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Abstract

Laser cooling of atoms was suggested in the 1970’s as a way to perform
better laser spectroscopy. Since it has been very successful in producing
cold, dense sample of atoms it is nowadays used in many atomic physics
experiments. In this lecture note we will concentrate on those techniques,
that are used to cool and trap atoms to phase space densities sufficient to
observe a phase transition of the atoms to a Bose-Einstein condensation.

1 Introduction

The idea to use laser radiation to cool and trap atoms was first suggested by
Wineland and Dehmelt [1] and independently by Hansch and Schawlow [2]. Since
photons carry momentum, the momentum exchange between the laser radiation
and the atoms in an absorption process can be used to apply a force on the atoms.
Since the absorption depends on the difference between frequency of the laser ra-
diation and the absorption frequency of the atoms, the absorption process can be
made velocity-selective due to the Doppler effect, which shifts the atoms absorp-
tion frequency depending on its velocity. It is this simple notion that forms the
basis for the research, that has been carried out in the last 20 years in the field
of laser cooling and trapping. Especially the velocity dependence of the process,
leading to the fact that the forces are no longer conservative but can instead dissi-
pate kinetic energy of the atoms, allows the experimentalists to cool atoms down
to extremely low temperatures.

The initial ideas came about, since in atomic spectroscopy the resolution is
limited by the Doppler effect, which shifts the absorption frequency. Since a
thermal gas of atoms has a distribution of velocities, the Doppler shift leads to a
broadening of the absorption frequency. Already in the 1960’s careful tricks have
been designed to overcome this problem, but they always lead to smaller signals
and therefore they ultimately limit the signal-to-noise in these experiments. Being
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able to cool the velocity distribution of the atoms and thus reduce its width without
changing the number of atoms, is therefore very beneficial in those experiments.

Since the early experiments have been very successful in reducing the temper-
ature of a cloud of atoms by many orders of magnitude, it became clear that laser
cooling and trapping could be used in many more experiments and this opened
a whole new field, which is nowadays known as laser cooling and trapping. For
instance, since the temperature of the atoms is very low, the interaction energy
becomes very small and thus interactions between the atoms can be studied in a
whole new regime, the ultra-cold collision regime. Since the interaction time be-
tween the atoms in this regime is much larger than the lifetime of the atoms in an
excited state, absorption processes have to take place during the collision and thus
the collisional system is probed during its interaction.

Furthermore, the energies of the atoms is becoming so small, that atoms can
be trapped in optical potentials, which have dimensions comparable to the wave-
length of the light. This trapping of atoms in such small potentials with a peri-
odicity given by the light field, the so-called optical lattice, is very reminiscent of
the periodic potential an electron experiences in a crystal. Thus the physics to be
studied in these optical lattices sheds light on the similarities and differences of
phenomena, which take place at a very different length scale.

One of the most intriguing aspects of laser cooling and trapping is its ability
to cool down a sample of atoms without losing any particles. Thus it became pos-
sible to increase the phase space density of the atoms. Already from the onset of
laser cooling and trapping it became clear that it could be instrumental in achiev-
ing a new phase of matter, the so- called Bose-Einstein condensed (BEC) phase.
This phase had been predicted by Einstein on some original ideas by Bose in the
1920’s, but its observation had always been hampered by the fact, that it required
a high density of atoms at very small temperatures. Compressing the atoms leads
to an increase of the density, but at the same time increasing their temperature,
yielding their phase space density to remain constant. Adiabatic expanding the
atoms volume leads to a lowering of their temperature, but leads to a decrease of
the density. However, using laser cooling techniques the temperature of the atoms
can be lowered without changing the density and thus leads to an increase in the
phase space density.

In this lecture note we will not describe all the different schemes and tech-
niques of laser cooling and trapping. Many of them can be found for instance
in the Laser Cooling and Trapping book [3], which we recently published about
the subject. Instead we will focus on one aspect of it, namely on the techniques
that have been used in the quest for BEC. In the beginning of the 1990’s different
experimental groups started to use laser cooling and trapping techniques to obtain
the Bose condensed phase for the alkali-metal atoms. Although the actual quest
for BEC took only 5 years, the ideas and techniques used originated back to all
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Figure 1: Satyendra N. Bose and Albert Einstein, who have predicted already
in the 1920’s, that a gas of atoms cooled down to a very low temperature and
compressed to high density will condense to a so-called Bose-condensed state,
the Bose-Einstein condensate (BEC)

the work of the preceding 20 years. Not only did they rely on the results of laser
cooling and trapping, in which the alkalies have been the prime atom to investi-
gate due to its simple internal structure, it also relied on the work that took place
to Bose condense atomic hydrogen, which had been carried out in parallel during
the same period.

In the quest for BEC there have been many groups active and three American
groups published the first results at about the same time (1995). These groups
are listed in Tab. 1. They all used a different alkali with different atomic proper-
ties, that are important for the achievement of BEC. The laser cooling techniques
they used are different, but they all provided the low temperatures necessary for
BEC. They all employed in the last phase of the cooling process the evaporation
of atoms, which will be explained in detail at the end of this note. In this last phase
the atoms were no longer held in an optical trap, since in the experiments it was
discovered that in the final phase the use of light inhibited the further cooling and
compression of the atoms. The numbers for the number of particles, the temper-
ature and the density given in the table are indicative for many other experiments
in this field.

The lecture is setup as follows. After we discuss in Sec. 2 the general con-
siderations regarding phase space density, we will discuss in Sec. 3 the simplest
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JILA Rice MIT
Group Cornell/Wieman Hulet Ketterle
Place Colorado Houston Boston
Atom 87Rb 7Li 23Na
Nuclear spin I 3/2 3/2 3/2

Scatt. length a(a0) +110 −30 +60
Cooling Vapor cell MOT Doppler slowing Zeeman slowing
Trap TOP Permanent Magnetic trap

magnetic trap with opt. plug
First BEC June ’95 [4] July ’95 [5] Sept. ’95 [6]
NC 2×104 2×105 2×106

TC (µK) 0.1 0.4 2
nC (cm−3) 2×1012 2×1012 1.5×1014

τ (s) 15 20 1

Table 1: Summary of the achieved results of the three groups, that published the
first results on BEC for alkali-metal atoms in the year 1995. In the table we list
the number of atoms in the condensate NC , the temperature TC at which the phase
transition took place, and the density nC of the atoms. Finally, the lifetime τ of
the condensate is shown.

model of laser cooling, the Doppler cooling. In Sec. 4 we will show, how laser
light can be used to slow down a beam of atoms. Next in Sec. 5 we will show,
how laser light can be used to cool atoms in the so-called optical molasses. For the
trapping of atoms in an optical trap many different schemes have been proposed,
but in Sec. 6 we will only discuss the most popular version, the magneto-optical
trap (MOT). In the experiments carried out at the end of the 1980’s it became clear
that the limit for laser cooling was not given by the result of the Doppler theory,
as discussed in Sec. 3, but that atoms can be cooled to much lower temperatures.
This work, nowadays referred to as sub-Doppler cooling, is described in Sec. 7.
To trap atoms without laser light magnetic traps have been designed and imple-
mented and we will describe them in Sec. 8. In Sec. 9 we will describe in a simple
model the cooling technique, that is most commonly used in the last phase of the
cooling process, the evaporation of the atoms. In the last section, Sec. 10, we will
describe the latest attempts to achieve BEC purely with optical techniques, before
drawing some conclusions.
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Stages T λdeB n nλ3
deB

Oven 300◦C 0.02 nm 1010/cm3 10−17

Slowing 30 mK 2 nm 108/cm3 10−12

Cooling 1 mK 10 nm 109/cm3 10−9

Trapping 1 mK 10 nm 1012/cm3 10−6

Evaporation 70 nK 1 µm 1012/cm3 2.612

Table 2: Typical numbers for the phase space density as obtained in the experi-
ments aimed at achieving BEC. The different stages of cooling and trapping the
atoms will be explained in more detail in this lecture note.

2 Phase Space Density

The phase space density ρ(�r , �p, t) can be defined in terms of the probability that
a single particle is at position �r and has momentum �p at time t . In classical
mechanics it is possible to know position and momentum of a single particle with
certainty simultaneously. In that case the phase space density for a system of N
particles is the sum of the phase space densities of the single-particle phase space
densities of all the particles in the system divided by N . Since the phase space
density is a probability, it is always positive and can be normalized over the six-
dimensional volume spanned by position �r and momentum �p.

For a gas of cold atoms it is convenient to define the phase space density ρ as
a dimensionless quantity

ρ = nλ3
deB, (1)

with λdeB the deBroglie wavelength of the atoms in the sample as determined by
their average velocity v̄:

λdeB = h/M v̄ = h/
√

3MkBT . (2)

Note, that the phase space density can be increased by either increasing the density
or by decreasing the average velocity v̄ of the atoms in the sample. For a thermal
beam of atoms at room temperature at typical densities of 1010 atoms/cm3, the
phase space density is of the order of 10−17 (see Tab. 2). It can be shown, that for
a homogeneous gas of non-interacting atoms the transition from gas phase to the
Bose-Einstein condensed phase occurs exactly at ρ = 2.612 [7]. It is the object
of laser cooling to increase the phase space density over these many orders of
magnitude.

In order to guide the discussion about the phase space density and the road to
BEC, Tab. 2 shows typical numbers of the phase space density in different stages
of laser cooling. Starting from the distribution of atoms in the oven, the effusive
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Figure 2: By applying a conservative force the surface of phase space can be
transformed into different shapes, but the total surface area is conserved.

beam of atoms is slowed down from the thermal velocity down to tens of meters
per second by slowing the atoms with laser light. Subsequently the atoms are
cooled down by molasses cooling and trapped. Phase space densities are of the
order of 10−6, which is still six orders of magnitude away from the transition
point. In the last step evaporative cooling is used to increase the phase space
density to more than unity.

One important aspect to realize, is that the phase space density cannot be
changed by using conservative forces. In Fig. 2 a schematic diagram is shown
of a phase space volume with spatial coordinates q and momentum coordinates
p. If we now apply a transformation T in phase space, we can deform the volume
and change it shape. However, the total volume in phase space remains constant
and this is a result of the Liouville’s theorem. For instance, in light optics one
can focus a parallel beam of light with a lens to one point. In that case one has
exchanged the high phase space density due to the parallelism of the beam to a
high density of light rays in the focus. However, the light rays in the focus are
divergent. For classical particles the same principle applies. By increasing the
strength of the trapping potential of particles in a trap, one can increase the den-
sity of the atoms in the trap, but at the same time the temperature of the sample
increases leaving the phase space density unchanged.

In order to increase the phase space density, one has to apply a force on the
atoms, which is no longer conservative. This can be achieved by having a force,
which is dependent on the velocity or momentum of the atoms. In laser cooling we
will see that the force on the atoms under certain conditions becomes a damping
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force, i.e., always directed opposite to the atomic velocity. In that case the phase
space density in momentum space increases. This process is irreversible caused
by the spontaneous emission of the photons.

Laser cooling changes the temperature of the atoms. In thermodynamics we
can only speak of a temperature, if the sample of atoms is in equilibrium with
its surroundings. In laser cooling this is usually not the case and in many cases
the atoms having temperatures far below a 1 mK are trapped close to the walls
of the vacuum chamber, which is at room temperature. However, for a Maxwell-
Boltzmann distribution the spread of velocities is a direct measure of the tempera-
ture and we will use this fact to assign a temperature to a cooled sample of atoms,
although the atoms are not in equilibrium. Typical temperature involved in laser
cooling are shown in Fig. 3. As one can see laser cooling can cool down atoms
from room temperature to below 1 µm. The lowest temperatures are obtained by
further cooling down the atoms by using evaporative cooling.

In order to show in more detail, how laser cooling can be used to increase
phase space density, we consider the cooling and collimation of an atomic beam
(see Fig. 4). Atoms emerging from an oven under different angles are first colli-
mated by optical molasses into a parallel beam. This parallel beam is then focused
down to a very small spot size by a laser or magnetic lens. In the focus of the lens
the transverse velocity of the atoms are again damped by an optical molasses,
leading to the very bright atomic beam. In the region between the first optical mo-
lasses section and the lens the beam has a very small divergence and in this part
of the beamline the atoms can be slowed down using laser slowing. This bright
beam can be used to load a trap of atoms, where the atoms can be cooled down
further by laser light.
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Figure 4: Collimation of an atomic beam using laser cooling techniques.

It is instructive to look in more detail for the increase of phase space density
that can be achieved using laser cooling values for rubidium (for a overview of
these values for several alkalis and metastable rare gases, see App. A). In the
first optical molasses section the atoms are collimated in two dimensions from
the capture velocity of the molasses (typically vc ≈ 5 m/s) to the Doppler limit
vD = 12 cm/s, which is a compression with a factor 1500. By slowing down the
longitudinal velocity of the atoms from thermal velocities v th = 350 m/s to vD

an additional factor 3000 can be gained. Once the atoms are trapped they can
be cooled by sub-Doppler cooling from vD to vr = 0.6 cm/s, yielding another
factor 8000. Finally, by creating an optical lattice the atoms can be localized in
the potential wells within an optical wavelength, leading to a compression factor
of 108. Thus, in principle laser cooling and trapping should be able to bridge the
gap between phase space density of a thermal cloud of atoms and atoms in a BEC.
However, this analysis assumes, that laser cooling and trapping can be applied
on all atoms individually, whereas at these temperatures and densities the atoms
strongly interact. This causes that the cooling process will no longer be efficient
and limits the obtainable temperatures and densities.

