
Weyl semimetals are condensed-matter 
systems with fascinating and unusual 
properties, that result from the topologi-
cal nature of the band structure. Most of 
the theoretical work is done on free or 
weakly-interacting Weyl semimetals.  It 
is interesting to explore these properties 
also at strong coupling, using techniques 
from the AdS/CMT correspondence. 
Here, we present our recent theoretical 
work [1], in which we propose a holo-
graphic model for a class of strongly-cou-
pled Weyl semimetals. 
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AdS/CMT for single-particle correlations

Single-particle spectra

The model consists of a 5-dimensional gravitational 
Lifshitz background with Dirac fermions Ψ = (Ψ+,Ψ-) 
of mass M. In our set-up, we also include a boundary 
term in the action that describes free, elementary, 
3+1-dimensional Weyl fermions. 

Solving the Dirac equation in the gravitational back-
ground yields Ψ- = Σ Ψ+  (see left). Together with 
the boundary term, we obtain an effective action for 
Ψ+. The function Σ is the holographic self-energy, by 
construction an effective description of the interac-
tions between the boundary fermions. Hence, the 
boundary system is an interacting Weyl semimetal 
with Lifshitz scaling. The result for the retarded sin-
gle-particle Green’s function is

λ denotes the strength of the spin-orbit coupling 
and thus depends on the microscopic properties 
of the material. Here, we study how the physics 
changes as a function of λ.

A Weyl semimetal is a 3-dimensional gapless 
semiconductor based on chiral fermions. In the non-
interacting case and for low energies, the Hamiltonian 
is

where the sign in front 
denotes the chirality.

Since  one  cannot  write 
down mass terms for 
Weyl fermions, the gap-
lessness of the system 
is topologically protect-
ed at zero chemical po-
tential. This gives rise to 
interesting topological 
properties [2,3], for example

•  A non-zero anomalous Hall conductivity due to non-
zero Berry curvature [4].

•  Gapless surface states in a certain region of momen-
tum space, the so-called ``Fermi arc’’.  

We will investigate 
these properties 
also at strong 
coupling using  
our holographic 
model.

Figure on the 
right is taken and 
adapted from [2].

Quantum phase transition
The inclusion of a holographic self-energy 
leads to the existence of several different 
phases including a non-Fermi-liquid phase 
and a Fermi-liquid phase with two Fermi 
surfaces, separated by a quantum phase 
transition (see phase diagram below).

We also show the non-interacting band 
structure and how it is populated in the 
ground state of each phase. In particular, 
for  λ > 0 the conduction band is empty 
and the valence band is completely filled, 
whereas for  λ < 0 the conduction band 
contains a Fermi sea of particles and the 
valence band a Fermi sea of holes.
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From the holographic Green’s function, 
we compute the spectral-weight function. 
This particular quantity is experimentally 
observable in condensed-matter systems. 
Below, we have plotted one of the spin 
components of the spectral-weight 
function for a dynamical scaling exponent 

z = 2, temperature T = 1/30 and M = 1/4, 
and for two values of the parameter λ. 
Our results show that the system has strong 
interactions in the infra-red, where the 
self-energy is dominant over the kinetic 
energy, while in the far ultra-violet the 
system becomes free. 
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