can notice that it stabilizes to a constant value as
we lower the temperature.
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4.7 Intrinsic dynamics without amplitude fluctuations

In order to better understand the origin of the linear mode in the spectral function, we studied the intrinsic
dynamics of the field after setting fluctuations of the amplitude of the order parameter to zero. In this
section we briefly present the equations and the results obtained.

First of all we rewrite equations (4.25) to (4.29) in terms of the imaginary and the real part of the scalar
fluctuations. As we explained above, for our choice of O real, the real part of the fluctuations is associated
with amplitude fluctuations, while the imaginary part to phase fluctuations. We will, therefore, set the real
part to zero to study the intrinsic dynamics.

Remember that we called δσ = Re[δφ] and δη = Im[δφ]. The linearized equation of motions are already
written in terms of real and imaginary part, though not explicitely, except for the first two equation (4.25)
and (4.26). Combining them together, we obtain

0 = fδσ′′ +

(
f ′ +

(d− 1)f

r
− fχ′

2

)
δσ′ +

(
eχω2

f
− k2

r2
+
q2eχA2

t

f
−m2

)
δσ +

2iqeχωAt
f

δη +
2q2eχφAt

f
δAt

(4.124)

0 = fδη′′ +

(
f ′ +

(d− 1)f

r
− fχ′

2

)
δη′ +

(
eχω2

f
− k2

r2
+
q2eχA2

t

f
−m2

)
δη − iqkφ

r2
δAx −

iqeχωφ

f
δAt −

2iqeχωAt
f

δσ

(4.125)

0 = δA
′′
x +

(
f ′

f
− χ′

2
+
d− 3

r

)
δA′x +

(
eχω2

f2
− 2q2φ2

f

)
δAx +

eχkω

f2
δAt + 2i

qkφ

f
δη (4.126)

0 = δA
′′
t +

(
χ′

2
+
d− 1

r

)
δA′t −

(
k2

r2f
+

2q2φ2

f

)
δAt −

kω

r2f
δAx − 2i

qωφ

f
δη − 4q2φAt

f
δσ (4.127)

0 =
eχω

f
δA′t +

k

r2
δA′x + 2iq

(
φδη′ − φ′δη

)
. (4.128)

The procedure to obtain the Green’s function is then exactly the same we used for the problem in terms of
the real and complex field, where now the coefficient of the initial condition at the horizon αI(r− rh)−βI are
related by

ct = i

(
k

r2
h

cx + 2iqφ(rh)cη

)
e−χ(rh)/2

1− iω
4πT

. (4.129)

If we now neglect (4.124) and set δσ = 0 in all the other equations, we reduce the problem to a 3× 3 matrix
computation that will give us

GR
δσ=0 =

 Gtt Gxt Gηt

Gtx Gxx Gηx

Gtη Gxη Gηη

 (4.130)

The results for the spectral function of the Gxx and the Gηη Green’s function for different value of the
temperature are shown below.

What we observe is that the results are qualitatively similar for the gauge component, and we still obtain
a linear mode. However, the speed of sound of this mode is close to the speed of light and seems to be
temperature independent.
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(a) T = 0.056Tc (b) T = 0.003Tc

Figure 4.18: Absolute value of the intrinsic spectral function associated to Gxx, obtained by neglecting
amplitude fluctuations, for two values of T below the critical temperature. We can see two linear modes
with speed close to the speed of light even at low energies.
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Chapter 5

Conclusions

In this thesis we reviewed the holographic superconductor model and its thermodynamics properties that
show a resemblance with known superconducting systems. In particular, we explained how to encode in the
dual gravitational theory the instability that leads to a superconducting phase transition of the boundary
system, and we observed the second-order phase transition that presents the typical mean-field behavior
〈O〉 ∼ |T − Tc|1/2 for T ≈ Tc.

We then studied the dynamics of the holographic superconductor model, with the intent of understanding its
low energy behavior in order to write down a hydrodynamical model to observe how the dynamical properties
compare to the ones observed in known materials. In doing so, we computed the optical conductivity that
shows the expected properties for a superconductor model, namely the infinite conductivity in the DC regime
(ω = 0), and the formation of a gap in the low-energy limit for temperature below the critical value. This
is reminiscent of BCS theory of superconductivity, even though, contrary to BCS, the holographic model
represents systems with strong interactions, and a simple relation between the value of the order parameter
and the energy necessary to break a pair of particles cannot be established. Here we also observed one
of the effects of considering the intrinsic dynamics by neglecting metric fluctuations. Similarly to what
happens when we neglect momentum conservation in the computation of the conductivity of a fluid, fixing
the background metric implies a finite conductivity at ω = 0 in the normal phase.

We then reviewed the results of a recent paper [17] about the intrinsic dynamics of the order parameter.
We recovered the same results, that, contrary to the expectations from a time-dependent Ginzburg-Landau
theory, do not present a linear mode in the superconducting phase. We then extended those results by
adding fluctuations of the gauge field into the description. In the superconducting phase, the longitudinal
components of the gauge field couple to the order parameter modifying its dynamics. We have shown that
the coupling turns the quadratic mode observed in the intrinsic dynamics, into linear modes, hinting at the
fact that the observed linear modes are not standard second-sound modes expected from superfluid models,
as these arise from the phase fluctuations of the order parameter. Moreover, we found that the speed of
sound does not always increase as we lower the temperature, but it quickly reaches a constant value.

Further work is still necessary to understand the low-energy dynamics of this coupled system and write down
an effective model, and it is the aim of the future development of this project.

In a follow-up of this work, it would be interesting to include metric fluctuations in order to obtain the full
spectral functions. This is particularly important not only to understand how the coupling with the metric
affects the dynamics of the order parameter, but also because the full spectral functions provide physical
information that is in principle comparable with results from experiments.

An alternative problem would be the study of the holographic superconductor dynamics with a different
form of the scalar potential V (φ). For example adding a self-interaction term for the scalar field V (φ) =
m2|φ|2 + |φ|4, that generates a coupling between the scalar field fluctuations and their complex conjugate
already at the level of the intrinsic dynamics for the scalar field. This may change the intrinsic dynamics
and it would be of great interest to see if the quadratic mode in the superconducting phase survives with
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this different form of the potential.
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Appendix A

Different calculations for the intrinsic
dynamics of the gauge field

In this appendix we explain why it is not possible to study the intrinsic dynamics of the gauge field alone
and we present calculations in a different gauge.