In Tab. 3 the different stages of the cooling and trapping of atoms are shown for
the experiment of the JILA-group, where BEC was observed for the first time [4].
The table shows for this particular experiment which experimental techniques
were employed in the different stages of the experiment. The total experiment
runs about 10 minutes and in some stages the temperature of the atoms was de-
creased, whereas in other stages only the density was increased. In the last stage
the atoms were cooled evaporatively, which relies on the ejection of the fastest
atoms from the trap thereby lowering the temperature of the remaining atoms.
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Stages Action
0 Start in a vapor cell with a background pressure of 10−11 Torr.
1 Create a dark-spot MOT and collect 107 atoms in 300 s.
2 Cool them to 20 µK by adjusting field gradient and laser fre-

quency.
3 Pump them over to the “stretched” state (Fg, Mg) = (2,2).
4 Make the TOP trap by switching off the light.
5 Increase quadrupole magnetic field to increase elastic collision

rate. Temperature is 90 µK and still 4×106 atoms are present.
This leads to an elastic collision rate of 3/s, compared to 0.015/s
for the background.

6 Evaporative cool for 70 s to 170 nK and 2.5×1012 atoms/cm3.
BEC!

Table 3: The road to BEC, as used in the first experiment to observe BEC [4].

Finally, laser cooling has been discussed as a way to decrease the temperature
of a sample of atoms. Lowering the temperature of a sample leads to less disorder
in the system and therefore to a decrease of entropy. However, this seems to be
in conflict with the second law of thermodynamics, which states that the entropy
of a closed system should always increase in time. This apparent contradiction
relies on the fact, that in laser cooling the atoms do not form a closed system,
but interact strongly with the light field. The decrease of entropy of the atoms is
accompanied by an increase in entropy of the light field, where the photons in the
well-collimated laser beam are scattered in random directions in the spontaneous
emission process. Entropy considerations for a laser beam are far from trivial, but
recently it has been shown, that the entropy decrease of the atoms is many orders
of magnitude smaller compared to the entropy increase of the light field.

3 Doppler Cooling

Laser cooling relies on the exchange of momentum between the light field and
the atoms. To describe this process one has to consider the interaction between
the light field and the atoms. Atom-light interaction has been the topic of many
textbooks [8–16] and it is not the purpose of these lectures notes to teach this
subject. However, it is worthwhile to consider some of the steps to provide some
background for the physics involved. In particular, we will only consider the
simplest model of laser cooling, namely Doppler cooling of a two-level atom.
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3.1 Two-Level Atom in a Light Field

The Hamiltonian for atom-light interaction is given by

H′(t) = −e �E(�r , t) · �r (3)

where the electric component �E of the electromagnetic field interacts with the
dipole moment �µ = −e�r of the atoms. The interaction can be considered as a
small perturbation on the total Hamiltonian of the atom and subsequently pertur-
bation theory can be used to calculate the effects of the atom-light interaction on
the internal state of the atoms. Since the light field is nearly monochromatic, the
light field only couples two states, which we will indicate with g (ground state)
and e (excited state). Due to the atom-light interaction the amplitudes ce,g of these
states are coupled and the time-derivatives are given by

i h̄
dcg(t)

dt
= ce(t)H′

ge(t)e
−iω0t (4)

and

i h̄
dce(t)

dt
= cg(t)H′

eg(t)e
iω0t , (5)

with H′
eg the matrix element that couples the ground and excited state through

the atom-light interaction. In the case that we can describe the laser field by a
traveling plane wave �E(�r , t) = E0ε̂ cos(kz − ωt), the atom-light interaction is
given in terms of one parameter, the Rabi frequency:

� ≡ −eE0

h̄
〈e|r |g〉. (6)

This Rabi frequency determines how strongly the field with amplitude E0 couples
the two states in the atoms, which have a dipole moment −e〈e|r |g〉1. The atom-
light interaction causes the amplitudes of ground and excited state to oscillate back
and forth with the Rabi frequency �.

Using the rotating wave approximation we can write the coherent evolution of
the amplitude �c = (cg, ce) in terms of an effective Hamiltonian:

i h̄
d�c
dt

= H′ �c, (7)

with

H′ = h̄

2

[ −2δ �

� 0

]
, (8)

1Note, that the first symbol e refers to the charge of the electron, whereas the second symbol e
refers to the excited state

10



E2

(−δ + �′)h̄/2

E1

field onfield off

shifted statesbare states

(−δ − �′)h̄/2

Figure 5: Energies of the two coupled states with the light field off and the light
field on. The states are shifted due to the atom-light interaction and the shift is
called light shift.

where δ = ω − ω0 is the laser detuning from resonance, ω is the laser frequency
and ω0 is the atomic resonance frequency. By diagonalizing this effective Hamil-
tonian, we obtain the eigenstates of the coupled system. The solution are given
by

Ee,g = h̄

2
(−δ ∓ �′), (9)

with
�′ ≡

√
�2 + δ2. (10)

In the limit of � 	 |δ| this leads to:

�Eg,e = ± h̄�2

4δ
(11)

Depending on the sign of the detuning δ of the laser light from resonance the
energy of the ground state is shifted upwards or downwards. This is important in
laser traps, where by detuning the laser below resonance atoms can be attracted
to the laser focus, or by detuning the laser above resonance repelled from that
region. In Fig. 5 this shift of the energy levels in the atoms has been depicted
schematically for a negative detuning.
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3.2 Optical Bloch Equations

For atom-light interaction the atoms do not form a closed system. We have already
discussed this issue in relation to the entropy of the atoms. However, in case of
the atom-light interaction this plays a crucial role. Sofar we have only introduced
the two internal states of the atoms and left out the discussion of the light field. It
can be shown, that by quantizing the light field we can include the light field in the
Hamiltonian and thus obtain a closed system. However, the spontaneous emission
process lead to the emission of photons in random directions and thereby lost from
the system. This process is irreversible, which accounts for the irreversibility of
the cooling process. Since information from the system is lost, we can no longer
describe the system in terms of amplitudes and the system has evolved from a pure
state to a mixture. Although Eq’s. 4 and 5 still account for coherent evolution of
the atomic states in the presence of the light field, it does not account for the
spontaneous emission. In order to do so, we will introduce the density matrix to
describe the mixed system.

For a pure state the density matrix is given in terms of the amplitudes cg,e of
the two coupled states as

ρ =
(

ρee ρeg

ρge ρgg

)
=

(
cec∗

e cec∗
g

cgc∗
e cgc∗

g

)
. (12)

The diagonal element is the probability for the atoms to be in that state, whereas
the non-diagonal elements are called the optical coherences. The evolution of the
density matrix due to the coherent atom-light interaction is given by

i h̄
dρ

dt
= [H′, ρ], (13)

where the effective Hamiltonian H′ is given by Eq. (8). This leads to the so-called
Optical Bloch equations:

dρgg

dt
= +γρee + i

2

(
�∗ρ̃eg − �ρ̃ge

)
dρee

dt
= −γρee + i

2

(
�ρ̃ge − �∗ρ̃eg

)
dρ̃ge

dt
= −

(γ

2
+ iδ

)
ρ̃ge + i

2
�∗ (

ρee − ρgg
)

dρ̃eg

dt
= −

(γ

2
− iδ

)
ρ̃eg + i

2
�

(
ρgg − ρee

)
,

In these equation the terms proportional to the spontaneous decay rate γ have
been put in “by hand”, i.e., they have been introduced in the Bloch equations to
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account for the effects of spontaneous emission. For the ground state the decay
of the excited state leads to an increase of the probability ρgg to be in the ground
state proportional to γρee, whereas for the excited state it leads to a decrease of
ρee proportional to γρee. These equations have to be solved in order to calculate
the force of the laser light on the atoms.

3.3 Steady State

In most cases laser light is applied for a period long compared to the typical evolu-
tion times of atom-light interaction, i.e., the lifetime of the excited state τ = 1/γ .
Thus only the steady state solution of the Optical Bloch equations have to be con-
sidered. For the probability ρee to be in the excited state the solution is given
by

ρee = s

2(1 + s)
= s0/2

1 + s0 + (2δ/γ )2
, (14)

where we have defined the off-resonance saturation parameter s as

s ≡ |�|2/2

δ2 + γ 2/4
≡ s0

1 + (2δ/γ )2
(15)

and the on-resonance saturation parameter s0 as

s0 ≡ 2|�|2/γ 2 = I/Is . (16)

The probability ρee increases linearly with the saturation parameter s for small
values for s, but for s of the order of one the probability starts to saturates to a
value of 1/2. Thus for very high s the atoms divides its time equally between
the ground and excited state. The on-resonance saturation parameters can be ex-
pressed in terms of the saturation intensity Is ≡ πhc/3λ3τ , where Is is typically
of the order of a few mW/cm2 (see Tab. 8).

In steady state the atoms cycles between the ground and excited state. In
laser cooling the scattering rate of photons from the laser beam is an important
parameter, where the absorption of a photon from the light field is followed by
spontaneous emission. Since the decay rate of the excited state due to spontaneous
emission is given by γ , the scattering rate is given by

γp = γρee = s0γ /2

1 + s0 + (2δ/γ )2
(17)

In Fig. 6 the scattering rate is plotted as a function of the detuning for several
saturation parameters. For small s0 the scattering rate is directly proportional to
s0 and the line profile is given by the well-known Lorentz profile. For s0 in the
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Figure 6: Scattering rate γp as a function of the detuning δ for several values of
the saturation parameter s0. Note that for s0 > 1 the line profiles start to broaden
substantially due to power broadening.

order of one the scattering rate does no longer increase on resonance and obtains
its maximal value γ /2. The line profile broadens considerably, since far from
resonance the scattering rate is still proportional to s0. This effect is referred to as
power broadening. The width of the profile is given by γ ′ = γ

√
1 + s0 and thus

for very high s0 becomes proportional to the square root of s0.

3.4 Force on a Two-Level Atom

The force on the atoms due to the atom-light interaction can be calculated by using
the Ehrenfest theorem, which states that the force is given by the expectation value
of the gradient of the Hamiltonian:

F = −
〈
∂H
∂z

〉
(18)

This is analogous to the notion, that the force on a classical object is given by
the gradient of the potential acting on it. For a two-level atom we can insert the
effective Hamiltonian to obtain:

F = h̄

(
∂�

∂z
ρ∗

eg + ∂�∗

∂z
ρeg

)
. (19)
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So the force on the atoms only depends on the optical coherences ρeg = ρ∗
ge.

In order to gain some insight in this result, we express the gradient of the Rabi
frequency in terms of a real and imaginary part:

∂�

∂z
= (qr + iqi )�. (20)

Although this separation may occur a bit artificial at this stage, we will shortly
show that this separation is meaningful. We arrive at the following expression for
the force:

F = h̄qr (�ρ∗
eg + �∗ρeg) + i h̄qi (�ρ∗

eg − �∗ρeg) (21)

The first part of the force is proportional to the real part of the optical coherence
and thus proportional to the dispersive part of the atom-light interaction, whereas
the second part is proportional to the imaginary part and thus proportional to the
absorptive part of the atom-light interaction.

To see, why such a separation is meaningful, consider the interaction of atoms
with a traveling plane wave:

E(z) = E0

2

(
ei(kz−ωt) + c.c.

)
. (22)

In that case we have qr = 0 and qi = k and the force can only be due to absorption.
The force is given by

Fsp = h̄k γ ρee = h̄ks0γ /2

1 + s0 + (2δ/γ )2
. (23)

This force is often called the spontaneous force and can be written as Fsp = h̄k γp,
so it is given by the momentum transfer h̄k of one absorption of a photon times the
scattering rate γp. For the case of two traveling plane waves traveling in opposite
directions, one has a standing wave and the electric field is given by

E(z) = E0 cos(kz)
(
e−iωt + c.c.

)
. (24)

Thus we have qr = −k tan(kz) and qi = 0 and we only retain the dispersive part
of the force, which is given by

Fdip = 2h̄kδs0 sin 2kz

1 + 4s0 cos2 kz + (2δ/γ )2
. (25)

This force is often referred to as dipole force and if one averages this force over
a wavelength it averages down to zero. However, this force can be used to trap
atoms to dimensions smaller than the wavelength of the light.
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Figure 7: The damping coefficient β for atoms in a traveling wave as a function
of the detuning for different values of the saturation parameter s0. The damping
coefficient is maximum for intermediate detunings and intensities.

3.5 Atoms in Motion

In order to show, how these forces can be used to cool atoms, one has to consider
the force on atoms, which are in motion. Assuming that the velocity of the atoms
is small, so that we can treat the velocity v as a small perturbation on the evolution,
the first order result is given by:

d�

dt
= ∂�

∂ t
+ v

∂�

∂z
= ∂�

∂ t
+ v(qr + iqi )�. (26)

Using this expression we find for the force on a two-level atom in traveling plane
wave:

F ≈ F0 − βv (27)

with

β = −h̄k2 4s0(δ/γ )

(1 + s0 + (2δ/γ )2)2
. (28)

Note, that the second term in the force is a true damping force. The damping
coefficient β is shown as a function of the detuning for several values of s0 in
Fig. 7. Note, that for small s0 the maximum damping coefficient increases with
increasing s0, obtains a maximum and decreases for larger values of s0. The max-
imum damping coefficient is given by βmax = h̄k2/4 and occurs for s0=2 and
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δ = −γ /2. Note, that the damping rate  is proportional to the damping co-
efficient, namely  ≡ β/M and thus the maximum damping rate is given by
max = h̄k2/4M = ωr/2. For most atoms this damping rate leads to a damp-
ing time, which is of the order of tens of µs. Note, that the constant term F0 in
Eq. (27) leads to a cooling of the atoms to a non-zero velocity of v = F0/β, but
by using two counterpropagating laser beams the constant term can be cancelled
(see Sec. 5).

