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Homogeneous phase diagram

Only one-loop diagrams survive, since loops add a factor dΛ. The contribu-
tions of the diagrams are absorbed into flowing couplings. Diagram a) is a 
selfenergy; b) is a ladder diagram and describes scattering in a gas, it yields 

 
 

Extremely imbalanced case
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with ~q and !     the center-of-mass momentum and frequency,                           
the kinetic energy, and                                                  the Fermi distribution;
c) is a bubble diagram and describes screening by particle-hole excitations. 
The interaction is expanded as                                                           , where 
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:

where                                                                . Note that the RG equations ge-
nerate infinitely many Feynman diagrams, showing the nonperturbative nature.

 

We can also determine the tricritical point (X), where second-order transitions 
to the superfluid phase turn to first order. It is at                    and 
               [4].  In the phase diagram above, the data at the boundaries are by 
MIT [2], while the solid line is the calculated second-order line. Also shown 
is the Feyman diagram that determines the tricritical point. At non-zero P the 
transition is into the gapless superfluid Sarma (S) phase [3]. The dashed lines 
for the BCS superfluid and the forbidden region (FR) are a guide to the eye. 

²k = ~2k2=2m
N®(²k) = 1=(e¯(²k¡¹®) + 1)

V ¡1q;m = V ¡10;0 ¡ Z¡1q q2 + Z¡1! i~!m

NB(² ) = 1=(e¯Z!(¡V
¡1
0;0+Zq¤

2) ¡ 1)

#

It turns out that we can use                         to inte-
grate out all momentum shells. If                            , 
then      renormalizes to                     due to the 
strong attractive interactions. The flow is depicted 
on the left. The selfenergy of the spin-down
fermion is thus ¡0:6¹    . Since our results agree 
with MC calculations, the RG is suited to tackle 
the unitarity limit.  
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Putting everything together, we obtain the following RG equations,

 

First, we apply the RG to one spin-down particle in a 
sea of spin-up particles at zero temperature. We consider 
the unitarity limit, where the scattering length diverges 
and the experiments are done. The equations are simpli-
fied, e.g. because N  is zero and      is not changing.
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where the fields Á®   = Á®(x,¿) describe fermionic particles, ¯ =1/k  T is the 
inverse temperature, m the mass, ¹®    the chemical potential for spin state ®    
and V the interaction strength. Perturbation theory fails to describe strong in-
teractions quantitatively, so we use renormalization. Integrating out modes in 
a momentum shell Λ of infinitesimal width dΛ, gives the Feynman diagrams 
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For the transition to the superfluid state, we 
use the critical condition         = 0. It means 
that the many-body T matrix diverges, i.e. a 
new bound state enters the system. For weak 
interaction, selfenergies are neglible and      
does not flow. We find a reduction of the cri-
tical temperature with 1/e due to screening 
(Gor’kov correction). For strong interaction, 
selfenergy effects are important and we use

                              
to flow to the average Fermi level as shown. 
In the balanced case, we find                       
and                     [4] in agreement with MC. 
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Ultracold atomic Fermi mixtures are the dream of every physicist due to the 
amount of experimental control that is realizable. The interaction strength, the
trapping potential and the density of particles n   in each spin state ® can be 
tuned at will. For two states, pairing is optimal for equal particle number and 
strong interaction. This leads to a record-high superfluid critical temperature 
on the order of the Fermi temperature. Two experimental groups have studied 
the mixture as a function of polarization                                            , relevant 
for astrophysics, condensed and nuclear matter. Since equally spinning par-
ticles do not interact at low temperatures, the fully polarized system is ideal. 
A transition from superfluid to normal is thus induced by varying polarization.
 

  The results by Rice [1] and MIT [2] caused much debate, since some of them 
agreed and some not. All fit to a phase diagram with superfluid-normal 
transitions of second and first order, connected by a tricritical point [3]. At 
low temperatures, MIT found a critical polarization of 0.3 as expected from
Monte-Carlo (MC) simulations and the local-density approximation (LDA). 
LDA applies for shallow traps, i.e. locally flat, so that the gas behaves homo-
geneously. As a result, MIT could map out the homogeneous phase diagram 
via local measurements in the trap [2] (see last figure). For Rice, LDA does 
not hold, leading to different physics.

Starting point for a theoretical description is the microscopic action S,   
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Experiments by MIT and Rice University
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