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The density is computed as                            .
At zero temperature the best fit is shown in the figure 
below, with the MIT 3d density data[2]:
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The kink in the densities signals the transition to a gapless 
phase, which is the exotic Sarma phase[4]. This phase is 
unstable homogeneously, but is stabilized by the trapping 
potential.

Result - Induced Sarma phase
nσ = −∂Ω/∂µσ

All ultracold atom experiments[1,2] are performed in a 
harmonic trap to avoid contact of the atoms with material 
walls. Due to this trapping potential the atomic cloud is 
never homogeneous. However, typically the trapping 
frequency corresponds to a small energy scale, so that we 
may use the so-called local-density approximation (LDA).
But even if the trap frequency is small, LDA may still break 
down. An important example is the presence of an inter- 
face in the trap due to a first-order phase transition...

Trapped Fermi mixtures
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The experiments have two Fermion species that interact 
with each other, at low enough temperatures, this causes 
the particles to pair up and form Cooper pairs, which is 
superfluidity. At a Feshbach resonance the interaction 
parameter (scattering length) diverges, so we use a more 
phenomenological method,  a Landau-Ginzburg energy 
functional, instead of a perturbative approach.
This energy functional gives an energy for different values 
of the order parameter (∆) which is a measure for the 
pairing.  We use the standard BCS expression,
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with,                                              and                                                 .
The functional is plotted for various chemical potential 
differences as a function of the order parameter:
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A superfluid

This f is choosen such that the eos exactly reproduces the 
know eos in the nomal state and in the superfluid state.

The normal equation of state is known exactly from 
Monte-Carlo results[3], also the superfluid state is known. 
They appear to behave mean-field like.  We therefore 
model the fully interacting states in the following way,

µ̃σ = µσ + fσ(µ1, µ2, |∆|) (2)

Interaction effects

The constant c can be calculated in certain limits, however 
because the strong interactions, a fitted value might be a 
bit different (in this case a bit larger).

The energy functional we use also describes the system 
when ∆ is not in a minimum, allowing us to investigate 
inhomogeneous effects. We try to model these effects by 
adding a single gradient term to the energy functional,

Ωgrad = ΩBCS[µ̃1, µ̃2] + c (∇∆)2 (3)

Gradient term 

The particles in the experiments are confined to a 
harmonic trap. This can be modeled by letting the chemical 
potential depend on x,                                 .
The order parameter is proportional to µ, and therefore 
follows the shape of the trap. 
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At a certain critical location in the trap, the relative 
chemical potential difference hits a critical value, making 
the gas normal again.

The trap

µ(x) = µ− V (x)