4 Laser Slowing

4.1 Introduction

The origin of optical forces on atoms has been discussed in Sec. 3.4, and here a
specific application is introduced. The use of electromagnetic forces to influence
the motion of neutral atoms has been a subject of interest for some years [17–
21]. The force caused by radiation, particularly by light at or near the resonance
frequencies of atomic transitions, originates from the momentum associated with
light. In addition to energy E = h̄ω, each photon carries momentum h̄k and
angular momentum h̄. When an atom absorbs light, it stores the energy by going
into an excited state; it stores the momentum by recoiling from the light source
with a momentum h̄k; and it stores the angular momentum in the form of internal
motion of its electrons (see Fig. 8). The converse applies for emission, whether it
is stimulated or spontaneous. It is the velocity change of the atoms, vr = h̄k/M �
few cm/s, that is of special interest here, and although it is very small compared
with thermal velocity, multiple absorptions can be used to produce a large total
velocity change. Proper control of this velocity change constitutes a radiative
force that can be used to decelerate and/or to cool free atoms.

Although there are many ways to decelerate and cool atoms from room tem-
perature or higher, the one that has received the most attention by far depends on
the scattering force that uses this momentum transfer between the atoms and a
radiation field resonant with an atomic transition. By making a careful choice of
geometry and of the light frequency one can exploit the Doppler shift to make the
momentum exchange (hence the force) velocity dependent. Because the force is
velocity dependent, it can not only be used for deceleration, but also for cooling
that results in increased phase space density (see Sec. 2).

4.2 Slowing of an Atomic Beam

The idea that the radiation scattering force on free atoms could be velocity de-
pendent and therefore be used for cooling a gas was suggested by Wineland and
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Figure 8: Schematic diagram for the pressure of light on atoms. Initially the
atom has a momentum mv0 and the photon has a momentum h̄k in the opposite
direction. Once the light is absorbed, the momentum of the atom is reduced to
mv0 − h̄k. In the next step light is emitted in a random direction and the recoil of
the photon on the atom averages over a large number of cycles out to zero. The
final momentum of the atom is thus on the average reduced during an absorption
and spontaneous emission cycle.

Dehmelt [1], Hansch and Schawlow [2], and Wineland and Itano [22], although
Kastler, Landau, and others had made allusions to it in earlier years. The possibil-
ity for cooling stems from the fact that atomic absorption of light near a resonance
is strongly frequency dependent, and is therefore velocity dependent because of
the Doppler shift of the laser frequency seen by the atoms moving relative to the
laboratory-fixed laser. Of course, a velocity-dependent dissipative force is needed
for cooling.

One very obvious implementation of radiative deceleration and cooling is to
direct a laser beam opposite to an atomic beam as shown in Fig. 9 [23, 24]. In
this case each atom can absorb light very many times along its path through the
apparatus. Of course, excited-state atoms cannot absorb light efficiently from the
laser that excited them, so between absorptions they must return to the ground
state by spontaneous decay, accompanied by emission of fluorescent light. The
emitted fluorescent light will also change the momentum of the atoms, but its
spatial symmetry results in an average of zero net momentum transfer after many
such fluorescence events. So the net deceleration of the atoms is in the direction
of the laser beam, and the maximum deceleration is limited by the spontaneous
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Figure 9: Schematic diagram of apparatus for beam slowing. The tapered mag-
netic field is produced by layers of varying length on the solenoid. A plot of Bz

vs. z is also shown.

fluorescence rate.
The maximum attainable deceleration is obtained for very high light intensi-

ties, and is limited because the atom must then divide its time equally between
ground and excited states. High-intensity light can produce faster absorption, but
it also causes equally fast stimulated emission; the combination produces neither
deceleration nor cooling because the momentum transfer to the atom in emission
is then in the opposite direction to what it was in absorption. The deceleration
therefore saturates at a value �amax = h̄�kγ /2M , where the factor of 2 arises be-
cause the atoms spend half of their time in each state.

The Doppler shifted laser frequency in the moving atoms’ reference frame
should match that of the atomic transition to maximize the light absorption and
scattering rate. This rate γp is given by the Lorentzian (see Eq. 17)

γp = s0γ /2

1 + s0 + [2(δ + ωD)/γ ]2
, (29)

where s0 is defined in Eq. (16). The Doppler shift seen by the moving atoms
is ωD = −�k · �v (note that �k opposite to �v produces a positive Doppler shift).
Maximum deceleration requires (δ + ωD) 	 γ , so that the laser light is nearly
resonant with the atoms in their rest frame. The net force on the atoms is �F =
h̄�kγp (see Eq. 23), which saturates at large s0 to M �amax = �Fmax ≡ h̄�kγ /2.

In Table 4 are some of the parameters for slowing a few atomic species of
interest from the peak of the thermal velocity distribution. Since the maximum
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atom Toven v Lmin tmin

(K) (m/s) (m) (ms)
H 1000 5000 0.012 0.005

He* 4 158 0.03 0.34
He* 650 2013 4.4 4.4
Li 1017 2051 1.15 1.12
Na 712 876 0.42 0.96
K 617 626 0.77 2.45
Rb 568 402 0.75 3.72
Cs 544 319 0.93 5.82

Table 4: Parameters of interest for slowing various atoms. The stopping length
Lmin and time tmin are minimum values. The oven temperature Toven that deter-
mines the peak velocity is chosen to give a vapor pressure of 1 Torr. Special cases
are H at 1000 K and He in the metastable triplet state, for which two rows are
shown: one for a 4 K source and another for the typical discharge temperature.

deceleration �amax is fixed by atomic parameters, it is straightforward to calculate
the minimum stopping length L min and time tmin for the rms velocity of atoms
v̄ = 2

√
kBT/M at the chosen temperature. The result is Lmin = v2/2amax and

tmin = v/amax. It is comforting to note that | �Fmax|Lmin is just the atomic kinetic
energy and that Lmin is just tminv/2.

If the light source is spectrally narrow, then as the atoms in the beam slow
down, their changing Doppler shift will take them out of resonance. They will
eventually cease deceleration after their Doppler shift has been decreased by a
few times the power-broadened width γ ′ = γ

√
1 + s0 as derived from Eq. (17),

corresponding to �v of a few times γ /k. Although this �v of a few m/s is con-
siderably larger than the typical atomic recoil velocity vr of a few cm/s, it is still
only a small fraction of the atoms’ average thermal velocity, so that significant
further cooling or deceleration cannot be accomplished.

In order to accomplish deceleration that changes the atomic speeds by hun-
dreds of m/s, it is necessary to maintain (δ + ωD) 	 γ by compensating such
changes of the Doppler shift. This can be done by changing ωD, or δ via either ω

or ω0. The most common method for overcoming this problem is spatially varying
the atomic resonance frequency with an inhomogeneous dc magnetic field to keep
the decelerating atoms in resonance with the fixed frequency laser [23, 25].
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4.3 Zeeman-Compensated Slowing

The use of a spatially varying magnetic field to tune the atomic levels along the
beam path was the first method to succeed in slowing atoms [23]. It works as
long as the Zeeman shifts of the ground and excited states are different so that the
resonant frequency is shifted. The field can be tailored to provide the appropriate
Doppler shift along the moving atom’s path. For uniform deceleration a ≡ ηamax

from initial velocity v0, the appropriate field profile is

B(z) = B0
√

1 − z/z0, (30)

where z0 ≡ Mv2
0/ηh̄kγ is the length of the magnet, B0 = h̄kv0/µ

′, µ′ ≡ (ge Me−
gg Mg)µB , subscripts g and e refer to ground and excited states, gg,e is the Landé
g-factor, µB is the Bohr magneton, and Mg,e is the magnetic quantum number.
The design parameter η < 1 determines the length of the magnet z0. A solenoid
that can produce such a spatially varying field has layers of decreasing lengths
as shown schematically in Fig. 9. The technical problem of extracting the beam
of slow atoms from the end of the solenoid can be simplified by reversing the
field gradient and choosing a transition whose frequency decreases with increasing
field [26].

The equation of motion of atoms in the magnet cannot be easily solved in
general because of the velocity-dependent force, but by transforming to a deceler-
ating frame R [27] the problem can be addressed. For the special case of uniform
deceleration the velocity of this frame in the lab is vR = v0

√
1 − z/z0 , and

the Doppler shift associated with this velocity is compensated by the position-
dependent Zeeman shift in the magnet. The resulting equation of motion for the
velocity of atoms v ′ ≡ v − vR relative to this frame is given by

M
d�v ′

dt
= − �Fmax


 s0

1 + s0 +
(

2(δ − �k · �v′)/γ
)2

− η


 , (31)

where �Fmax = h̄�kγ /2. For dv′/dt = 0 the steady-state velocity v ′
ss is given by

kv′
ss = δ ± γ

2

√
s0

1 − η

η
− 1. (32)

There are two values of v′
ss but the one with the (+) sign is unstable. The mag-

nitude of v′
ss is typically of order δ/k. This velocity is approximately constant as

atoms decelerate along their paths through the magnet so the decreasing Doppler
shift is compensated by the decreasing Zeeman shifts.
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Figure 10: The TOF apparatus, showing the solenoid magnet and the location of
the two laser beams used as the pump and probe.

4.4 Measurements and Results

This section presents some results of experiments that used the Zeeman-tuning
technique to compensate the changing Doppler shift. The most common way
to measure the slowed velocity distribution is to detect the fluorescence from
atoms excited by a second laser beam propagating at a small angle to the atomic
beam [23]. Because of the Doppler shift, the frequency dependence of this fluo-
rescence provides a measure of the atomic velocity distribution. In this method,
the velocity resolution �v is limited by the natural width of the excited state to
�v = γ /k (≈ 6 m/s for Na).

In 1997 a new time-of-flight (TOF) method to accomplish the same result was
reported, however, with a much improved resolution [28]. In addition, it provided
a much more powerful diagnostic of the deceleration process. The TOF method
has the capability to map out the velocity distribution for both hyperfine ground
states of alkali atoms along their entire path through the solenoid. The experi-
mental arrangement is shown in Fig. 10. The atoms emerge through an aperture
of 1 mm2 from an effusive Na source heated to approximately 300◦C. During their
subsequent flight through a solenoid, they are slowed by the counterpropagating
laser light from laser 2, and the changing Doppler shift is compensated with a field
that is well described by Eq. (30).

For the TOF technique there are two additional beams labeled pump and probe
as shown in Fig. 10. Because these beams cross the atomic beam at 90◦, �k · �v = 0
and they excite atoms at all velocities. The pump beam is tuned to excite and
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Pump Gate Probe

detected

Figure 11: Schematic diagram of the optical pumping process, that is used to
measure the velocity of the atoms by time-of-flight. The pump beam pumps all the
atoms towards the lowest hyperfine ground state. Shortly interrupting the pump
beam then acts as a gate, leaving the atoms in the upper hyperfine ground state.
The arrival time of those atoms at the position of the probe is measured using
fluorescence detection and this is a measure of the atomic velocity.

empty a selected ground hyperfine state (hfs), and it transfers more than 98% of
the population as the atoms pass through its 0.5 mm width (see Fig. 11). To mea-
sure the velocity distribution of atoms in the selected hfs, this pump laser beam
is interrupted for a period �t = 10 – 50 µs with an acoustic optical modulator
(AOM). A pulse of atoms in the selected hfs passes the pump region and trav-
els to the probe beam. The time dependence of the fluorescence induced by the
probe laser, tuned to excite the selected hfs, gives the time of arrival, and this sig-
nal is readily converted to a velocity distribution. Figure 12 shows the measured
velocity distribution of the atoms slowed by the cooling laser.

With this TOF technique, the resolution is limited by the duration of the pump
laser gate �t and the diameter d of the probe laser beam (d ≤ 1.0 mm) to
�v = v(v�t + d)/z p, typically less than 1 m/s. This provides the capability
of measuring the shape of the velocity distribution with resolution ≈ 10 times bet-
ter than γ /k as compared with the Doppler method. Furthermore, the resolution
improves for decreasing velocity v; �v is smaller than the Doppler cooling limit
of

√
h̄γ /2M ≈ 30 cm/s for v ≈ 80 m/s and Na atoms. Figure 12 shows the

final velocity distribution for such a measurement giving a FWHM of 3.0 m/s at a
central velocity of 138 m/s. The width is about one half of γ /k.

The method of shutting off the slowing laser beam a variable time τoff before
the short shut-off of the pump beam offers a much more informative scheme of
data acquisition. The atoms that pass through the pump region during the short
time when the pump beam is off have already traveled a distance �z = v(z)τoff

(at constant velocity v(z) because the slowing laser was off), and their time of
arrival at the probe laser is z p/v(z) = z pτoff/�z. Thus the TOF signal contains
information not only about the velocity of the detected atoms, but also about their
position z in the magnet at the time the slowing laser light was shut off. Since
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Figure 12: The velocity distribution measured with the TOF method. Trace A
show the velocity distribution of atoms from the oven, where the cooling beam
is blocked. The distribution is a typical Maxwell-Boltzmann distribution with a
temperature of 500 K. Trace B shows the velocity distribution, when the cooling
laser starts to cool atoms down from about 1000 m/s. All atoms below this velocity
are slowed down to 220 m/s. The inset show an enlargement of the velocities
around 220 m/s, showing that the width of the distribution is about 6.8 m/s.

the spatial dependence of the magnetic field is known (Fig. 9), both the field and
atomic velocity at that position can be determined, and the TOF signal is propor-
tional to the number of atoms in that particular region of phase space. This new
technique therefore gives a mapping of the atomic population in the z-direction of
the phase space, z and v(z), within the solenoid.