A.1 About the intrinsic dynamics for the gauge field

As we have studied the intrinsic dynamics of the scalar fluctuations, one may wonder why we did not consider
the intrinsic dynamics of vector field fluctuations as well. At first, we indeed tried to extract the intrinsic
dynamics for the gauge field, however, we found that it is not possible. The equations for the intrinsic
dynamics of the gauge field are given by (4.27) to (4.29) by setting δφ = δφ∗ = 0, that gives

0 = δA
′′
x +

(
f ′

f
− χ′

2
+
d− 3

r

)
δA′x +

(
eχω2

f2
− 2q2φ2

f

)
δAx +

eχkω

f2
δAt (A.1)

0 = δA
′′
t +

(
χ′

2
+
d− 1

r

)
δA′t −

(
k2

r2f
+

2q2φ2

f

)
δAt −

kω

r2f
δAx (A.2)

0 =
eχω

f
δA′t +

k

r2
δA′x (A.3)

The first two equation in the superconducting phase are not compatible with the constraint equation from
the intrinsic dynamics (A.3). We can see a possible explanation by comparing this constraint equation with
the one in the coupled problem

0 =
eχω

f
δA′t +

k

r2
δA′x + qφ

(
δφ′ − (δφ∗)′

)
+ qφ′ (δφ∗ − δφ) (A.4)

that, as we showed, on the boundary becomes the conservation equation

∂µδ〈Jµ〉 = −2q 〈O〉 δηs (A.5)

with the last term describing particles going into or getting out of the superfluid phase. Setting the scalar
fluctuations to zero the conservation equation simply becomes

∂µδ〈Jµ〉 = 0 (A.6)

as in the normal phase, without the term representing condensation of particles.

In other words, we explained in chapter 3 that the condensate forms because the Reissner-Nordström back-
ground is unstable under scalar fluctuations below a critical temperature. If we kill the scalar fluctuations,
then there is nothing driving the field tachyonic generating the superconductiong phase transition.
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A.2 Calculation in a different gauge

Here we present the calculation we tried for the intrinsic dynamics of the gauge field coupled only to phase
fluctuations, in a gauge where we the phase dependence is not explicit, but δAr 6= 0. It turns out this is
just an inconvenient gauge choice and the same results could be obtained in the conventional gauge with
δAr = 0.

The matter part of the action describing our theory, in properly rescaled units, is:

S = −
∫
dd+1x

√
−g
(

1

4
FµνF

µν +
(
(Dµφ)∗Dµφ+m2φ∗φ

))
(A.7)

with a complex scalar field φ = |φ|eiθ. Rewriting the action (A.7) explicitly in terms of the amplitude and
phase of the scalar fields we obtain:

S = −
∫
dd+1x

√
−g
(

1

4
FµνF

µν + ∂µ|φ|∂µ|φ|+ |φ|2∂µθ∂µθ + q2|φ|2AµAµ − 2q|φ|2Aµ∂µθ +m|φ|2
)

. (A.8)

The action is invariant under gauge transformations of the form:

Aµ −→ A′µ = Aµ − ∂µΛ(r, t,xxx)

φ −→ φ′ = φe−iqΛ(r,t,xxx)
(A.9)

we can therefore use this invariance to get rid of the phase degree of freedom, by making the gauge choice:

Λ = −θ
q

(A.10)

so that the gauge field transforms as:

Aµ −→ Aµ + ∂µ
θ

q
(A.11)

and the action becomes:

S = −
∫
dd+1x

√
−g
(

1

4
FµνF

µν + ∂µ|φ|∂µ|φ|+ q2|φ|2AµAµ +m2|φ|2
)

. (A.12)

The equations of motion for the gauge field then are:

∇µFµν = 2q2|φ|2Aν (A.13)

and we see that in order to ensure conservation of the current Jν = 2q2|φ|2Aν we have to impose the
condition:

∇ν
(
|φ|2Aν

)
= 0 (A.14)

We can verify that this constraint is compatible with the gauge choice by using the equation of motion for
θ derived from the action (A.8):

∇µ(|φ|2∂µθ) = ∇µ(q|φ|2Aµ) , (A.15)

if we now make a gauge transformation of the current conservation equation we obtain:

∇ν
(
|φ|2Aν

)
−→ ∇ν

(
|φ|2

(
Aν +

∂νθ

q

))
= ∇ν

(
|φ|2Aν

)
+∇ν

(
|φ|2∂

νθ

q

)
= 2∇ν

(
|φ|2Aν

)
= 0 (A.16)

as required for consistency.
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Summarizing, from the action (A.12) we obtain the three equations:

∇µFµν − 2q2|φ|2Aν = 0 (A.17)(
�−m2 − q2AνA

ν
)
|φ| = 0 (A.18)

∇ν
(
|φ|2Aν

)
= 0 (A.19)

Varying this set of equations we find the linearized equation of motions:

∇µδFµν − 2q2|φ|2δAν − 4q2|φ|δ|φ|Aν = 0 (A.20)(
�−m2 − q2AνA

ν
)
δ|φ| − 2q2|φ|AµδAµ = 0 (A.21)

∇ν
(
|φ|2δAν

)
+ 2∇ν (|φ|δ|φ|Aν) = 0 (A.22)

Since we are now interested in the decoupled problem, we set δ|φ| = 0 and consider:

∇µδFµν − 2q2|φ|2δAν = 0 (A.23)

∇ν
(
|φ|2δAν

)
= 0 (A.24)

Using the metric in d = 4 dimensions (corresponding to a 3 + 1 boundary theory)

ds2 = −f(r)e−χ(r)dt2 +
1

f(r)
dr2 + r2dxxx2 , (A.25)

Fourier transforming the field

δAν(r, xµ) =

∫
d4k

(2π)4
δAν(r, kµ)eik·x (A.26)

and choosing the momentum along the x direction kµ = (ω, k, 0, 0) we obtain:

0 =δA
′′
x +

(
f ′

f
− χ′

2
+

1

r

)
δA′x +

(
eχω2

f2
− 2q2|φ|2

f

)
δAx +

eχkω

f2
δAt − ik

[
δA′r +

(
f ′

f
− χ′

2
+

1

r

)
δAr

]
(A.27)

