Towards a semi-holographic superfluid

N.W.M. Plantz*, H.T.C. Stoof, S.J.G. Vandoren Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584CE Utrecht, The Netherlands *n.w.m.plantz@uu.nl

MOTIVATION

Goal: using holography describe bosonic *single-particle* spectra in a strongly interacting superfluid!

What do we mean by single particles?

- Creation/annihilation operators in Fock space
- Obey canonical commutation relations and the sum rule

THE HOLOGRAPHIC SUPERFLUID

The holographic superfluid is a well-known [2] solution to the action

 $S = \int d^{5}x \sqrt{-g} \left(\frac{c^{3}}{16\pi G} (R - \Lambda) - \frac{1}{4\mu_{0}c} F_{\mu\nu} F^{\mu\nu} - \hbar g_{b} \left(D_{\mu} \phi \left(D^{\mu} \phi \right)^{*} + \frac{m^{2}c^{2}}{\hbar^{2}} |\phi|^{2} \right) \right)$

Properties:

 $\frac{-1}{\pi} \int \mathrm{d}\omega \mathrm{Im} G_{R_{\alpha,\alpha'}}(\omega,\mathbf{k}) = \delta_{\alpha,\alpha'}$ $[\psi_{\alpha}(\mathbf{x},t),\psi_{\alpha'}^{\dagger}(\mathbf{x}',t)]_{\pm} = \delta(\mathbf{x}-\mathbf{x}')\delta_{\alpha,\alpha'}$

Why are they interesting? Their spectral functions can be experimentally observed!

FROM 'STANDARD' HOLOGRAPHY...

•Add a scalar field ϕ to the bulk •EOM near the boundary yields

d+1-*dimensional* theory with gravity

 Solution consists of metric, temporal gauge field and scalar hair

•Above some temperature T_c , $\phi = 0$ only solution => left with a charged black hole •Below T_c there are solutions with $\phi_s = 0$ and $\phi_O \neq 0$. On the boundary this yields spontaneous symmetry breaking!

EFFECTIVE ACTION

To find the semi-holographic Green's function, we must first understand the holographic result.

Near T_c , one can describe a *complex* order parameter Δ with the following effective Landau-Ginzburg action

 $S = \int \mathrm{d}^4 x \left(-ia\Delta^* \partial_t \Delta + \gamma |\nabla \Delta|^2 + \alpha_0 (T - T_c) |\Delta|^2 + \frac{\beta}{2} |\Delta|^4 \right)$

Relationship between Δ and O

which violates the sum rule. Hence ϕ is not an elementary scalar field!

d-dimensional CFT

...TO SEMI-HOLOGRAPHY!

•Introduce a UV brane $r = r_0$ •Make the source dynamical on this brane [1]!

 $S_{UV} = -\hbar Z \int_{r_0} \mathrm{d}^d x \sqrt{-h} \partial_a \phi_s \partial^a \phi_s^*$

•Retarded Green's function of ϕ_s becomes

UV brane with dynamical source

•Assuming $O \sim \Delta$ one can determine the above coefficients from the retarded Green's function of O. See [3] for $T > T_c$! •The Green's functions below T_c do not behave as expected from $O \sim \Delta$. Rather, they seem to describe **phase** fluctuations! We believe this is due to large-*N* arguments.

REFERENCES

[1] U. Gürsoy, E. Plauschinn, H. Stoof and S. Vandoren, JHEP 1205, 018 (2012) [2] S. Hartnoll, C. Herzog and G. Horowitz, JHEP 0812, 015 (2008) [3] J.-H. She, B. Overbosch, Y.-W. Sun, Y. Liu, K. Schalm, J. Mydosh and J. Zaanen, Phys.Rev. B84, 144527 (2011)

Universiteit Utrecht

Netherlands Organisation for Scientific Research