Such mapping of the velocity distribution within the solenoid is a powerful
diagnostic tool. The contours of Figs. 13a and b represent the strength of the
TOF signal for each of the two hfs levels, and thus the density of atoms, at
each velocity and position in the magnet. The dashed line shows the velocity
v(z) = (µ′B(z)/h̄ − δ)/k for which the magnetic field tunes the atomic transition
(F, MF ) = (2, 2) → (3, 3) into resonance with the decelerating beam. The most
obvious new information in Fig. 13a is that atoms are strongly concentrated at ve-
locities just below that of the resonance condition. This corresponds to the strong
peak of slow atoms shown in Fig. 12.

24



-50 0 50 100
Position  (cm) 

200

400

600

800

1000

1200
Ve

lo
ci

ty
 (m

/s
)

-50 0 50 100
Position  (cm) 

200

400

600

800

1000

1200

Ve
lo

ci
ty

 (m
/s

)

�a�

�b�

Figure 13: Contour map of the measured velocity and position of atoms in the
solenoid, (a) for Fg = 2 atoms and (b) for Fg = 1 atoms. The dashed line indicates
the resonance frequency for the (F , MF )= (2, 2) → (3, 3) cycling transition. The
density of atoms per unit phase space area �v�z has been indicated with different
gray levels (figure from Ref. 28).
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Figure 14: Standard configuration for laser cooling in an optical molasses. By
detuning the laser frequency ω below the resonance frequency ω0 the frequency
of the laser opposing the atomic motion is shifted toward resonance, whereas the
frequency of the other laser beam is shifted out of resonance.

5 Laser Cooling

5.1 Optical Molasses

Section 4 presented a discussion of the radiative force on atoms moving in a single
laser beam. Here this notion is extended to include the radiative force from more
than just one beam. For example, if two low-intensity laser beams of the same
frequency, intensity, and polarization are directed opposite to one another (e.g., by
retroreflection of a single beam from a mirror), the net force found by adding the
radiative forces given in Eq. (23) from each of the two beams obviously vanishes
for atoms at rest because �k is opposite for the two beams. However, atoms moving
slowly along the light beams experience a net force proportional to their velocity
whose sign depends on the laser frequency. If the laser is tuned below atomic
resonance, the frequency of the light in the beam opposing the atomic motion is
Doppler shifted toward the blue in the atomic rest frame, and is therefore closer
to resonance; similarly, the light in the beam moving parallel to the atom will be
shifted toward the red, further out of resonance (see Fig. 14). Atoms will therefore
interact more strongly with the laser beam that opposes their velocity and they will
slow down. This is illustrated in Fig. 15.

The slowing force is proportional to velocity for small enough velocities, re-
sulting in viscous damping [29, 30] as shown on p. 16 that gives this technique
the name “optical molasses”(OM). By using three intersecting orthogonal pairs
of oppositely directed beams, the movement of atoms in the intersection region
can be severely restricted in all three dimensions, and many atoms can thereby
be collected and cooled in a small volume. OM has been demonstrated at several
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Figure 15: Velocity dependence of the optical damping forces for one-dimensional
optical molasses. The two dotted traces show the force from each beam, and the
solid curve is their sum. The straight line shows how this force mimics a pure
damping force over a restricted velocity range. These are calculated for s0 = 2
and δ = −γ so there is some power broadening evident (see Sec. 3.3).

laboratories [31], often with the use of low cost diode lasers [32].
Note that OM is not a trap for neutral atoms because there is no restoring force

on atoms that have been displaced from the center. Still, the detainment times of
atoms caught in OM of several mm diameter can be remarkably long. It can be
very instructive to carry out your own experiment at home. For this experiment the
only thing that is needed is jar of molasses (Deutch, der Sirup; français, mélasse;
English, syrup; nederlands, stroop; lingua latina, mellaceus; italiano, melassa;
espanol, melaza; ελληνικoς , µελασσα) and a marble. By throwing the marble
in the molasses one can witness the extraordinary ability of the molasses to damp
the velocity of the marble. If one tries to move the marble around, its motion will
be strongly damped by the thick and sticky molasses.

5.2 Low-Intensity Theory for a Two-Level Atom in One Di-
mension

It is straightforward to estimate the force on atoms in OM from Eq. (23). The
discussion here is limited to the case where the light intensity is low enough so that
stimulated emission is not important. This eliminates consideration of excitation
of an atom by light from one beam and stimulated emission by light from the
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other, a sequence that can lead to very large, velocity-independent changes in the
atom’s speed. In this low intensity case the forces from the two light beams are
simply added to give �FOM = �F+ + �F−, where

�F± = ± h̄�kγ

2

s0

1 + s0 + [2(δ ∓ |ωD|)/γ ]2
. (33)

Then the sum of the two forces is

�FOM
∼= 8h̄k2δs0�v

γ (1 + s0 + (2δ/γ )2)2
≡ −β �v, (34)

where terms of order (kv/γ )4 and higher have been neglected (see Eq. (27)). For
δ < 0, this force opposes the velocity and therefore viscously damps the atomic
motion. For large δ the force �FOM has maxima near v = ±δ/k as expected.

If there were no other influence on the atomic motion, all atoms would quickly
decelerate to v = 0 and the sample would reach T = 0, a clearly unphysical result.
There is also some heating caused by the light beams that must be considered,
and it derives from the discrete size of the momentum steps the atoms undergo
with each emission or absorption. Since the atomic momentum changes by h̄k,
their kinetic energy changes on the average by at least the recoil energy Er =
h̄2k2/2M = h̄ωr . This means that the average frequency of each absorption is
ωabs = ω0 + ωr and the average frequency of each emission is ωemit = ω0 −
ωr . Thus the light field loses an average energy of h̄(ωabs − ωemit) = 2h̄ωr

for each scattering. This loss occurs at a rate 2γp (two beams), and the energy
becomes atomic kinetic energy because the atoms recoil from each event. The
atomic sample is thereby heated because these recoils are in random directions.

The competition between this heating with the damping force of Eq. (34),
results in a nonzero kinetic energy in steady state. At steady state, the rates
of heating and cooling for atoms in OM are equal. Equating the cooling rate,
�F · �v, to the heating rate, 4h̄ωrγp, the steady-state kinetic energy is found to be
(h̄γ /8)(2|δ|/γ + γ /2|δ|). This result is dependent on |δ|, and it has a minimum
at 2|δ|/γ = 1, whence δ = −γ /2. The temperature found from the kinetic en-
ergy is then TD = h̄γ /2kB , where kB is Boltzmann’s constant and TD is called
the Doppler temperature or the Doppler cooling limit. For ordinary atomic tran-
sitions TD is below 1 mK, and several typical values are given in Table 9 (see
Appendix A).

Another instructive way to determine TD is to note that the average momen-
tum transfer of many spontaneous emissions is zero, but the rms scatter of these
about zero is finite. One can imagine these decays as causing a random walk in
momentum space with step size h̄k and step frequency 2γp, where the factor of
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2 arises because of the two beams. The random walk results in diffusion in mo-
mentum space with diffusion coefficient D0 ≡ 2(�p)2/�t = 4γp(h̄k)2. Then
Brownian motion theory gives the steady-state temperature in terms of the damp-
ing coefficient β to be kBT = D0/β. This turns out to be h̄γ /2 as above for the
case s0 	 1 when δ = −γ /2. There are many other independent ways to derive
this remarkable result that predicts that the final temperature of atoms in OM is
independent of the optical wavelength, atomic mass, and laser intensity (as long
as it is not too large).

5.3 Experiments in Three-Dimensional Optical Molasses

Optical molasses experiments can also work in three dimensions at the intersec-
tion of three mutually orthogonal pairs of opposing laser beams (see Ref. 18).
Even though atoms can be collected and cooled in the intersection region, it is
important to stress again that this is not a trap. That is, atoms that wander away
from the center experience no force directing them back. They are allowed to
diffuse freely and even escape, as long as there is enough time for their very
slow diffusive movement to allow them to reach the edge of the region of the
intersection of the laser beams. Because the atomic velocities are randomized
during the damping time 1/ωr , atoms execute a random walk with a step size of
vD/ωr = λ/2π

√
2ε ∼= few µm. To diffuse a distance of 1 cm requires about 107

steps or about 30 s [33, 34].
Three-dimensional OM was first observed in 1985 [30]. Preliminary measure-

ments of the average kinetic energy of the atoms were done by blinking off the
laser beams for a fixed interval. Comparison of the brightness of the fluorescence
before and after the turnoff was used to calculate the fraction of atoms that left
the region while it was in the dark. The dependence of this fraction on the dura-
tion of the dark interval was used to estimate the velocity distribution and hence
the temperature. The result was not inconsistent with the two-level atom theory
described in Sec. 5.2.

Soon other laboratories had produced 3D OM. The photograph in Fig. 16
shows OM in Na at the laboratory in the National Bureau of Standards (now NIST)
in Gaithersburg. The phenomenon is readily visible to the unaided eye, and the
photograph was made under ordinary snapshot conditions. The three mutually
perpendicular pairs of laser beams appear as a star because they are viewed along
a diagonal.

This NIST group developed a more accurate ballistic method to measure the
velocity distribution of atoms in OM [36]. The limitation of the first measurements
was determined by the size of the OM region and the unknown spatial distribu-
tion of atoms [30]. The new method at NIST used a separate measuring region
composed of a 1D OM about 2 cm below the 3D region, thereby reducing the
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Figure 16: Photograph of optical molasses in Na taken under ordinary snapshot
conditions in the lab at NIST. The upper horizontal streak is from the slowing
laser while the three beams that cross at the center are on mutually orthogonal
axes viewed from the (111) direction. Atoms in the optical molasses glow brightly
at the center (figure from Ref. 35).

effect of this limitation. When the laser beams forming the 3D OM were shut off,
the atoms dropped because of gravity into the 1D region, and the time-of-arrival
distribution was measured. This was compared with calculated distributions for
TD and 40 µK as shown in Fig. 17. Using a series of plots like Fig. 17 it was pos-
sible to determine the dependence of temperature on detuning, and that is shown
in Fig. 18, along with the theoretical calculations for a two-level atom, as given in
Sec. 5.2.

It was an enormous surprise to observe that the ballistically measured temper-
ature of the Na atoms was as much as 10 times lower than TD = 240 µK [36], the
temperature minimum calculated from the theory. This breaching of the Doppler
limit forced the development of an entirely new picture of OM that accounts for
the fact that in 3D, a two-level picture of atomic structure is inadequate. The
multilevel structure of atomic states, and optical pumping among these sublevels,
must be considered in the description of 3D OM, as discussed in Sec. 7.

These experiments also found that OM was less sensitive to perturbations and
more tolerant of alignment errors than was predicted by the 1D, two-level atom
theory. For example, if the intensities of the two counterpropagating laser beams
forming an OM were unequal, then the force on atoms at rest would not vanish,
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Figure 17: Data from dropping atoms out of optical molasses into a probe beam
about 18 mm below. The calculated time-of-flight spectra are for 240 µK and
40 µK. The shaded area indicates the range of error in the 40 µK calculation
from geometric uncertainties. The width of the data is slightly larger than the
calculation, presumably because of shot-to-shot instabilities (figure from Ref. 36).

but the force on atoms with some nonzero drift velocity would vanish. This drift
velocity can be easily calculated by using Eq. (33) with unequal intensities s0+
and s0−, and following the derivation of Eq. (34). Thus atoms would drift out of
an OM, and the calculated rate would be much faster than observed by deliberately
unbalancing the beams in the experiments [31].

Section 7 describes the startling new view of OM that emerged in the late
1980s as a result of these surprising measurements. The need for a new theoretical
description resulting from incontrovertible measurements provides an excellent
pedagogical example of how physics is truly an experimental science, depend-
ing on the interactions between observations and theory, and always prepared to
discard oversimplified descriptions as soon as it is shown that they are inadequate.

6 Magneto-Optical Traps

6.1 Introduction

The most widely used trap for neutral atoms is a hybrid, employing both optical
and magnetic fields, to make a magneto-optical trap (MOT) first demonstrated in
1987 [37]. The operation of a MOT depends on both inhomogeneous magnetic
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Figure 18: Temperature vs. detuning determined from time-of-flight data for vari-
ous separations d between the optical molasses and the probe laser (data points).
The solid curve represents the measured molasses decay rate; it is not a fit to the
temperature data points, but its scale (shown at right) was chosen to emphasize
its proportionality to the temperature data. The dashed line shows the tempera-
ture expected on the basis of the two-level atom theory of Sec. 5.2 (figure from
Ref. 36).

fields and radiative selection rules to exploit both optical pumping and the strong
radiative force [37, 38]. The radiative interaction provides cooling that helps in
loading the trap, and enables very easy operation. The MOT is a very robust trap
that does not depend on precise balancing of the counterpropagating laser beams
or on a very high degree of polarization. The magnetic field gradients are modest
and can readily be achieved with simple, air-cooled coils. The trap is easy to con-
struct because it can be operated with a room-temperature cell where alkali atoms
are captured from the vapor. Furthermore, low-cost diode lasers can be used to
produce the light appropriate for all the alkalis except Na, so the MOT has become
one of the least expensive ways to produce atomic samples with temperatures be-
low 1 mK.

Trapping in a MOT works by optical pumping of slowly moving atoms in a
linearly inhomogeneous magnetic field B = B(z) ≡ Az, such as that formed by
a magnetic quadrupole field as discussed in Sec. 8. Atomic transitions with the
simple scheme of Jg = 0 → Je = 1 have three Zeeman components in a magnetic
field, excited by each of three polarizations, whose frequencies tune with field
(and therefore with position) as shown in Fig. 19 for 1D. Two counterpropagating
laser beams of opposite circular polarization, each detuned below the zero field
atomic resonance by δ, are incident as shown.
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Figure 19: Arrangement for a MOT in 1D. The horizontal dashed line represents
the laser frequency seen by atoms at rest in the center of the trap. Because of the
Zeeman shifts of the atomic transition frequencies in the inhomogeneous magnetic
field, atoms at z = z ′ are closer to resonance with the σ− laser beam than with the
σ+ beam, and are therefore driven toward the center of the trap.