0 =δA
′′
t +

(
χ′

2
+

3

r

)
δA′t −

(
k2

r2f
+

2q2|φ|2

f

)
δAt −

kω

r2f
δAx + iω

[
δA′r +

(
χ′

2
+

3

r

)
δAr

]
(A.28)

0 =
eχω

f
δA′t +

k

r2
δA′x − iδAr

(
2q2|φ|2 +

k2

r2
− eχω2

f

)
(A.29)

0 =δA′r +

(
f ′

f
− χ′

2
+

3

r
+ 2
|φ|′

|φ|

)
δAr + i

(
ωeχ

f2
δAt +

k

r2f
δAx

)
(A.30)

From (A.30):

δA′r = −
(
f ′

f
− χ′

2
+

3

r
+ 2
|φ|′

|φ|

)
δAr − i

(
ωeχ

f2
δAt +

k

r2f
δAx

)
(A.31)

and substituting this into (A.27) and (A.28) we obtain:

δA
′′
x +

(
f ′

f
− χ′

2
+

1

r

)
δA′x +

(
eχω2

f2
− 2q2|φ|2

f
− k2

fr2

)
δAx + ik

(
2

r
+ 2
|φ|′

|φ|

)
δAr =0 (A.32)

δA
′′
t +

(
χ′

2
+

3

r

)
δA′t +

(
eχω2

f2
− 2q2|φ|2

f
− k2

fr2

)
δAt − iω

(
f ′

f
− χ′ + 2

|φ|′

|φ|

)
δAr =0 (A.33)
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We can now reduce the set of equations to a system of first order differential equations by defining the
variables δBt = δA′t and δBx = δA′x.

Defining the vector

δFFF (r) = (δBx(r), δBt(r), δAx(r), δAt(r), δAr(r))
T (A.34)

the system of differential equations can be written as:

δFFF ′(r) = M(r)δFFF (r) (A.35)

with M(r) a 5× 5 matrix given by:

−f ′

f + χ′

2 −
1
r 0 k2

r2f
+ 2q2|φ|2

f − eχω
f2 0 −ik

(
2|φ|′
|φ| + 2

r

)
0 −χ′

2 −
3
r 0 k2

r2f
+ 2q2|φ|2

f − eχω
f2 iω

(
f ′

f + 2|φ|′
|φ| − χ

′
)

1 0 0 0 0
0 1 0 0 0

0 0 − ikf
r2 − ieχω

f2 −f ′

f −
2|φ|′
|φ| + χ′

2 −
3
r


(A.36)

If we look at the high temperature solution, i.e. setting φ = χ = δAr = 0 in equations (A.27)-(A.29) (we
can set δAr to zero because in the high temperature solution the scalar field is not present, and we therefore
have the freedom to choose a gauge in which δAr = 0), the equations become:

δA
′′
x +

(
f ′

f
+

1

r

)
δA′x +

ω2

f2
δAx +

kω

f2
δAt =0 (A.37)

δA
′′
t +

3

r
δA′t −

k2

r2f
δAt −

kω

r2f
δAx =0 (A.38)

ω

f
δA′t +

k

r2
δA′x =0 (A.39)

(A.40)

and defining δBx and δBt as above, and

δFFF (r) = (δBx(r), δBt(r), δAx(r), δAt(r))
T , (A.41)

the matrix now reads

M(r) =


−f ′

f −
1
r 0 −ω2

f2 −kω
f2

0 −3
r

kω
r2f

k2

r2f

1 0 0 0
0 1 0 0

 (A.42)

This matrix, as we expect, clearly presents a zero-mode, as it easy to see that rank(M) = 3. Using this fact,
we can combine the system to obtain the equation:

B′x +

(
f ′(r)

f(r)
+

1

r

)
Bx + 3

ωr

kf
Bt +

ωr2

kf
B′t = 0 (A.43)

A.2.1 Decoupling the δAr component

The equations shown above can be combined to get rid of the δAr term and obtain the following two equations
in δAx and δAt only:

δA
′′
x +

[
f ′

f
− χ′

2
+

1

r
+

(
2

r
+ 2
|φ|′

|φ|

)
k2f

2q2|φ|2fr2 + k2f − r2eχω2

]
δA′x

+ r2ωkeχ
2
r + 2 |φ|

′

|φ|

2q2|φ|2fr2 + k2f − r2eχω2
δA′t +

(
eχω2

f2
− 2q2|φ|2

f
− k2

fr2

)
δAx = 0

(A.44)

75



δA
′′
t +

[
χ′

2
+

3

r
−
(
f ′

f
− χ′ + 2

|φ|′

|φ|

)
r2ω2eχ

2q2|φ|2fr2 + k2f − r2eχω2

]
δA′t

− kωf
f ′

f − χ
′ + 2 |φ|

′

|φ|

2q2|φ|2fr2 + k2f − r2eχω2
δA′x +

(
eχω2

f2
− 2q2|φ|2

f
− k2

fr2

)
δAt = 0

(A.45)

A.2.2 Equations in terms of gauge invariant fields

Equation (A.27) to (A.29) can be also written in terms of gauge invariant field only, as:

−δR′x −
(
f ′

f
− χ′

2
+

1

r

)
δRx +

eχω

f2

δEx
i

=
2q2|φ|2

f
δAx (A.46)

−δR′t −
(
χ′

2
+

3

r

)
δRt −

k

r2f

δ

i
Ex =

2q2|φ|2

f
δAt (A.47)

−e
χω

f2
δRt −

k

r2f
δRx =i

2q2|φ|2

f
δAr (A.48)

Defining the electric field Ex = Fxt = ikAt + iωAx and the R field Rx = Fxr = ikAr−A′x. The choice of the
name variable R is arbitrary, as Rx is actually a component of the magnetic field tensor, (the magnetic field
in spatial dimensions different then 3, it is not a vector) but we decided not to call it Bx to avoid confusion
with the vector magnetic field and we do not use the proper tensor notation to avoid having double indices.
Combining (A.32) and (A.33) we obtain:

δE
′′
x +

(
χ′

2
+

3

r

)
δE′x +

(
eχω2

f2
− 2q2|φ|2

f
− k2

fr2

)
δEx − iω

(
f ′

f
− χ′ − 2

r

)
δRx = 0 (A.49)

