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Nonequilibrium dynamics
A Bose-Einstein condensate is at nonzero temperatures described by the
Langevin equation [1,2]:

Dissipation: Fluctuations:
Condensate growth or evaporation Thermal fluctuations due to
from the thermal cloud. incoherent collisions.

The strength of the gaussian noise is determined by the Keldysh self-energy:

The microscopic expressions for the Keldysh self-energy and the dissipation
take the form of collision integrals. However, if we assume the thermal cloud
to be sufficiently close to equilibrium we can relate the strength of the
fluctuations to the dissipation by means of the fluctuation-dissipation theorem:

The fluctuation-dissipation theorem ensures relaxation of the system towards
the correct physical equilibrium probability distribution.

Variational approach
For a harmonic external trapping potential, we take for the condensate wave
function a gaussian variational ansatz:

This results in Langevin equations for  the variational paramaters qj(t), which
are equivalent to the equations of motion for a Brownian particle with
effective mass meff =1/2mNC in a potential V(q,NC):

The potential V(q,NC) is given by

Positive scattering length: Negative scattering length:

The Langevin equations for qj(t) are coupled to a stochastic rate equation  for
the number of atoms in the condensate:

The parameter µC (t) is the chemical potential of the condensate in the gaussian
approximation. The strength of the noise ξj (t) and η(t) is such that the
condensate relaxes to the correct physical equilibrium probability distribution.
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-A metastable condensate is possible only for
NC<Nmax≈1470 in the Gaussian  approximation.

-The condensate can collapse by overcoming
the macroscopic energy barrier.

Applications
1. Collective modes
Using the Langevin equations for the variational parameters and the stochastic rate
equation for the number of atoms in the condensate we calculate the frequencies and
collisional damping rates of the low-lying collective excitations as a function of
temperature. Using these equations we find that the complex frequencies of the
quadrupole mode lie on a circle in the complex ω-plane:

where ωr is the radial frequency of the
trapping potential. Plotting the experimental
datapoints of Jin et al.[3] in the complex
frequency plane shows that they lie indeed on
a circle.

2. Condensate growth and collapse
Using our Langevin equations and the stochastic rate equation for the number of atoms
in the condensate we describe the growth of a 7Li condensate, for the experimental
conditions as realized in the experiments of Gerton et al. [4]. We model the collapse by
putting the number of atoms equal to 200±40 once a collapse is initiated. The solutions
of the stochastic equations show that the average is strongly dependent on the number
of individual runs one averages over:

(a) Growth collapse curves of a 7Li condensate,
and (b) their averages. The colored lines in (a)
display the number of condensate atoms for
the solutions of the stochastic equations for
different realizations of the noise. In (b) the
red line corresponds to an average over 5
realizations, the green line to 10, and the blue
line to an average over 1000 realizations of
the noise.

To simulate the experiments one has to obtain
each datapoint by averaging over different
runs, with the same initial conditions.

Simulations of the experiments performed by
Gerton et al.[4]. The results of the simulations
are denoted by red triangles, the experimental
data is shown as black circles. In (a) and (b)
each data-point of the simulations is an
average over 5 runs, as in the experiments. For
(c) 10 runs per point were done. The errorbars
denote the uncertainty in the mean.

Conclusions
The variational solution of the
Langevin field equation that
describes the nonequilibrium
dynamics of a Bose-Einstein
condensate is a powerful tool for
studying many interesting problems.
Apart from the applications
discussed here, the treatment of the
dissipative dynamics of topological
excitations such as vortices and
skyrmions becomes also feasible
within this method.
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