Because of the Zeeman shift, the excited state Me = +1 is shifted up for
B > 0, whereas the state with Me = −1 is shifted down. At position z ′ in Fig. 19
the magnetic field therefore tunes the �M = −1 transition closer to resonance
and the �M = +1 transition further out of resonance. If the polarization of
the laser beam incident from the right is chosen to be σ − and correspondingly
σ+ for the other beam, then more light is scattered from the σ − beam than from
the σ+ beam. Thus the atoms are driven toward the center of the trap where the
magnetic field is zero. On the other side of the center of the trap, the roles of the
Me = ±1 states are reversed and now more light is scattered from the σ + beam,
again driving the atoms towards the center.

The situation is analogous to the velocity damping in an optical molasses from
the Doppler effect as discussed in Sec. 5.2, but here the effect operates in position
space, whereas for molasses it operates in velocity space. Since the laser light is
detuned below the atomic resonance in both cases, compression and cooling of
the atoms is obtained simultaneously in a MOT.

So far the discussion has been limited to the motion of atoms in 1D. However,
the MOT scheme can easily be extended to 3D by using six instead of two laser
beams. Furthermore, even though very few atomic species have transitions as
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simple as Jg = 0 → Je = 1, the scheme works for any Jg → Je = Jg + 1
transition. Atoms that scatter mainly from the σ + laser beam will be optically
pumped toward the Mg = +Jg substate, which forms a closed system with the
Me = +Je substate.

6.2 Cooling and Compressing Atoms in a MOT

For a description of the motion of the atoms in a MOT, consider the radiative force
in the low intensity limit (see Eq. 23). The total force on the atoms is given by
�F = �F+ + �F−, where

�F± = ± h̄�kγ

2

s0

1 + s0 + (2δ±/γ )2
(35)

and the detuning δ± for each laser beam is given by

δ± = δ ∓ �k · �v ± µ′B/h̄. (36)

Here µ′ ≡ (ge Me − gg Mg)µB is the effective magnetic moment for the transition
used (see Sec. 4.3). Note that the Doppler shift ωD ≡ −�k · �v and the Zeeman shift
ωZ = µ′B/h̄ both have opposite signs for opposite beams.

When both the Doppler and Zeeman shifts are small compared to the detuning
δ, the denominator of the force can be expanded as in Sec. 5.2 and the result
becomes

�F = −β �v − κ�r, (37)

where the damping coefficient β is defined in Eq. (34). The spring constant κ

arises from the similar dependence of �F on the Doppler and Zeeman shifts, and is
given by

κ = µ′ A
h̄k

β. (38)

The force of Eq. (37) leads to damped harmonic motion of the atoms, where the
damping rate is given by MOT = β/M and the oscillation frequency ωMOT =√

κ/M . For magnetic field gradients A ≈ 10 G/cm, the oscillation frequency
is typically a few kHz, and this is much smaller than the damping rate that is
typically a few hundred kHz. Thus the motion is overdamped, with a characteristic
restoring time to the center of the trap of 2MOT/ω2

MOT ≈ several ms for typical
values of the detuning and intensity of the lasers.

It is instructive to compare the optical and magnetic forces in a MOT. The
optical force for an atom at rest is κz where κ is given in Eq. (38) and A is the
field gradient. The magnetic force is simply µA, so their ratio is x ≡ Fopt/Fmag =
µ′βz/µh̄k, where β is given in Eq. (34). Since µ and µ′ do not usually differ
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by more than a factor of 2, x ∼ βz/h̄k ∼ kzδ/γ for typical MOT parameters
(δ ∼ −2γ , s0 ∼ 1). Thus the optical force dominates the magnetic force at any
distances from the MOT center that exceed a few wavelengths.

Since the MOT constants β and κ are proportional, the size of the atomic cloud
can easily be deduced from the temperature of the sample. The equipartition of
the energy of the system over the degrees of freedom requires that the velocity
spread and the position spread are related by

kBT = mv2
rms = κz2

rms. (39)

For a temperature in the range of the Doppler temperature, the size of the MOT
should be of the order of a few tenths of a mm, which is generally the case in
experiments.

6.3 Measurements and Results

In this section we describe some of the results, which we have obtained in the
laboratory in Utrecht with a standard vapor-cell MOT for Na. Here the atoms are
captured from the background vapor of Na, which is produced by a small piece of
Na in the cell. Since the technique does not rely on capturing atoms from a slowed
beam, the setup is rather simple, which explains the popularity of the technique.
Typically we capture a few million atoms and cool them to a temperature of 200
µK at a density of 1010 atoms/cm3. The last two numbers are very typical for
a MOT, but the first number can be increased by many orders of magnitude by
increasing the diameter of the laser beams, which are used to capture, cool and
trap the atoms.

Different techniques can be employed in order to measure the temperature of
the atoms Most commonly the technique of release-and-recapture is used. In this
technique the atoms are released from the trap by shutting off the laser beam for
a certain period. Since the atoms have a velocity in the trap, they will fly away
ballistically, as shown in Fig. 20. When the trapping lasers are switched on again,
some of the atoms will be over the edge of the laser beam and thus will not be
recaptured by the lasers. Since the atoms recaptured will fluoresce immediately
after they are recaptured, the fluorescence after the laser beams are switched on
again is a measure for the atoms remaining in the trap. This recapture probability
as a function of the switch-off time is a direct measure of the temperature of
the sample. Namely, if we neglect gravity for a moment and assume the atomic
velocities have a Maxwellian distribution, the recapture probability is given by

Precap = −
(

2√
π

) √
κve exp−κv2

e +Erf
(√

κve
)

(40)
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Figure 20: Trajectories of the atoms after they are released from the trap. Atoms
having sufficient speed will reach the edge of the laser beam, shown here schemat-
ically with the dashed circle, before the laser beams are switched on again and thus
they are lost from the trap.

with
κ = m

2kBT
. (41)

Here ve = d/2τ is the velocity, that is sufficient for the atoms to travel to the edge
of the laser beam with diameter d in the switch-off time τ . In Fig. 21 a typical
measurement is shown, where the solid line is the fit of the data points to Eq. (40).
The temperature extracted from this data set is approximately 147 µK, but the
spread between different measurements is of the order of 25 µK, depending on
the alignment of the laser beams. At these temperatures the effects of gravity is
small, but if the temperature becomes smaller gravity does play a role and for very
low temperatures the recapture probability no longer depends on the temperature,
since the initial velocity of the atoms becomes small compared to the velocity
acquired due to gravity.

To measure the spatial profile of the atoms, the fluorescence of the atoms can
be imaged on a CCD-camera, which makes a two-dimensional projection of the
density distribution of the atoms. In Fig. 22a an image of the atomic cloud is
shown. Due to the large forces that act on the atoms, the alignment of the laser
beams is crucial to obtain a well-balanced force of the different beams and spa-
tially filtering the laser beams helps a lot in that respect. In Fig. 22b a cut through
the middle of the projection is made. The spatial distribution is Gaussian and
the width of the cloud in the horizontal direction is of the order of 0.29 mm. A
Gaussian distribution is to be expected at low density, since the spatial spread and
velocity spread are related by Eq. (39) and the velocity distribution is Maxwellian.
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Figure 21: The recapture probability Precap of the atoms as a function of the shut-
off time τ . The data is shown by the squares and the fit to Eq. (40) is shown by
the solid line.

However, for higher densities the density in the center of the cloud is limited due
to rescattering of the fluorescent light by the atoms and the density at the center
becomes constant. This leads to a flattening of the intensity in the center of the
profile. Some care has to be taken when analyzing these images. When the den-
sity in the center is so large, that light can no longer escape the cloud before being
reabsorbed, the fluorescence is no longer a measure for the density distribution
and other means to measure it have to be devised.

7 Cooling Below the Doppler Limit

7.1 Introduction

In response to the surprising measurements of temperatures below TD, two groups
developed a model of laser cooling that could explain the lower temperatures [39,
40]. The key feature of this model that distinguishes it from the earlier picture was
the inclusion of the multiplicity of sublevels that make up an atomic state (e.g.,
Zeeman and hfs). The dynamics of optically pumping atoms among these sub-
levels provides the new mechanism for producing the ultra-low temperatures [35].

The nature of this cooling process is fundamentally different from the Doppler
laser cooling process discussed in the previous section. In that case, the differen-
tial absorption from the laser beams was caused by the Doppler shift of the laser
frequency, and the process is therefore known as Doppler cooling. In the cooling
process described in this section, the force is still caused by differential absorption
of light from the two laser beams, but the velocity-dependent differential rates, and
hence the cooling, relies on the non-adiabaticity of the optical pumping process.
Since lower temperatures can usually be obtained with this cooling process, it is
called sub-Doppler laser cooling [35, 36, 41].
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Figure 22: (a) Image taken with a CCD-camera of the fluorescence of a cloud
of atoms in a MOT. (b) Cut of the intensity distribution through the center of the
cloud. The distribution is Gaussian with a width of 0.29 mm in this case.

7.2 Linear ⊥ Linear Polarization Gradient Cooling

One of the most instructive models for discussion of sub-Doppler laser cooling
was introduced by Dalibard and Cohen-Tannoudji [39] and their work serves as
the basis for this section. They considered the case of orthogonal linear polar-
ization of two counterpropagating laser beams that damps atomic motion in one
dimension. The polarization of this light field varies over half of a wavelength
from linear at 45◦ to the polarization of the two beams, to σ +, to linear but per-
pendicular to the first direction, to σ −, and then it cycles (see Fig. 23). To study
the effects of this polarization gradient on the cooling process, they considered a
Jg = 1/2 to Je = 3/2 transition. This is one of the simplest transitions that shows
sub-Doppler cooling.

In the place where the light field is purely σ +, the pumping process drives the
ground-state population to the Mg = +1/2 sublevel. This optical pumping occurs
because absorption always produces �M = +1 transitions, whereas the subse-
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Figure 23: Spatial variation of the optical electric field in the lin ⊥ lin configura-
tion showing the polarization gradient used for laser cooling.

quent spontaneous emission produces �M = ±1, 0. Thus the average �M ≥ 0
for each scattering event. For σ−-light the population will be pumped toward the
Mg = −1/2 sublevel. Thus in traveling through a half wavelength in the light
field, atoms have to readjust their population completely from Mg = +1/2 to
Mg = −1/2 and back again.

The light shift of the atomic energy levels plays a crucial role in this scheme
of sub-Doppler cooling, and the changing polarization has a strong influence on
the light shifts. Since the coupling between the states depends on the magnetic
quantum numbers and on the polarization of the light field, the light shifts are
different for different magnetic sublevels. The ground-state light shift is negative
for a laser tuning below resonance (δ < 0) and positive for δ > 0 (see Eq. 11).

In the present case of orthogonal linear polarizations and J = 1/2 → 3/2, the
light shift for the magnetic substate Mg = 1/2 is three times larger than that of the
Mg = −1/2 substate when the light field is completely σ +. On the other hand,
when the light field becomes σ −, the shift of Mg = −1/2 is three times larger.
So in this case the optical pumping discussed above causes there to be a larger
population in the state with the larger light shift. This is generally true for any
transition Jg to Je = Jg + 1. A schematic diagram showing the populations and
light shifts for this particular case of negative detuning is shown in Fig. 24.

To discuss the origin of the cooling process in this polarization gradient scheme,
consider atoms with a velocity v at a position where the light is σ +-polarized, as
shown at the lower left of Fig. 24. The light optically pumps such atoms to the
strongly negative light-shifted Mg = +1/2 state. In moving through the light field,
atoms must increase their potential energy (climb a hill) because the polarization
of the light is changing and the state Mg = 1/2 becomes less strongly coupled to
the light field. After traveling a distance λ/4, atoms arrive at a position where the
light field is σ−-polarized, and are optically pumped to Mg = −1/2, which is now
lower than the Mg = 1/2 state. Again the moving atoms are at the bottom of a hill
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Figure 24: The spatial dependence of the light shifts of the ground-state sub-
levels of the J = 1/2 ⇔ 3/2 transition for the case of the lin ⊥ lin polarization
configuration. The arrows show the path followed by atoms being cooled in this
arrangement. Atoms starting at z = 0 in the Mg = +1/2 sublevel must climb
the potential hill as they approach the z = λ/4 point where the light becomes σ −
polarized, and there they are optically pumped to the Mg = −1/2 sublevel. Then
they must begin climbing another hill toward the z = λ/2 point where the light
is σ+ polarized and they are optically pumped back to the Mg = +1/2 sublevel.
The process repeats until the atomic kinetic energy is too small to climb the next
hill. Each optical pumping event results in absorption of light at a lower frequency
than emission, thus dissipating energy to the radiation field.
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Figure 25: The force as a function of velocity for atoms in a lin ⊥ lin polarization
gradient cooling configuration with s0 = 0.5 and δ = 1.5γ . The solid line is
the combined force of Doppler and sub-Doppler cooling, whereas the dashed line
represents the force for Doppler cooling only. The inset shows an enlargement of
the curve around v = 0. Note, the strong increase in the damping rate over a very
narrow velocity range that arises from the sub-Doppler process.

and start to climb. In climbing the hills, the kinetic energy is converted to potential
energy, and in the optical pumping process, the potential energy is radiated away
because the spontaneous emission is at a higher frequency than the absorption (see
Fig. 24). Thus atoms seem to be always climbing hills and losing energy in the
process. This process brings to mind a Greek myth, and is thus called “Sisyphus
laser cooling”.