For the constraint equation (A.29) we instead find:

ωeχ

fk
δE′x + i

(
ω2eχ

fk
− k

r2

)
δRx + 2q2|φ|2δAr = 0 (A.50)

and from the current conservation (A.30)

δR′x +

(
f ′

f
− χ′

2
+

1

r

)
δRx + i

eχω

f2
δEx +

2q2|φ|2

f
δAx = 0 . (A.51)

Now we have equations for δAr and δAx in terms of gauge invariant field, and we can therefore construct
the second gauge invariant equation using δRx = ikδAr − δA′x:

δRx =
k

2q2|φ|2

((
ω2eχ

fk
− k

r2

)
δRx − i

ωeχ

fk
δE′x

)
+

d

dr

[
f

2q2|φ|2

(
δR′x +

(
f ′

f
− χ′

2
+

1

r

)
δRx + i

eχω

f2
δEx

)]
.

(A.52)

Writing the derivative explicitly we obtain:

δRx =
f

2q2|φ|2

[(
ω2eχ

f2
− k2

fr2
+
f ′′

f
−
(
f ′

f

)2

− χ′′

2
− 1

r2

)
δRx + δR

′′
x +

(
f ′

f
− χ′

2
+

1

r

)
δR′x + i

ωeχ

f2

(
χ′ − 2

f ′

f

)
δEx

]

+

(
δR′x +

(
f ′

f
− χ′

2
+

1

r

)
δRx + i

eχω

f2
δEx

)(
f ′

2q2|φ|2
− 2

f |φ|′

2q2|φ|3

)
(A.53)

That can be written as:

δR
′′
x+

(
ω2eχ

f2
− k2

fr2
+
f ′′

f
− χ′′

2
− 1

r2
− 2
|φ|′f ′

|φ|f
− χ′f ′

2f
+
χ′|φ|′

|φ|
+
f ′

fr
− 2
|φ|′

|φ|r
− 2q2|φ|2

f

)
δRx

+

(
2
f ′

f
− χ′

2
+

1

r
− 2
|φ|′

|φ|

)
δR′x + i

ωeχ

f2

(
χ′ − f ′

f
− 2
|φ|′

|φ|

)
δEx = 0

(A.54)
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and now we have a system of two equations in the gauge independent variables δEx and δRx.

We can alternatively solve the system of equations in terms of the electric field and the gauge invariant
variable Rt ≡ −Er = −iωAr −A′t. Written in term of this field, equation (A.49) becomes:

δE
′′
x +

(
f ′

f
− χ′

2
+

1

r

)
δE′x +

(
eχω2

f2
− 2q2|φ|2

f
− k2

fr2

)
δEx + ik

(
f ′

f
− χ′ − 2

r

)
δRt = 0 (A.55)

While we can derive the second equation from (A.50) and (A.28), that written in terms of gauge invariant
fields reads:

δR′t +

(
χ′

2
+

3

r

)
δRt − i

k

r2f
Ex +

2q2|φ|2

f
δAt = 0 (A.56)

And we have:

δRt =
1

2q2|φ|2

(
eχω2

f
δRt −

k2

r2
δRt + i

k

r2
δE′x

)
+

d

dr

[
f

2q2|φ|2

(
δR′t +

(
χ′

2
+

3

r

)
δRt − i

k

r2f
δEx

)]
.

(A.57)

Computing the derivative we find:

δR
′′
t +

(
ω2eχ

f2
− k2

fr2
+
χ′′

2
− 3

r2
+
χ′f ′

2f
− χ′|φ|′

|φ|
+ 3

f ′

fr
− 6
|φ|′

|φ|r
− 2q2|φ|2

f

)
δRt (A.58)

+

(
f ′

f
+
χ′

2
+

3

r
− 2
|φ|′

|φ|

)
δR′t + i

k

fr2

(
2

r
+ 2
|φ|′

|φ|

)
δEx = 0 (A.59)

Even though we where able to decouple the Ar component and to find nice expression in terms of gauge
invariant terms, this gauge choice is not optimal to perform computations, and to obtain the results presented
in the main chapters we used the more conventional choice of setting δAr = 0.
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Appendix B

Detailed calculations

Here we present the details of the calculations that lead to the results in chapter 3 and chapter 4. We expand
the action up to second order in fluctuations of the scalar and gauge fields while keeping the metric fixed. As
previously discussed, fluctuations of the metric are coupled to fluctuations of the “matter” fields, therefore,
in order to solve the full problem we would need to include the metric fluctuations as well.

B.1 Equations for the background

B.1.1 Einstein equations

Here we derive the equation of motion for the metric tensor.

The metric ansatz is

ds2 = −c2f(r)e−χ(r)dt2 +
1

f(r)
dr2 +

r2

L2
dx2

d−1 (B.1)

so that we have:

gµν =

 −c2f(r)e−χ(r) 0 0d−1

0 1
f(r) 0d−1

0Td−1 0Td−1
r2

L2 1d−1,d−1

 (B.2)

with 0d−1 the d − 1 dimensional null vector and 1d−1,d−1 the (d − 1) × (d − 1) identity matrix. Since the
metric is diagonal the inverse metric is trivially

gµν =

 − eχ(r)

c2f(r)
0 0d−1

0 f(r) 0d−1

0Td−1 0Td−1
L2

r2 1d−1,d−1

 (B.3)

The Christoffel symbol is defined as

Γλµν =
1

2
gλσ (∂µgνσ + ∂νgσµ − ∂σgµν) (B.4)

The Riemann tensor is given in terms of Christoffel symbols by

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ (B.5)
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Since the metric is diagonal Γλµν = 0 ∀λ 6= µ 6= ν and since gµν = gµν(r), we have that Γtαα = 0, Γxiαα = 0
for α = r, t, x1, . . . , xd−1. Therefore the only non zero Christoffel symbols are:

Γrrr = −1

2

f ′(r)

f(r)
(B.6)

Γrxixi = −f(r)r

L2
(B.7)

Γrtt =
c2

2
f(r)e−χ(r)

(
f ′(r)− f(r)χ′(r)

)
(B.8)

Γttr = Γtrt =
1

2

f ′(r)− f(r)χ′(r)

f(r)
(B.9)

