An Intimate Gathering of Bosons

Peter van der Straten

Atom Optics (AOUD)

Honoursprogramma Utrecht

September 29, 2009

Universiteit Utrecht

Outline

1 How to produce a Bose-Einstein condensate

- Step 1: Light pressure
- Step 2: Optical molasses
- Step 3: Magnetic trapping

2 Observation of BEC

What to do with a Bose-Einstein condensate

- Superradiant scattering
- Collective excitations
- Bosons versus Fermions
- Superfluidity
- Atom laser

Bose-Einstein condensation

Peter van der Straten (AOUD)

What is Bose-Einstein condensation (BEC)?

Bosons and Fermions

Usual examples: electrons, protons, neutron (fermions), photon (boson) Example: ³He (I= $^{1}/_{2}$) and ⁴He (I= 0), or ⁶Li (F= $^{1}/_{2}$, ³/₂) and ⁷Li (F= $^{1}/_{2}$, ³/₂)

Pauli exclusion principle

The Pauli exclusion principle is a quantum mechanical principle formulated by Wolfgang Pauli in 1925. It states that no two identical fermions may occupy the same quantum state simultaneously.

A more rigorous statement of this principle is that, for two identical fermions, the total wave function is anti-symmetric. For electrons in a single atom, it states that no two electrons can have the same four quantum numbers, that is, if n, l, and ml are the same, ms must be different such that the electrons have opposite spins. In relativistic quantum field theory, The Pauli principle follows from applying a rotation operator in imaginary time to particles of half-integer spin. It does not follow from any spin relation in nonrelativistic quantum mechanics.

Population of states

Outline

1 How to produce a Bose-Einstein condensate

- Step 1: Light pressure
- Step 2: Optical molasses
- Step 3: Magnetic trapping

2 Observation of BEC

3 What to do with a Bose-Einstein condensate

- Superradiant scattering
- Collective excitations
- Bosons versus Fermions
- Superfluidity
- Atom laser

Light pressure

recoil "kick" $v_r = \frac{\hbar k}{m} \approx 3 \text{ cm/s}$ (Na) thermal $v \approx 1000 \text{ m/s}$ $N_{\rm stop} \approx 33.000$ fotons lifetime $\tau = 16 \text{ ns}$ $T_{
m stop} \approx 1 \,\,
m msec$ $I_{\rm stop} \approx 0.5 \ {\rm m}$ acceleration $a \approx 9 \times 10^5 \text{ m/s}^2$

Zeeman technique

Velocity distribution

Funnel for atoms

Contour map of the velocity and position of atoms in the solenoid

Peter van der Straten (AOUD)

Laser cooling

Cooling limit: Damping by Doppler tuning vs. heating by random recoil

$$kT_{\rm D} = \frac{\hbar\Gamma}{2}$$
 [Na : 240 μ K]

Cold Atoms

D:/upload/Phys2000/bec/lascool4.html

Peter van der Straten (AOUD)

Magnetic Trap

Evaporation

- Cools a cup of coffee
- Ocols apples by overtree sprinkling
- Is used in technical water coolers
- Globular clusters do it by evaporation of stars
- Sompound nuclei do it by evaporating neutrons
- Atom coolers love it.

Evaporative cooling of a trapped gas is based on the preferential removal of atoms with an energy higher than the average energy, followed by thermalization of the gas by elastic collisions.

In order to force the cooling to proceed at a constant rate, the evaporation threshold may be lowered as the gas cools (forced evaporation). D:/Upload/Phys2000/bec/xevap_cool.html

Experimental feasibility

Properties of the trapped atoms	N	<i>n</i> (atoms/cm ³)	$T(\mu K)$
MOT	$1.2 imes10^{10}$	$3 imes 10^{11}$	320
magnetic trap	$8 imes 10^9$	$3 imes 10^{11}$	340
evaporative cooling	$1.5 imes10^8$	$8 imes 10^{13}$	0.3

Outline

1 How to produce a Bose-Einstein condensate

- Step 1: Light pressure
- Step 2: Optical molasses
- Step 3: Magnetic trapping

2 Observation of BEC

3 What to do with a Bose-Einstein condensate

- Superradiant scattering
- Collective excitations
- Bosons versus Fermions
- Superfluidity
- Atom laser

Current setup

Bose-Einstein condensation-The last stages

Peter van der Straten (AOUD)

An Intimate Gathering of Bosons

27 / 56

Expansion of the cloud

Peter van der Straten (AOUD)