The cooling process described above is effective over a limited range of atomic
velocities. The damping is maximum for atoms that undergo one optical pump-
ing process while traveling over a distance λ/4. Slower atoms will not reach the
hilltop before the pumping process occurs and faster atoms will already be de-
scending the hill before being pumped toward the other sublevel. In both cases
the energy loss is smaller and therefore the cooling process less efficient.

The friction coefficient for this sub-Doppler process is larger by a factor (2|δ|/γ )

than the maximum friction coefficient for Doppler laser cooling. It can be shown
that the momentum diffusion coefficient of this process is of the same order of
magnitude as that of Doppler cooling, so that the temperature will be smaller than
the Doppler temperature by the same factor. Furthermore, it shows that the fric-
tion coefficient for this case is independent of intensity, since both �E and γ p are
proportional to the intensity.
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7.3 Magnetically Induced Laser Cooling

Although the first models that described sub-Doppler cooling relied on the polar-
ization gradient of the light field as above, it was soon realized that a light field
of constant polarization in combination with a magnetic field could also produce
sub-Doppler cooling [42]. In this process, the atoms are cooled in a standing wave
of circularly polarized light.

There is a simple model using the Jg = 1/2 to Je = 3/2 transition to describe
this phenomenon [41]. In the absence of a magnetic field, the σ + light field drives
the population to the Mg = +1/2 sublevel. Since the Mg = +1/2 sublevel is more
strongly coupled to the light field than Mg = −1/2, the light shift of this state is
larger. Thus atoms traveling through this standing wave will descend and climb
the same potential hills corresponding to Mg = 1/2 and will experience no average
force.

The situation changes if a small transverse magnetic field is applied. Optical
pumping processes determine the atomic states in the antinodes of the standing
wave light field where the light is strong. But in the nodes, where the intensity of
the light field is zero, the small transverse magnetic field precesses the population
from Mg = 1/2 toward Mg = −1/2. Atoms that leave the nodes with Mg = −1/2

are returned to Mg = +1/2 in the antinodes by optical pumping in the σ + light.
This cooling process is depicted in Fig. 26 for negative detuning δ < 0. Poten-

tial energy is radiated away in the optical pumping process as before, and kinetic
energy is converted to potential energy when the atoms climb the hills again into
the nodes. The whole process is repeated when the atoms travel through the next
node of the light field. Again the cooling process is caused by a “Sisyphus” ef-
fect, similar to the case of lin ⊥ lin. Since this damping force is absent without
the magnetic field, it is called magnetically induced laser cooling (MILC).

Efficient cooling by MILC depends critically on the relation between the Zee-
man precession frequency ωZ and the optical pumping rate γ p in the antinodes.
It is clearly necessary that γp � ωZ in the antinodes where the light is strong.
But as in any cooling process that depends on non-adiabatic processes, there is a
limited velocity range where the force is effective. For efficient cooling by MILC,
the velocity can not be too small compared to ωZ/k or atoms will undergo many
precession cycles near the nodes and no effective cooling will result. On the other
hand, if the velocity is large compared to γ p/k, then atoms will pass through the
antinodes in a time too short to be optically pumped to Mg = +1/2 and no cooling
will result either. Thus, in addition to the requirement δ < 0, there are two other
conditions on the experimental parameters that can be combined to give

ωZ < kv < γp. (42)

Sub-Doppler cooling has been observed for MILC as shown in Fig. 27 for Rb
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Figure 26: The spatial dependence of the light shifts of the ground-state sublevels
of the J = 1/2 ⇔ 3/2 transition for the case of a purely σ+ standing wave that
has no polarization gradient, and is appropriate for magnetically induced laser
cooling. The arrows show the path followed by atoms being cooled in this ar-
rangement. Atoms starting at z = 0 in the strongly light-shifted Mg = +1/2

sublevel must climb the potential hill as they approach the node at z = λ/4.
There they undergo Zeeman mixing in the absence of any light and may emerge
in the Mg = −1/2 sublevel. They will then gain less energy as they approach the
antinode at z = λ/2 than they lost climbing into the node. Then they are optically
pumped back to the Mg = +1/2 sublevel in the strong light of the antinode, and
the process repeats until the atomic kinetic energy is too small to climb the next
hill. Each optical pumping event results in absorption of light at a lower frequency
than emission, thus dissipating energy to the radiation field.
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Figure 27: Typical data of atomic beam collimation using circularly polarized
light and a weak magnetic field on a beam of 85Rb atoms. The scanning hot
wire was 1.3 m downstream from the interaction region. The laser parameters are
defined as in Sec. 3.3 (figure from Ref. 43).

atoms cooled on the λ = 780 nm transition in one dimension [41]. The width of
the velocity distribution near v = 0 is as low as 2 cm/s, much lower than the
one-dimensional Doppler limit vD = √

7h̄γ /20M ≈ 10 cm/s for Rb.

7.4 Optical Molasses in Three Dimensions

The theoretical models and experimental results discussed so far in this section are
all for the case of one dimension. The theoretical models are not easily extended
to more dimensions and do not provide the same kind of analytical solutions as
does 1D. One of the limitations of 3D experiments is that they are not able to
study cooling schemes without polarization gradients, since the transverse nature
of electromagnetic radiation prevents the construction of 3D radiation fields with
all polarizations parallel.

One of the outcomes of the models presented in Sec. 7.2 is that the final tem-
perature Tlim in polarization gradient cooling scales with the light shift �E g of
the ground-states, i.e.,

kBTlim = b�Eg, (43)

where �Eg is the light shift of the ground state. The value of the coefficient b
depends on the polarization scheme used and is 0.125 for lin ⊥ lin and 0.097 for
σ+-σ−. Note that lowering the temperature can easily be achieved by lowering
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Figure 28: Temperature as a function of laser intensity and detuning for Cs atoms
in an optical molasses from Ref. 44. a) Temperature as a function of the detuning
for various intensities. b) Temperature as a function of the light shift. All the data
points are on a universal straight line.

the light shift, either by increasing the detuning δ or decreasing the intensity s0.
Since this is a result of the semi-classical theory, the temperature will always be
limited by the recoil temperature.

In the experiments reported by Salomon et al. [44], the temperature was mea-
sured in a 3D molasses under various configurations of the polarization. All beams
were linearly polarized, but in one configuration the polarization of two counter-
propagating beams was chosen to be parallel to one another and in another config-
uration they were chosen to be perpendicular. Results of their measurements are
shown in Fig. 28a, where the measured temperature is plotted for different detun-
ings as a function of the intensity. For each detuning, the data lie on a straight line
through the origin. The lowest temperature obtained is 3 µK, which is a factor
40 below the Doppler temperature and a factor 15 above the recoil temperature of
Cs. If the temperature is plotted as a function of the light shift (see Fig. 28b), all
the data are on a single universal straight line. The slope of the line is 0.45 for the
parallel configuration and 0.35 for the perpendicular configuration. Both slopes
are a factor of about 3 higher than the theoretical estimates of 1D and the authors
ascribe this discrepancy to the three-fold increase of the number of laser beams.

45



8 Magnetic Trapping

The low temperatures and high densities required for BEC are not compatible with
the recoil heating associated with ordinary laser cooling and optical trapping, and
so different cooling and trapping mechanisms must be brought to bear on the final
stages of approach to BEC. Section 9 describes the evaporative cooling process
that is most commonly used in the final stages, and this section describes magnetic
trapping that works in the dark.

The magnetic field causes a Zeeman shift �EZ of the energies of the atomic
states by:

�EZ = −�µ · �B (44)

where �µ is the atomic magnetic moment. Since a local maximum of the magnetic
field cannot be created in free space [45], atoms can only be trapped in magnetic
field minima and thus can only be trapped in states that are “low field seeking”,
i.e., states that shift upwards with increasing field. In magnetic fields that are
readily produced in the laboratory (0.1 T), typical trap depths are ∼ 1 K. Note
that these same energy level shifts occur in the MOT, but that the force on the
atoms in the MOT is predominantly from differential light scattering. As shown
in Sec. 6.2, this magneto-optical force dominates the purely magnetic force a few
wavelengths away from the center of the trap.

For small magnetic fields, the projection MF of the total angular momentum
F is a good quantum number and the Zeeman shift is linear and given by

�EZ = gF MFµB B (45)

where µB = eh̄/2mec is the Bohr magneton and gF is the Landé factor, which is
given by Eq. (4.4) of Ref. [3]. For larger magnetic field values where the Zeeman
shifts become comparable to the atomic hyperfine splitting, the states from differ-
ent hyperfine states start to repel one another and the shifts become more compli-
cated. The Zeeman structure of the ground state of Na is shown in Fig. 29. The
state with MF=2 connected to the upper hyperfine state is the easiest to trap since
it has the largest shift of �E Z = µB B. However, for small fields the MF = −1
state of the lower hyperfine state can also be trapped, although the energy shift
�EZ = µB B/2 is smaller than the shift for upper hyperfine state and the max-
imum magnetic field for trapping is limited. This state has the advantage that
collisions of atoms in the trap at very low temperatures cannot lead to inelastic
losses and thus heating of the gas, since the atoms are already in the lowest en-
ergy state.

In Ref. [46] different configurations for magnetic trapping are discussed and
a few of them are shown in Fig. 30. The simplest configuration is the quadrupole
configuration that is also employed for the MOT. Magnetic field contours for this
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Figure 29: Zeeman shifts of the ground state of Na, where the states are labeled
with the projection of the total angular momentum F on the magnetic field axis.
At small magnetic fields the shift are linear, but in the range where the Zeeman
shifts become comparable to the hyperfine splitting, the states start to repel each
other and a more complicated pattern arises.

trap are shown in Fig. 31a. When the coils are separated by 1.25 times their radius,
the gradient in the radial direction is twice the gradient in the axial direction. In
the case of a hexapole trap (see Fig. 30b) the gradient in the center of the trap
is strongly reduced (see Fig. 31b), which is not very advantageous if evaporative
cooling is used. Furthermore, the optical access to the atoms is inhibited by the
coil on the axis.

Another type of trap is the Ioffe trap, which is shown in Fig. 30c. The radial
confinement is provided by the four bars, whereas the confinement in the axial
direction is produced by the two pinch coils. In Fig. 32 the magnetic field contours
for this type of trap are shown in two different symmetry planes of the trap. The
confinement in the radial direction is much stronger than in the axial direction,
which allows the creation of samples with a strong asymmetry.

The advantage of the Ioffe trap over the quadrupole configuration is that the
field on the axis is non-zero. Since slow atoms will always follow the magnetic
field adiabatically, atoms in the center of the quadrupole trap can make a Majorana
transition to the non-trapping state if the field in the center is zero. Therefore new
designs for the quadrupole fields have been utilized, such as the cloverleaf [47]
and QUIC trap [48], where additional coils lift the field in the center of the trap.

For the two-coil quadrupole magnetic trap of Fig. 30a, stable circular orbits of
radius ρ in the z = 0 plane can be found classically by setting µ∇B = Mv2/ρ,
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Figure 30: Different magnetic field configurations to trap cold atoms with the
magnetic field (adapted from Ref. [46]).
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Figure 31: Magnetic field contours for the quadrupole trap and the spherical
hexapole trap. The current through all the coils is 100 A, the distance between
the rings is 2 cm and the contours are plotted 10 G (adapted from Ref. [46]).
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Figure 32: Magnetic field contours for the Ioffe trap in the plane of the wires (a)
and in the plane midway between the wires. The current through the wires is 100
A, the distance between the wires is 2 cm, the coils have a radius of 1.5 cm and
the distance between the coils is 4.5 cm. The contours for the magnetic field are
plotted every 10 G (adapted from Ref. [46]).

so v = √
ρa, where a ≡ µ∇B/M is the centripetal acceleration supplied by the

field gradient. In order for the trap to work, the atomic magnetic moments must be
be preserved while the atoms move around in the trap even though the trap fields
change directions in a very complicated way. The condition for adiabatic motion
can be written as ωZ � |dB/dt |/B, where ωZ = µB/h̄ is the Larmor precession
rate in the field. The orbital frequency for circular motion is ωT = v/ρ, and since
v/ρ = |dB/dt |/B for a uniform field gradient, the adiabaticity condition is

ωZ � ωT . (46)

For the two-coil quadrupole trap, the adiabaticity condition can be easily cal-
culated. The adiabatic condition for a practical trap (A ∼ 1 T/m) requires ρ �
(h̄2/M2a)1/3 ∼ 1µm as well as v � (h̄a/M)1/3 ∼ 1 cm/s. Since the non-
adiabatic region of the trap is so small (less than 10−18 m3 compared with typical
sizes of ∼ 2 cm corresponding to 10−5 m3), nearly all the orbits of most atoms
are restricted to regions where they are adiabatic. Therefore most of such laser-
cooled atoms stay trapped for many thousands of orbits corresponding to several
minutes. However, evaporative cooling (see Sec. 9) reduces the average total en-
ergy of a trapped sample sufficiently that the orbits are confined to regions near
the origin so such losses dominate, and several schemes have been developed to
prevent such losses from non-adiabatic transitions.

There have been different solutions to this problem. In the JILA-experiment
the hole was rotated by rotating the magnetic field and thus the atoms do not spend
sufficient time in the hole to make a spin flip. In the MIT experiment the hole was
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plugged by using a focused laser beam that expelled the atoms from the center of
the magnetic trap. In the Rice experiment the atoms were trapped in a Ioffe trap
that has a non-zero field minimum.