Γxixir = Γxirxi =
1

r
(B.10)

The relevant Riemann tensor then are:

Rrtrt =
c2

4
e−χ(r)f(r)

(
−3f ′(r)χ′(r) + f(r)(χ′(r)2 − 2χ′′(r)) + 2f ′′(r)

)
(B.11)

Rrxrx = − r

2L2
f ′(r) (B.12)

Rtrtr =
1

4f(r)

(
3f ′(r)χ′(r)− f(r)χ′(r)2 − 2f ′′(r) + 2f(r)χ′′(r)

)
(B.13)

Rtxtx =
r

2L2

(
f(r)χ′(r)− f ′(r)

)
(B.14)

Rxtxt =
c2

2r
e−χ(r)f(r)

(
f ′(r)− f(r)

)
(B.15)

Rxrxr = − f ′(r)

2rf(r)
(B.16)

Rxixjxixj = −f(r)

L2
(B.17)

Remember that the Ricci tensor is defined by Rµν ≡ Rσµσν and the Ricci scalar as gµνRµν .

The holographic superconductor action, defined in chapter 3 is

S =

∫
dd+1x

√
−g
(

c3

16πG
(R− 2Λ)− 1

4µ0c
FµνF

µν − |Dµφ|2 −
m2c2

~2
|φ|2

)
(B.18)

with Dµ ≡ ∇µ − iq
~ Aµ.

Varying it with respect to the metric field, we obtain the Einstein equation

Rµν −
1

2
Rgµν + gµνΛ =

8πG

c3

(
−4FµρF

ρ
ν + FρσF

ρσgµν + gµν

(
|Dφ|2 +

m2c2

~2
|φ|2

)
− 2D[µφ(Dν])

∗
)
(B.19)

where the last term can be dropped since we choose φ to be real. The right-hand side of the equation
represent the energy momentum tensor

Tµν = − 2√
−g

δSmatter
δgµν

(B.20)

Using the metric ansatz (B.1) and the expressions for the nonzero Ricci tensors and for Ricci scalar we obtain
the two equations:
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(
4f ′(d− 1) + 8rΛ− (d− 2)f

2r

)
= −64πGr

c3

(
2fA′t

2eχ

c2f4µ0
+ fφ

′2 +
q2A2

tφ
2

c2f~2
+
m2c2

~2
φ2

)
(B.21)(

−4fχ′(d− 1) + 4f ′(d− 1) + 8rΛ− (d− 2)f

2r

)
= −64πGr

c3

(
2fA′t

2eχ

c2f4µ0
− fφ′2 − q2A2

tφ
2

c2f~2
+
m2c2

~2
φ2

)
(B.22)

Subtracting (B.22) from (B.21) we obtain

χ′ +
32πG

(d− 1)c3
r

(
φ
′2 +

q2eχ

~2c2f
A2
tφ

2

)
= 0 (B.23)

while summing them we obtain

f ′ +

(
d− 2

r
− χ′

2

)
f +

16πG

(d− 1)c3
r

(
eχA′t

2

2µ0c3
+
m2c2

~2
φ2

)
− rd

L2
= 0 (B.24)

where we used

2Λ = −d(d− 1)

L2
. (B.25)

Equations (B.23) and (B.24) are two equations of the equations for the background presented in chapter 3,
below we derive the remaining two equations.

B.1.2 Equation of motion for the scalar field

The equation of motion for the scalar field φ can be found by varying part of the action containing the scalar
field

Sφ = −
∫
dd+1x

√
−g
(

(Dµφ)∗Dµφ+
m2c2

~2
φ∗φ

)
(B.26)

that expanding the covariant derivative becomes:

Sφ = −
∫
dd+1x

√
−g
(
∂µφ∗∂µφ− i

q

~
Aµφ∂

µφ∗ + i
q

~
Aµφ∂µφ+

q2

~2
AµA

µφ∗φ+
m2c2

~2
φ∗φ

)
. (B.27)

Varying this action with respect to φ∗ we obtain, after integrating by parts

δSφ∗ = boundaryterm+

∫
dd+1x

√
−g
[(
DµD

µ − m2c2

~2

)
φ

]
δφ∗ , (B.28)

so the equation of motion for φ is: (
DµD

µ − m2c2

~2

)
φ = 0 . (B.29)

and inserting the expression for the metric

φ′′ +

(
f ′

f
+
d− 1

r
− χ′

2

)
φ′ −

(
m2c4 − q2A2

t
eχ

f

~2c2f

)
φ = 0 . (B.30)
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B.1.3 Equations of motion for the vector field

Similarly we can vary the matter part of the action containing the gauge field

S = −
∫
dd+1x

√
−g
(

1

4µ0c
FµνF

µν + (Dµφ)∗Dµφ

)
(B.31)

to obtain

δAµS = boundaryterm−
∫
dd+1x

√
−g
(

1

µ0c
(∇µ∇µAν −∇µ∇νAµ) +

iq

hbar
φ∗∂νφ− iq

hbar
φ∂νφ∗ − 2q2

hbar2
φAνφ∗

)
.

(B.32)

Rewriting (B.32) in terms of Fµν and gauge covariant derivatives we obtain

1

µ0c
∇µFµν −

iq

~
(φ∗Dνφ− φ(Dνφ)∗) = 0 , (B.33)

that in terms of the background fields become the equation of motion for At

A
′′
t +

(
d− 1

r
+
χ′

2
)A′t − 2

q2µ0cφ
2

~2f

)
At = 0 . (B.34)

B.2 Variation of the matter action

In this section we work in rescaled units where all the constants are set to one.