Phase contrast imaging, "close" to resonance

$$\begin{split} \delta &= -286 \text{ MHz} & \text{Trap } 96{\times}4 \text{ Hz} \\ \text{Field-of-view } 1.8{\times}0.7 \text{ mm} & ``in situ" \\ N &= 1.5 \times 10^8 \text{ atoms} \end{split}$$

Characteristic values

Dark magneto-optical trap		
Temperature	320 µK	
Number of particles	$1.2 imes10^{10}$ atoms	
Density	$3 imes 10^{11}$ atoms/cm 3	
Magnetic trap		
Trap frequencies	ν_r =96 Hz and ν_z =16 \rightarrow 1.08 Hz	
Number of particles	$8 imes 10^9$ atoms	
Elastic scattering rate	10 collisions/s	
Bose-Einstein condensation		
Evaporation ramp	40 s	
Number of particles	$2.5 imes10^8$ atoms	
Density	$2.5 imes10^{14}~ ext{atoms/cm}^{3}$	
Chemical potential	3.5 kHz	
Temperature	300 nK	

Outline

1 How to produce a Bose-Einstein condensate

- Step 1: Light pressure
- Step 2: Optical molasses
- Step 3: Magnetic trapping

2 Observation of BEC

What to do with a Bose-Einstein condensate

- Superradiant scattering
- Collective excitations
- Bosons versus Fermions
- Superfluidity
- Atom laser

Superradiant scattering

"Collective scattering of light from a Bose-Einstein condensate"

Superradiant backscattering-Setup

What to do with a Bose-Einstein condensate Superradiant scattering

Superradiant scattering-Spectrum

Peter van der Straten (AOUD)

Defining Entanglement

When two systems, of which we know the states by their respective representatives, enter into temporary physical interaction due to known forces between them. and when after a time of mutual influence the systems separate again, then they can no longer be described in the same way as before, viz. by endowing each of them with a representative of its own. I would not call that one but rather the characteristic trait of quantum mechanics. the one that enforces its entire departure from classical lines of thought. By the interaction the two representatives [the quantum states] have become entangled.

Erwin Schrödinger, 1935

Superradiant backscattering-Entanglement

Distinguishing Entanglement

VIEWPOINT

From Pedigree Cats to Fluffy-Bunnies

Jacob Dunningham, Alexander Rau, Keith Burnett*

We consider two distinct classes of quantum mechanical entanglement. The first "pedigree" class consists of delicate highly entangled states, which hold great potential for use in future quantum technologies. By focusing on Schrödinger cat states, we demonstrate not only the possibilities these states hold but also the difficulties they present. The second "fluffy-bunny" class is made up of robust states that arise naturally as a result of measurements and interactions between particles. This class of entanglement may be responsible for the classical-like world we see around us.

Dunningham et al., Science 307, 872 (2005)

are limited by more practical effects. Interferometry schemes, for example, usually use a stream of photons or atoms and are, therefore, normally limited by shot noise, where the measurement accuracy scales as $N^{-1/2}$. This conventional bound to measurement accuracy is a consequence both of the discrete

Collective excitations

"Excitation of a mode of the condensate"

Quadrupole oscillations of a condensate

Peter van der Straten (AOUD)

Damping of quadrupole oscillations

Peter van der Straten (AOUD)

What to do with a Bose-Einstein condensate Col

Collective excitations

String theory, ³He-⁴He, quark-gluon plasma and cold atoms

Topic Three

Bosons versus Fermions

"How quantum statistics changes everything"

"Fermi" pressure

Bunching or anti-bunching

Bunching or anti-bunching

Peter van der Straten (AOUD)

Bunching or anti-bunching

Jeltes et al., Nature 2007

Peter van der Straten (AOUD)

Topic Fout

Prove of superfluidity

"Vortices in a quantum fluid"

Prove of superfluidity

Madison et al., Phys. Rev. Lett. 84, 806 (2000)

Cross-over between bosons and fermions

diatomic molecules

strongly interacting pairs

Cooper pairs

Prove of superfluidity for atoms

J. Abo-Shaer et al., Science 292, 476 (2001)

Prove of superfluidity for molecules

M. Zwierlein et al., Nature 435, 1047 (2005)

Prove of superfluidity for atom pairs

M. Zwierlein et al., Nature 435, 1047 (2005)

Peter van der Straten (AOUD)

Atom laser

"The creation of a continuous flow of Bose-condensed atoms"

Atom lasers

Evaporative cooling

Trap geometry vs. Beam geometry

Atom laser

"The rollercoaster"

supersonic <0> subsonic

Peter van der Straten (AOUD)

An Intimate Gathering of Bosons