9 Evaporative Cooling

9.1 Introduction

Laser cooling leads to the production of samples of atoms with low temperature
and high density. In the 1920s Bose and Einstein predicted that for sufficiently low
temperature and high density, a gas of atoms undergoes a phase transition that is
now called Bose-Einstein condensation (BEC). This phase transition is predicted
to occur at a phase space density ρ ≡ nλ3

deB
∼= 2.612, where n is the density of the

gas and λdeB = h/M v̄ = h/
√

3MkBT is the deBroglie wavelength of the atoms.
For ordinary gases at room temperature and pressure, ρ ∼ 10−6, but in a practical
atomic beam oven, ρ ∼ 3 × 10−10.

Achieving BEC has been one of the holy grails in physics for many years, and
from the beginning of laser cooling it was clear that this could be one of the pos-
sible routes for achieving it. With laser cooling one can obtain µK temperatures
with small loss of atoms, so that the phase space density can be increased. How-
ever, in the mid 1990s it became clear that the increase in phase space density by
laser cooling of alkali atoms had reached its limit. If the density of the sample
becomes too large, light scattered by one atom is reabsorbed by others, causing
a repulsion between them. For resonant light, the optical thickness of a sample
of atoms that has been laser cooled to the recoil limit and compressed to ρ ∼ 1
is only one optical wavelength, so light can neither enter nor escape a reasonably
sized sample.

The increase of density also leads to an increase in the collision rate. The
collision rate between atoms with one in the excited state (S+P collisions) is also
much larger at low temperatures than the rate for such collisions with both atoms
in the ground state (S+S collisions). Since S+P collisions are generally inelastic,
and since the inelastic energy exchange generally leads to a heating of the atoms,
increasing the density increases the loss of cold atoms. To achieve BEC, resonant
light should therefore be avoided, and thus laser cooling alone is not the most
likely route for achieving BEC.

A more promising route to BEC is the technique of evaporative cooling. This
method is based on the preferential removal of those atoms from a confined sam-
ple with an energy higher than the average energy, followed by a rethermalization
of the remaining gas by elastic collisions. Although evaporation is a process that
occurs in nature, it was applied to atom cooling for the first time in 1988 [49]. One
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way to think about evaporative cooling is to consider cooling of a cup of coffee.
Since the most energetic molecules evaporate from the coffee and leave the cup,
the remaining atoms obtain a lower temperature and are cooled. Furthermore, it
requires the evaporation of only a small fraction of the coffee to cool it by a con-
siderable amount. Thus even though the method results in the removal of some of
the atoms in a trap, those that remain have much lower average energy (temper-
ature) and so they occupy a smaller volume near the bottom of the trap, thereby
increasing their density. Since both the temperature and the volume decrease, the
phase space density increases.

This section describes a model of evaporative cooling. Since such cooling is
not achieved for single atoms but for the whole ensemble, an atomic description
of the cooling process must be replaced by thermodynamic methods. These meth-
ods are completely different from the rest of the material in the lecture, and will
therefore remain rather elementary.

9.2 Basic Assumptions

Evaporative cooling works by the preferential removal of atoms having an energy
higher than the average energy, as suggested schematically in Fig. 33. If the atoms
are trapped, it can be achieved by lowering the depth of the trap, thereby allowing
the atoms with energies higher than the trap depth to escape, as discussed first by
Hess [50]. Elastic collisions in the trap then lead to a rethermalization of the gas.
To sustain the cooling process the trap depth can be lowered continuously, achiev-
ing a continuous decrease of the temperature. Such a process is called forced
evaporation. Although more refined techniques have been developed, this tech-
nique was first employed for evaporative cooling of hydrogen [49, 51–53].

Several models have been developed for this process, but the simplest one
was developed by Davis et al. [54], and is mainly of pedagogical value [55]. In
this model the trap depth is lowered in one single step and the effect on the ther-
modynamic quantities, such as temperature, density and volume, is calculated.
Although the process can be repeated and the effects of multiple steps added up
cumulatively, forced evaporative cooling is a continuous process and should be
described by other models. However, the results of the simple model provide
considerable insight to the process without resorting to tedious calculations.

In many models of evaporative cooling the following assumptions are made:

1. The gas behaves sufficiently ergodically, i.e., the distribution of atoms in
phase space (both position and momentum) depends only on the energy of
the atoms and the nature of the trap.

2. The gas is described by classical statistics and is assumed to be far from the
transition point to the BEC phase (ρ 	 1).
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Figure 33: Principle of the evaporation technique. Once the trap depth is lowered,
atoms with energy above the trap depth can escape and the remaining atoms reach
a lower temperature.

3. The quantum mechanical scattering is pure s-wave, i.e., the temperature is
sufficiently low that all higher partial waves do not contribute to the cross
section. Furthermore, the cross section for elastic scattering is energy-
independent and is given by σ = 8πa2, where a is the scattering length.
Also, it is assumed that the ratio of elastic to inelastic collision rates is suf-
ficiently large that the elastic collisions dominate.

4. Evaporation preserves the thermal nature of the distribution, i.e., the ther-
malization is much faster than the rate of cooling.

5. Atoms that escape from the trap neither collide with the remaining atoms
nor exchange energy with them. This is called full evaporation.

The simple model uses all of these assumptions, and their implications will be
discussed later in the section.

9.3 The Simple Model

The first step in applying this simple model is to characterize the trap by calcu-
lating how the volume of a trapped sample of atoms changes with temperature T .
Consider a trapping potential that can be expressed as a power law given by

U(x, y, z) = ε1

∣∣∣∣ x

a1

∣∣∣∣
s1

+ ε2

∣∣∣∣ y

a2

∣∣∣∣
s2

+ ε3

∣∣∣∣ z

a3

∣∣∣∣
s3

, (47)

where a j is a characteristic length and s j the power for a certain direction j . Then
one can prove [56] that the volume occupied by trapped atoms scales as V ∝ T ξ ,
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where

ξ ≡ 1

s1
+ 1

s2
+ 1

s3
. (48)

Thus the effect of the potential on the volume of the trapped sample for a given
temperature can be reduced to a single parameter ξ . This parameter is independent
of how the occupied volume is defined, since many different definitions lead to
the same scaling. When a gas is held in a 3D box with infinitely high walls, then
s1 = s2 = s3 = ∞ and ξ = 0, which means that V is independent of T , as
expected. For a harmonic potential in 3D, ξ = 3/2, for a linear potential in 2D
ξ = 2, and for a linear potential in 3D, ξ = 3.

The evaporative cooling model itself [54] starts with a sample of N atoms
having a temperature T held in an infinitely deep trap. The strategy for using
the model is to choose a finite quantity η, and then (1) lower the trap depth to a
value ηkBT , (2) allow for a thermalization of the sample by collisions, and (3)
determine the change in phase space density ρ.

Only two parameters are needed to completely determine all the thermody-
namic quantities for this process (the values after the process are denoted by a
prime). One of these is ν ≡ N ′/N , the fraction of atoms remaining in the trap
after the cooling. The other2 is γ , a measure of the decrease in temperature caused
by the release of hot atoms and subsequent cooling, modified by ν, and defined as

γ ≡ log(T ′/T )

log(N ′/N )
= log(T ′/T )

log ν
. (49)

This yields a power-law dependence for the decrease of the temperature caused
by the loss of the evaporated particles, namely, T ′ = T νγ . The dependence of the
other thermodynamic quantities on the parameters ν and γ can then be calculated.

The scaling of N ′ = Nν, T ′ = T νγ , and V ′ = V νγ ξ can provide the scaling
of all the other thermodynamic quantities of interest by using the definitions for

the density n = N/V , the phase space density ρ = nλ3
deB ∝ nT −3/2, and the

elastic collision rate kel ≡ nσv ∝ nT
1/2. The results are given in Table 5. For

a given value of η, the scaling of all quantities depends only on γ . Note that for
successive steps j , ν has to be replaced with ν j .

In order to determine the change of the temperature in the cooling process,
it is necessary to consider in detail the distribution of the atoms in the trap. The
density of states for an ideal gas in free space is given by [7]

D(E) = 2π(2M)
3/2V E

1/2

h3
. (50)

2This γ is not to be confused with the natural width of the excited state.
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thermodynamic variable symbol exponent q
Number of atoms N 1
Temperature T γ

Volume V γ ξ

Density n 1 − γ ξ

Phase space density ρ 1 − γ (ξ + 3/2)

Collision rate k 1 − γ (ξ − 1/2)

Table 5: Exponent q for the scaling of the thermodynamic quantities X ′ = Xνq

with the reduction ν of the number of atoms in the trap.

However, for atoms in a trap the density of states is affected by the trapping po-
tential U(x, y, z), and becomes [56]

D(E) = 2π(2M)
3/2

h3

∫
V

√
E − U(x, y, z) d3r. (51)

The fraction of atoms remaining in the trap after decreasing the trap depth to
ηkBT , becomes

ν = 1

N

∫ ηkB T

0
D(E)e−(E−µ)/kB T d E, (52)

where the exponential factor stems from the Maxwell-Boltzmann distribution of
the atoms, and µ is the chemical potential. For η = ∞, ν = 1 and this determines
the chemical potential µ for N atoms [56]. Substituting this relation for µ into
Eq. (52) yields

ν =
∫ η

0
�(ε)e−εdε, (53)

where the reduced energy is defined as ε ≡ E/kBT . Furthermore, the reduced
density of states �(ε) is given by

�(ε) ≡ εξ+1/2

(ξ + 3/2)
, (54)

with (x) the complete gamma function. Figure 34 shows the reduced density of
states as a function of ε̃ = ε/(ξ + 3/2) for various values of ξ . The scaling of ε

is performed so that the reduced density of states is nearly independent of ξ . The
results for different potentials can therefore be compared directly.

The integral in Eq. (53) can be written in terms of the incomplete gamma
function inc to give

ν = inc(ξ + 3/2, η)

(ξ + 3/2)
. (55)
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Figure 34: Reduced density of states �(ε) as a function of the scaled energy
ε̃ = ε/(ξ + 3/2) for various trapping potentials, indicated by their parameter ξ .

Note that the fraction of atoms remaining is fully determined by the final trap
depth η for given potential characterized by the trap parameter ξ .

The averaged reduced energy ε̄ of the atoms before truncation is given by

ε̄ =
∫ ∞

0 ε �(ε)e−εdε∫ ∞
0 �(ε)e−εdε

= (ξ + 5/2)

(ξ + 3/2)
= ξ + 3/2. (56)

The average energy ε̄′ after truncation is given by the same expression, when the
upper boundary is changed from ∞ to η. The average energy is thus

ε̄′ = inc(ξ + 5/2, η)

inc(ξ + 3/2, η)
. (57)

Since the average energy is directly proportional to the temperature, the ratio
T ′/T is given by

T ′

T
= ε̄′

ε̄
= νγ , (58)

or

γ = log(T ′/T )

log(N ′/N )
= log(ε̄ ′/ε̄)

log ν
. (59)

For each evaporated atom the energy carried away εout is given by

εout = ε̄ − ε̄′

1 − ν
= (ξ + 3/2)

1 − νγ +1

1 − ν
. (60)
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For large η, the value of ν approaches 1 so the denominator (1 − ν) can be treated
as small. Then

γ = εout

ξ + 3/2
− 1. (61)

so in that case, γ is just the excess energy above the average energy, which is
carried away by the evaporated atoms.

The results of the model are given in Fig. 35. Apart from the 3D box potential
(ξ = 0) the results for the number of atoms and the temperature are nearly iden-
tical for the different potentials. However, for a stronger potential (larger ξ ) the
decrease in the volume with decreasing temperature is much larger and therefore
the increase in density n is much larger. Not only does this lead to a larger increase
in phase space density ρ, but this is also important for the rethermalization of the
atoms. As the results show, the elastic collision rate also increases strongly for a
stronger potential. This way the rethermalization speeds up considerably and the
cooling process can be accelerated. In the case of a weak potential (ξ between
0 and 1) the collision rate decreases for all values of η and therefore the cooling
process eventually stops. Thus the model indicates that BEC cannot be obtained
in such potentials.

9.4 Speed and Limits of Evaporative Cooling

So far the speed of the evaporative cooling process has not been considered. As
an extreme example, consider the case of an extremely large value of η where
one just has to wait for a single event where one particle has all the energy of the
system. Evaporation of that single particle then cools the whole system to zero
temperature [55]. More realistically one can consider the following two cases. If
the trap depth is ramped down too quickly, the thermalization process does not
have time to run its course and the process becomes less efficient. On the other
hand, if the trap depth is ramped down too slowly, the loss of particles by inelastic
collisions becomes important, thereby making the evaporation inefficient.

The speed of evaporation can be found from the principle of detailed bal-
ance [55]. It states that elastic collisions produce atoms with energy larger than
ηkBT at a rate that is given by the number of atoms with energy larger than this
divided by their collision time. The velocity of atoms with this energy is given by
v = √

2ηkBT/M = v̄
√

3η/2, where v̄ is the average velocity for given tempera-
ture. The fraction of atoms in the MB-distribution with ε > η for large η is given
by

f (ε > η) = e−η
√

3η/2. (62)

The elastic collision rate is given by kel = nσv. The rate of evaporated atoms
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Figure 35: Result of the model for evaporation for different values of ξ (see
Fig. 34) for the thermodynamic quantities: (1) γ , (2) Number of atoms, (3) Tem-
perature, (4) Density, (5) Phase-space density, and (6) Elastic collision rate (figure
adapted from Ref. 54).
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dN/dt becomes

dN

dt
= −N f (ε > η)kel = −nσ v̄ηe−ηN ≡ −ev N . (63)

The average elastic scattering rate depends on the relative velocity and not on the
average velocity of the atoms. Thus the average of kel is k̄el = 4nσ v̄/

√
3π . The

ratio of the evaporation time and the elastic collision time then becomes

τev

τel
=

√
2eη

η
. (64)

Note that this ratio increases exponentially with η.
For the evaporation of the atoms, it is important that atoms with an energy

above the cut-off are expelled from the trap. By lowering the depth of the trap on
one side, atoms can only escape in one dimension, but by using rf-evaporation,
one can expel the atoms in all three dimensions equally and thus obtain a true 3D
evaporation. However, in the case of the TOP-trap, even rf evaporation takes place
in 2D because the atoms are evaporated along the outer side of the cloud that is
exposed to the highest magnetic field on the average. This is a cylinder along the
direction of rotation axis of the magnetic field and thus is only 2D.