The matter part of the action is then given by

S = −
∫
dd+1x

√
−g
(

1

4
FµνF

µν + (Dµφ)∗Dµφ+m2φ∗φ

)
(B.35)

expanding the action in fluctuations of the fields

φ→ φ+ δφ ,
Aµ → Aµ + δAµ ,

(B.36)

we have:

S[Φ + δΦ] = −
∫
dd+1x

√
−g
(

1

4
[∂µ(Aν + δAν)− ∂ν(Aµ + δAµ)]2 + (Dµ(φ+ δφ))∗Dµ(φ+ δφ)

+m2(φ∗ + δφ∗)(φ+ δφ)

)
= −

∫
dd+1x

√
−g
(

1

4
FµνF

µν + ∂µφ∂
µφ∗ + iq∂µφA

µφ∗ − iqAµφ∂µφ∗ + q2AµA
µφφ∗ +m2φφ∗+

+∇µδAνFµν +
[
iq∂µφφ

∗ − iqφ∂µφ∗ + 2q2Aµφφ
∗] δAµ+

+
[
∂µδφ∂

µφ∗ + iqAµφ∗∂µδφ− iqAµδφ∂µφ∗ +m2δφφ∗ + q2AµA
µδφφ∗ + h.c

]
+

+
1

2
(∇µδAν∇µδAν −∇µδAν∇νδAµ) + δAµq

2φφ∗δAµ+

+
[
iq∂µδφδA

µφ∗ − iqδAµφ∂µφδφ+ 2q2δAµAµφδφ+ h.c
]

+

+ ∂µδφ∂
µδφ∗ + iq∂µδφA

µδφ∗ − iqδφAµ∂µδφ∗ + q2δφAµA
µδφ∗+

+ iq∂µδφδA
µδφ∗ − iqδφδAµ∂µδφ∗ + 2q2AµδφδA

µδφ∗ + q2δAµδφδA
µφ∗

+ q2δAµδφ
∗δAµφ+ +q2δAµδφδA

µδφ∗ ,
(B.37)

where h.c stands for hermitian conjugate and Φ + δΦ is a shorthand notation that stands for variations of
all the matter fields in the lagrangian.
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B.2.1 First order variation and equations of motion

Here we check that the terms first order in fluctuations of the fields give us the equation of motion that
we derived before. Focusing first on terms that are first order in fluctuations in (B.37), we perform partial
integration and use the definition of the gauge covariant derivative Dµ = ∇µ − iqAµ to obtain

δS(1) =−
∫
dd+1x∇µ

(√
−g [δAνF

µν + δφ (Dµφ)∗ + δφ∗Dµφ]
)

+

∫
dd+1x

√
−g
(
δAν [∇µFµν − iq (φ∗Dνφ− φ(Dνφ)∗)] +

[
δφ
(
D∗µD

µ∗ −m2
)
φ∗ + h.c.

])
=δS

(1)
bdy + δS

(1)
bulk .

(B.38)

From the bulk term we can read off the classical equation of motions

∇µFµν = iq (φ∗Dνφ− φ(Dνφ)∗) (B.39)(
DµD

µ −m2
)
φ = 0 (B.40)(

D∗µD
µ∗ −m2

)
φ∗ = 0 (B.41)

That are the same as we found in the previous section, except for the fact that we are now working in rescaled
units.

We denoted the first term (B.38) as δS(1)
bdy because we can apply Stokes’ theorem, and reduce it to a boundary

term. However we have to be careful, since the integrand diverges for r →∞. The general procedure consist
in introducing a cutoff Λ at large r that we will send to infinity at the end of the calculations, after adding
the proper counterterms to regularize the action if necessary. This gives:

δSbdy =−
∫
dd+1x∇µ

(√
−g [δAνF

µν + δφ (Dµφ)∗ + δφ∗Dµφ]
)

=− lim
Λ→∞

∫
ddx
√
−hnµ [hνσFµσδAν + δφ(∂µφ

∗ + iqAµφ
∗) + δφ∗(∂µφ− iqAµφ)]

∣∣∣∣Λ
rh

.
(B.42)

Where h is the determinant of the metric of the d-dimensional spacetime slice orthogonal to r:

hµν = r−2ηµν (B.43)

and nµ is the orthogonal unit vector to the surface of constant r, pointing in the direction of increasing r.
It then must have the form nµ = cδµr , where we can determine the constant c by imposing the normalization
condition nµnµ = 1 that gives:

gµνn
µnν = 1⇒ grrc

2 = 1⇒ c = ±
√
f(r) , (B.44)

for fixed r. The two solutions represents the two possible orientation of the vector normal to the surface.
Since we want the one pointing outward, we choose the positive solution. Notice that in the boundary limit
the vector behaves as

nµ = rδµr for r →∞ . (B.45)

The integrand of (B.42) is zero when evaluated at the horizon due to the initial conditions, therefore we can
rewrite it as:

δSbdy = − lim
Λ→∞

∫
ddx
√
−hnµ [hνσFµσδAν + δφ(∂µφ

∗ + iqAµφ
∗) + δφ∗(∂µφ− iqAµφ)]

∣∣∣∣
Λ

. (B.46)

Recalling that the in our gauge the only non zero component of Aµ is At(r), from
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Since we have divergences in both fields, we need to add two boundary counterterms to regularize the action:

Sc.t. φ =

∫
ddx
√
−h∆−φφ

∗
∣∣∣∣
Λ

(B.47)

Sc.t. A = − log(Λ)

4

∫
ddx
√
−hFµνFµν

∣∣∣∣
Λ

. (B.48)

Variation of this counterterms give:

δSc.t. φ =

∫
ddx
√
−h∆−(δφφ∗ + φδφ∗)

∣∣∣∣
Λ

(B.49)

δSc.t. A = log(Λ)

∫
ddx
√
−hδAν∇µFµν

∣∣∣∣
Λ

, (B.50)

where we used partial integration in the second integral.

B.2.2 Second order variation and two point functions

We now consider the terms that are second order in fluctuations in (B.37). After partial integration we
obtain

δS
(2)
bdy = −1

2

∫
dd+1x

√
−g∇µ

(
iqφ∗δAµδφ− iqφδAµδφ∗ + (∂µφ

∗ + iqδφAµ) δφ+ (∂µφ− iqδφAµ) δφ∗+

−∇νδAµδAν +∇µδAνδAν
)

(B.51)

and the bulk term

δS
(2)
bulk = −1

2

∫
dd+1x

√
−g
[
− δφ∗

(
DµD

µ −m2
)
δφ− δφ

(
DµD

µ −m2
)
δφ∗

+δAµ
(
gµν

(
−�+ 2q2φ2

)
+∇µ∇ν

)
δAν

+ δφ
(
−iqφ∗∇ν − 2iq∂νφ∗ + 2q2Aνφ∗

)
δAν + δAµ

(
iqφ∗∂µ + 2q2Aµφ∗ − iq∂µφ∗

)
δφ

+ δφ∗
(
iqφ∗∇ν + 2iq∂νφ+ 2q2Aνφ

)
δAν + δAµ

(
−iqφ∂µ + 2q2Aµφ+ iq∂µφ

)
δφ∗
]
,

(B.52)

that can be conveniently rewritten in matrix form (notice the change of sign in the prefactor)