Once the average energy of the atoms becomes very small, the atoms sag in
the magnetic field due to gravity and the outer side of the cloud is no longer at a
constant magnetic field. Atoms at the bottom of the trap experience the highest
magnetic field and thus the evaporation becomes 1D. In case of harmonic con-
finement, Utrap = U ′′z2/2, atoms with an energy of ηkBT make excursions of the
order of

z ≈ √
2ηkBT/U ′′. (65)

Now the gravitational energy is given by Ugrav = mgz and when this energy
becomes comparable to total energy, 3-D evaporation stops and the evaporation
becomes 1D. Thus the limiting temperature for 1D evaporation to take place is
given by [55]

kBT <
2η(mg)2

µB ′′ (66)

For a value of a curvature of B ′′ = 500 G/cm2 the limiting temperature becomes
1 µK for 7Li, 10 µK for 23Na and 150 µK for 87Rb. Beyond this temperature
evaporation becomes less efficient.

In the three experiments that obtained BEC for the first time in 1995, this
problem of “gravitational sag” was not known but its presence did not prevent the
experimentalists from observing BEC. The experiments succeeded for different
reasons: the light mass (7Li), tight confinement (23Na), and TOP trap (87Rb). It
is another violation of Murphy’s law, that the solutions in these experiments were
found without really knowing the problem [55].
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Group Atom N n T ρ ηtot

(106) (1012cm−3) (µK) (10−6)
Rice 7Li 200 0.07 200 7 1.7

0.1 1.4 0.4
MIT 23Na 1000 0.1 200 2 1.9

0.7 150 2
JILA 87Rb 4 0.04 90 0.3 3.0

0.02 3 0.17

Table 6: Results obtained with evaporative cooling for the achievement of
BEC [55]. The first line represents the starting point in each case, and the sec-
ond line represents the end point.

9.5 Experimental Results

In all the earliest experiments that achieved BEC, the evaporative cooling was
“forced” by inducing rf transitions to magnetic sublevels that are not bound in
the magnetic trap. Atoms with the highest energies can access regions of the trap
where the magnetic field is stronger, and thus their Zeeman shifts would be larger.
A correspondingly high-frequency rf field would cause only these most energetic
atoms to undergo transitions to states that are not trapped, and in so doing, the
departing atoms carry away more than the average energy. Thus a slow sweep of
the rf frequency from high to low would continuously shave off the high-energy
tail of the energy distribution, and thereby continuously drive the temperature
lower and the phase space density higher.

In Table 6 the results of evaporative cooling from the first three groups that
have obtained BEC is given. The success of evaporative cooling using this rf
shaving technique demonstrates that it is much easier to select high energy atoms
and waste them than it is to cool them.

10 Beyond Optical Molasses

Although evaporative is a very powerful technique to obtain BEC, at least for the
final phase of the cooling process, the quest for obtaining BEC in an all optical
way remained open. One advantage of obtaining BEC in an all optical way is
the fact that in the cooling process the number of atoms remains constant. Using
evaporation one loses orders of magnitude of atoms in the cooling process (see
Tab. 6). There have been two ways to obtain an all optical BEC. One way is to
cool atoms in an optical lattice and another way is to cool atoms held in an optical
trap using a CO2 laser.
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10.1 Raman Sideband Cooling

Raman sideband cooling of atoms in an optical lattice is very reminiscent of the
same cooling process introduced for ions. In an optical lattice atoms are bound
in optical traps with dimensions of λ/2, where λ is the optical wavelength. If the
trapping potential is sufficiently deep, the atomic energy is restricted to narrow
bands in the harmonic optical potential. By careful choice of the laser parameters,
atoms can be pumped towards the lowest vibrational state and thus cooled.

To utilize the band structure a method was proposed by Hamann et al. [57].
Here we will describe the 3D-version of the same scheme by Kerman et al. [58],
which is shown schematically in Fig. 36. A far detuned optical lattice is used to
trap the atoms in different MF states. A small magnetic field shifts the different
MF states with respect of each other and by introducing a small angle between
the magnetic field axis and the optical lattice, the light of the optical lattice in-
duces Raman transitions between the different MF states. By using the appro-
priate magnetic field, the vibrational state n of magnetic substate MF=3 can be
made resonant with state n − 1 of MF=2 or n − 2 of MF=1. In the Raman pro-
cess the atoms loses one or two quanta of vibrational energy. If the atom in state
MF=1 is optically pumped to the excited state by an additional σ + laser beam and
subsequently decays to the MF=3 state by spontaneous emission, the vibrational
quantum number is conserved in the Lamb-Dicke regime. Thus the atoms loses in
this process (2 Raman transitions followed by absorption and spontaneous emis-
sion) 2 quanta of vibrational energy. Since the process can be repeated, the atoms
can be cooled to the lowest vibrational state and spin polarized in the same time.
Note, that by choosing the optical pumping beam resonant from the F=3 ground
state to the F=2 upper state, atoms in the MF=3 ground state cannot be optically
pumped and thus are decoupled in the lowest vibrational state from the light. To
depopulate the lowest state of the MF=2 ground state, a small π component is
added to the optical pumping beam.

This cooling in an optical lattice has two advantages over cooling of free atoms
in an optical molasses. First of all, atoms are isolated in the optical lattice from
each other and thus cannot undergo inelastic collisions, which heat the atoms. Sec-
ondly, since the reabsorption of spontaneous emitted photon by the other atoms
is strongly reduced, the heating of the atoms in this process is reduced [59]. In
Fig. 37 it is shown, that the heating of the atoms of 8 nK/1010atoms/cm3 is strongly
reduced due to the optical lattice compared to 600 nK/1010 atoms/cm3 for optical
molasses. This way phase space densities have been obtained for Cs of 1/500,
which is 3 orders of magnitude larger compared to ordinary optical molasses, but
still 2 orders of magnitude away from quantum degeneracy. A pulsed version of
this scheme as implemented by Han et al. Ref. [60] yielded a phase space density
of 1/30, still short of quantum degeneracy.
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Figure 36: Atoms in different magnetic substates are coupled by Raman transi-
tions, which are resonant due to a Zeeman shift of the magnetic substates. By
optical pumping atoms can be pumped back to the lowest state, thus making the
cooling cycle complete [58].

10.2 Trapping Atoms with a CO2 Laser

Another way to trap atoms in optical fields is the QUasi-ElectroStatic Trap (QUEST),
where the light of a CO2-laser is used. Although the light of a CO2 laser at λ =
10.6 µm is far detuned from the atomic resonance in many atoms, the lasers are
very powerful (P ≈ 10 W) and can be focused down to small spotsizes (w ≈ 50
µm), which yields a very high intensity. This provides a trap depth of the order
of 100 µK. Since the light is detuned so far from resonance, the scattering rate of
photons is negligible.

The QUEST trap has been studied extensively and the results are reviewed by
Grimm et al. [61]. Recently, Barrett et al. [62] succeeded in using the QUEST
trap to obtain quantum degeneracy. They loaded about 30×106 atoms in a MOT
and cooled the atoms by sub-Doppler cooling before being loaded in the QUEST
trap. In the trap the initial phase space density ρ is 1/200, which is much higher
than usual. It then takes about 2 seconds to ramp down the power of the lasers and
evaporatively cool the atoms over the BEC transition point, as shown in Fig. 38.
The number of condensed atoms is about 3.5×104 atoms. Recently, the group
of Grimm in Innsbruck has succeeded in obtaining in a QUEST trap BEC for
Cs. BEC for Cs has been searched for by many groups, but due to the special

61



Figure 37: Phase space density ρ as function of the density n for Raman sideband
cooling. Circles indicated data points and solid line is a fit to the data with a
heating rate of 8 nK/1010atoms/cm3. For comparison, dotted line indicate the
results for optical molasses, whereas dashed line indicate the result for “grey”
optical molasses [58].

collision properties of the element at low energies large inelastic collision losses
in magnetic traps have excluded evaporative cooling to the BEC transition point.
In the QUEST atoms can be trapped in the lowest hyperfine state, where two-body
inelastic losses are inhibited.

11 Conclusions

In this lecture note we have described the laser cooling and trapping techniques
that have been used to cool and trap alkali-metal atoms for the attainment of BEC.
We have emphasized the principles of the techniques used and described the most
salient experimental results. Laser cooling and trapping is not only used to Bose
condense atoms, but is used in many experiments as a primary tool to obtain atoms
with sufficient density and low temperatures to observed novel phenomena that
cannot be studied otherwise. Based on the many experimental groups, that work
in this area, and the awarding of the Nobel prize twice in this field in the last 5
years, the field is very active and promises to deliver many new results in the years
to come.
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(a) (b) (c)

Figure 38: Absorption images of (a) atoms above the BEC transition point (P =
480 mW), (b) atoms below the transition point (P = 260 mW) and (c) atoms in a
pure condensate (P = 190 mW). Here P denotes the power of the CO2 laser beam
at the end of the evaporation cycle [62].
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H He* He* Li Ne* Na
mass M 1 4 4 7 20 23
wavelength λ (nm) 121.57 1083.0 388.86 670.08 640.2 589.0
lifetime τ (ns) 1.6 97.85 98.38 27.3 19.42 16.1
decay rate γ (106 s−1) 625. 10.2 10.2 36.6 51.5 62.1
force Fmax (10−21 N) 1703. 3.12 8.7 18.1 26.6 34.9
acceleration amax 106m/s2 1017. 0.47 1.30 1.55 0.80 0.94

Ar* K Kr* Rb Xe* Cs
mass M 40 39 84 85 132 133
wavelength λ (nm) 811.5 766.49 811.3 780.0 881.9 852.0
lifetime τ (ns) 27.3 27.3 28.6 26.5 33.0 30.6
decay rate γ (106 s−1) 36.6 36.6 34.9 37.7 30.3 32.7
force Fmax (10−21 N) 14.9 15.8 14.3 16.0 11.4 12.7
acceleration amax 106m/s2 0.22 0.24 0.10 0.11 0.052 0.058

Table 7: Spectroscopic data for optical transitions, that are used for laser cooling.
From the spectroscopic data the maximum force and acceleration of the atoms can
be calculated.
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A Cooling Limits

In the tables in this appendix characteristic values are given for the most important
elements, that are laser cooled and trapped. In the case of metastable helium, two
values are given, since there are two optical transitions, which can be used for
laser cooling and trapping.
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H He* He* Li Ne* Na
transition energy h̄ω0 (eV) 10.199 1.144 3.188 1.850 1.937 2.105
wavenumber k (106 m−1) 51.684 5.802 16.158 9.377 9.814 10.667
decay rate γ (106 s−1) 625 10.2 10.2 36.6 51.4 62.1
cross section σge (10−15 m2) 7.1 560.0 72.2 214.4 195.7 165.6
saturation intensity Is (W/m2) 72362 1.67 35.96 25.33 40.82 63.23

Ar* K Kr* Rb Xe* Cs
transition energy h̄ω0 (eV) 1.528 1.618 1.528 1.590 1.406 1.455
wavenumber k (106 m−1) 7.743 8.197 7.745 8.055 7.125 7.374
decay rate γ (106 s−1) 36.6 36.6 35.0 37.7 30.3 32.7
cross section σge (10−15 m2) 314.4 280.5 314.3 290.5 371.3 346.6
saturation intensity Is (W/m2) 14.26 16.92 13.62 16.54 9.19 10.99

Table 8: Characteristic values for the excitation of the elements with laser light.
The cross section and saturation intensity are valid for the strongest transition.
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H He* He* Li Ne* Na
Capture limit:
velocity vin (m/s) 12.09 1.76 0.63 3.91 5.25 5.82
temperature Tin (mK) 17.7 1.49 0.19 12.9 66.2 93.8
Doppler limit:
velocity vD (m/s) 4.44 0.28 0.28 0.41 0.29 0.29
temperature TD (µK) 2386 39.0 38.8 139.9 196.7 237.2
Recoil limit:
velocity vr (m/s) 3.25 0.092 0.26 0.085 0.031 0.029
temperature Tr (µK) 1285 4.08 31.6 6.07 2.34 2.40

Ar* K Kr* Rb Xe* Cs
Capture limit:
velocity vin (m/s) 4.73 4.47 4.51 4.68 4.25 4.43
temperature Tin (mK) 107.6 93.6 205.8 224.2 287.1 314.0
Doppler limit:
velocity vD (m/s) 0.17 0.17 0.11 0.12 0.085 0.088
temperature TD (µK) 139.9 139.9 133.5 144.1 115.7 124.8
Recoil limit:
velocity vr (m/s) 0.012 0.013 0.006 0.006 0.0034 0.0035
temperature Tr (µK) 0.73 0.84 0.35 0.37 0.19 0.20

Table 9: Cooling limits for the velocity and temperature of laser cooling for the
different elements. The capture limit is characteristic for the range of velocities,
that can be captured in optical molasses. The Doppler limit is the limit for cooling
on a two-level atom. The recoil limit is the limit for laser cooling using sub-
Doppler processes.
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