δS
(2)
bulk =

1

2

∫
dd+1x δΦG−1

B δΦ , (B.53)

with

δΦ =

 δφ
δφ∗

δAν

 δΦ† =
(
δφ∗ δφ δAµ

)
, (B.54)

and

G−1
B =

 DµD
µ −m2 0 −iqφ∇ν − 2iq∂νφ− 2q2Aνφ
0 D∗µD

µ∗ −m2 iqφ∗∇ν + 2iq∂νφ∗ − 2q2Aνφ∗

iq∂µφ∗ − 2q2Aµφ∗ − iqφ∗∂µ −iq∂µφ− 2q2Aµφ+ iqφ∂µ gµν
(
∇σ∇σ − 2q2φ2

)
−∇ν∇µ

 .

(B.55)

The operator G−1
B defines the linearized equation of motion in the bulk as

G−1
B δΦ = 0 . (B.56)
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Since G−1
B is not diagonal, we see that the linearized equation of motion are a set of coupled differential

equation.

Writing this system of linearized equations of motion explicitly in terms of the background fields we obtain

0 = fδφ′′ +

(
f ′ +

(d− 1)f

r
− fχ′

2

)
δφ′ +

(
eχω2

f
− k2

r2
+

2qeχωAt
f

+
q2eχA2

t

f
−m2

)
δφ

+
qkφ

r2
δAx +

(
qeχωφ

f
+

2q2eχφAt
f

)
δAt

(B.57)

0 = fδφ∗′′ +

(
f ′ +

(d− 1)f

r
− fχ′

2

)
δφ∗′ +

(
eχω2

f
− k2

r2
− 2qeχωAt

f
+
q2eχA2

t

f
−m2

)
δφ∗

− qkφ

r2
δAx −

(
qeχωφ

f
− 2q2eχφAt

f

)
δAt

(B.58)

0 = δA
′′
x +

(
f ′

f
− χ′

2
+
d− 3

r

)
δA′x +

(
eχω2

f2
− 2q2φ2

f

)
δAx +

eχkω

f2
δAt +

qkφ

f
(δφ− δφ∗) (B.59)

0 = δA
′′
t +

(
χ′

2
+
d− 1

r

)
δA′t −

(
k2

r2f
+

2q2φ2

f

)
δAt −

kω

r2f
δAx −

qωφ

f
(δφ− δφ∗)− 2q2φAt

f
(δφ+ δφ∗)

(B.60)

0 =
eχω

f
δA′t +

k

r2
δA′x + qφ

(
δφ′ − (δφ∗)′

)
+ qφ′ (δφ∗ − δφ) (B.61)

0 = δA
′′
i +

(
f ′

f
− χ′

2
+
d− 3

r

)
δA′i +

(
eχω2

f2
− k2

r2f
− 2q2φ2

f

)
δAi , (B.62)

For the boundary term we obtain:

δS
(2)
bdy = − lim

Λ→∞

1

2

∫
ddx
√
−hnµ

[
hνσδFµσδAν +

(
δφ(∂µδφ

∗ + iqφ∗δAµ) + h.c

)] ∣∣∣∣
Λ

. (B.63)

Using the expression for the metric and the gauge choice the boundary action reduce to:

δS
(2)
bdy = − lim

Λ→∞

1

2

∫
ddxrd+1

[
r−2ηνσδA′σδAν + δφ(δφ∗)′ + δφ∗δφ′

] ∣∣∣∣
r=Λ

. (B.64)

From now on we focus on the special case d = 3 + 1. The reason is that the boundary action (B.64) is
divergent and need to be regularized, however, contrary to the divergence in the scalar field, where the
form of the counterterms can be easily generalized to any number of dimensions, the gauge field present a
logarithmic divergence only for a even number of dimensions and the form of the counterterms therefore
depends on the dimensions of the boundary theory considered. For a 3 + 1-dimensional boundary theory,
the counterterms we need to add to the boundary action are:

δS
(2)
c.t. φ = −1

2

∫
d4x
√
−h2∆−δφδφ

∗
∣∣∣∣
r=Λ

δS
(2)
c.t. A =

1

2

∫
d4x log(r)

√
−hδAν∇µδFµν

∣∣∣∣
r=Λ

.
(B.65)

Fourier transforming the action we obtain

δS(2) =
1

2

∫
d4x

d4k

(2π)4

d4k′

(2π)4
r5
[
r−2ηνσδA′σ(r, kµ)δAν(r, kµ′) + δφ(r, kµ)(δφ∗(r, kµ′))′

+ δφ∗(r, kµ)δφ′(r, kµ′)
]
e−i(k+k′)µxµ

∣∣∣∣
r=Λ

,
(B.66)

where, due to rotational invariance we can set the four momentum kµ along the x direction, i.e. kµ =
(ω, k, 0, 0). Integrating over x gives a delta function (2π)4δ(kµ + kµ′), and integrating this out we get:

δS(2) = lim
Λ→∞

1

2

∫
d4k

(2π)4
r5
[
r−2ηνσδA′σ(r, kµ)δAν(r,−kµ) + δφ(r, kµ)(δφ∗(r,−kµ))′ + δφ∗(r, kµ)δφ′(r,−kµ)

] ∣∣∣∣
r=Λ

(B.67)
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In four dimensions the asymptotic behavior of the gauge field is:

δAµ(r, ω, k) = δaµ(ω, k) + δbµ(ω, k)r−2 + δcµ(ω, k)r−2 log

(
r

rh

)
, (B.68)

therefore deriving with respect to r we obtain

δA′µ(r, ω, k) =− 2δbµ(ω, k)r−3 − 2δcµ(ω, k)r−3 log

(
r

rh

)
+ δcµr

−3 (B.69)

δA′′µ(r, ω, k) =6δbµ(ω, k)r−4 + 6δcµ(ω, k)r−4 log

(
r

rh

)
− 5δcµr

−4 . (B.70)

The three momentum dependent coefficients, are not all independents, inserting this boundary expansion
into the equation of motions and matching coefficients of the same order gives:

δct =− k

2
(ωδax + kδat) (B.71)

δct =
ω

2
(ωδax + kδat) . (B.72)

For the boundary expansion of the scalar field we obtain

δφsr
−∆− + δφvr

−∆+ + · · · (B.73)

Substituting this expansions in the boundary action

δS(2) = − lim
Λ→∞

1

2

∫
d4k

(2π)4
r5

[
r−2ηνσ

(
−2δbσr

−3 − 2δcσr
−3 log

(
r

rh

)
+ δcσr

−3

)(
δaν + δbνr

−2 + δcνr
−2 log

(
r

rh

))
+
(
δφsr

−∆− + δφvr
−∆+

) (
−∆−δφ

∗
sr
−∆−−1 −∆+δφ

∗
vr
−∆+−1

)
+
(
δφ∗sr

−∆− + δφ∗vr
−∆+

) (
−∆−δφsr

−∆−−1 −∆+δφvr
−∆+−1

)
+O(r−4 log r)

]∣∣∣∣
r=Λ

,

(B.74)

that gives, after performing the products:

δS(2) = lim
Λ→∞

1

2

∫
d4k

(2π)4

[
ηµσ

(
2δbσδaµ + 2δcσδaµ log

(
r

rh

)
+ δcσδaµ +O(r−2 log2(r))

)
+
(
∆−δφsδφ

∗
sr

2ν + ∆+δφsφ
∗
v + ∆−δφvφ

∗
s +O(r−2ν)

)
+
(
∆−δφ

∗
sδφsr

2ν + ∆+δφ
∗
sφv + ∆−δφ

∗
vφs +O(r−2ν)

) ]∣∣∣∣
r=Λ

(B.75)

and we can now clearly see that there are divergent terms in the action, both for the scalar field components
and the gauge field. We therefore need the counterterms (B.65), that in k-space and in the boundary limit
become:

δS
(2)
c.t. φ = −1

2

∫
d4k

(2π)4

(
2∆−δφsδφ

∗
sr

2ν + 2∆−δφsδφ
∗
v + 2∆−δφ

∗
sδφv +O(r−2ν)

) ∣∣∣∣
r=Λ

(B.76)

δS
(2)
c.t. A =

1

2

∫
d4k

(2π)4
log

(
r

rh

)
ηµρηνσδaν (kµkρδaσ − kµkσδaρ) +O(r−2 log2(r))

∣∣∣∣
r=Λ

, (B.77)

given the explicit form of cµ (B.71) and (B.72) the second counterterm can be written as

δS
(2)
c.t. A =

1

2

∫
d4k

(2π)4

[
log

(
r

rh

)
(−k(kδat + ωδax)δat − ω(kδat + ωδax)δax) +O(r−2 log2(r))

] ∣∣∣∣
r=Λ

=
1

2

∫
d4k

(2π)4

[
log

(
r

rh

)
(2δctδat − 2δcxδax) +O(r−2 log2(r))

] ∣∣∣∣
r=Λ

=− 1

2

∫
d4k

(2π)4

[
log

(
r

rh

)
ηµσ (2δcσδaµ) +O(r−2 log2(r))

] ∣∣∣∣
r=Λ

.

(B.78)
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Adding the counterterms to the boundary action we can finally safely perform the limit Λ→∞, to obtain

S
(2),R
bdy =

1

2

∫
d4k

(2π)4

[
(−2δbt(ω, k) + δct(ω, k)) δat(−ω,−k) + (2δbx(ω, k)− δcx(ω, k)) δax(−ω,−k)

+ 2νδφv(ω, k)δφ∗s(−ω,−k) + 2νδφv(ω, k)δφ∗s(−ω,−k)

]∣∣∣∣
r=Λ

,
(B.79)

from which we can read off the variation in the expectation values of the operators and determine the Green’s
functions, as explained in chapter 4.

B.3 Near horizon boundary conditions

Here we show how to derive the initial conditions at the horizon using the example of the intrinsic dynamics
of the scalar field, however the calculations including the gague field are analogous. The equation of motion
for scalar field fluctuations is given by

δφ′′ +

(
f ′(r)

f(r)
+
d− 1

r
− χ′(r)

2

)
δφ′ −

m2 − (qAt + ω)2 eχ(r)

f(r) + k2

r2

f(r)
δφ = 0 . (B.80)

Expanding near the horizon (here we neglect gauge fluctuations because we are considering the uncoupled
problem), with f(r) = f ′(rh)(r − rh) +O((r − rh)2) for r → rh and At(rh) = 0 we have:

δφ′′ +

(
1

r − rh
+
d− 1

rh
− χ′(rh)

2

)
δφ′ −

m2 − ω2 eχ(rh)

f ′(rh)(r−rh) + k2

r2
h

f ′(rh)(r − rh)
δφ = 0 for r → rh . (B.81)

Using the ansatz δφ = (r − rh)α we obtain:

(r − rh)α−2

([
α2 + ω2 e

χ(rh)

f ′2(rh)

]
+ (r − rh)

[
d− 1

rh
− χ′(rh)

2
− m2

f ′(rh)− k2

f ′(rh)rh

])
, (B.82)

neglecting higher order terms, we then find

α2 = −ω2 e
χ(rh)

f ′2(rh)
(B.83)

that, using the formula for the black hole temperature (3.10) gives

α = ± iω

4πT
(B.84)

and then near the black hole horizon

δφ(r) ∼ (r − rh)±
iω

4πT . (B.85)

The two solutions corresponds to waves infalling into black hole or outgoing from the black hole horizon. We
want to choose the physical solution of infalling waves, computing correlation functions with this boundary
conditions gives the retarded Green’s functions. In order to see which sign corresponds to infalling boundary
conditions, we have to restore the time dependence in (B.85):

e−iωt(r − rh)±
iω

4πT (B.86)

if we now make the change of variable (r − rh)→ r̄ = log r − rh/(4πT ) than (B.85) behaves as

δφ(r̄) ∼ e−iω(t∓r̄) (B.87)

and we see that the solution with the minus sign gives a wave e−iω(t+r̄) moving towards the horizon, therefore
we set the boundary condition at the horizon to be:

δφ(r) = (r − rh)−
iω

4πT for r → rh . (B.88)
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