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We have studied binary collisions of cold He (23S1) atoms under the influence of nearly-resonant
light. The light is tuned below the atomic 23S1 → 23P2 transition. A semi-classical model is
developed, calculating the absolute ionization rate as a function of the detuning of the light. The
calculated ionization rate is compared with measurements and with values that have appeared in
the literature. Good agreement is found between theory and measurements.

I. INTRODUCTION

Since the development of laser cooling and trapping [1], cold atoms are widely studied. Most experiments studying
cold atoms are performed in a magneto-optical trap (MOT). The use of MOT’s triggered the interest in optical
collisions, which are binary collisions in the presence of nearly resonant light. The colliding atoms are excited to an
attractive excited state potential. The reason for the interest in these collisions is that they are important channels
for trap loss in MOT’s.
The first studies of collisions of cold atoms in the presence of nearly resonant light have been done with alkali-atoms.

In alkali-atom traps we can distinguish three mechanisms involving optical collisions which lead to trap loss [2] (meer
referenties?). In the radiative escape mechanism (RE) the colliding atoms are accelerated on the attractive potential.
If the kinetic energy, that is gained by the atoms when spontaneously decaying back to the ground state, is large
enough they can escape the trap. In a fine-structure changing collision (FS) the population can be transferred to
a different fine-structure state when the atoms are accelerated towards each other. In that case the atoms gain the
energy difference between the fine-structure states and can escape the trap. Furthermore in the last mechanism a
hyperfine-structure changing collision (HFS) can take place where the hyperfine state of the ground state can be
changed. All of the three above mechanisms have been studied in alkali-atom traps by measuring trap loss.
Optical collisions of cold metastable rare gas atoms cannot only be studied with trap loss measurements, but

also by measuring ionization rates. In a close collision of two metastable He atoms the probability for Penning
ionization or associative ionization is almost unity for singlet and triplet states and spin forbidden for quintet states
[15]. An experiment where the ionization rate is measured is a method to detect an optical collision with almost zero
background. This is a great advantage above trap loss measurements. Optical collisions of cold Xe* atoms have been
successfully studied by measuring ions [3], where the ion rate induced by nearly resonant laser light was measured as
a function of the detuning of the light. A similar experiment has been carried out for He* [4]. Furthermore, in the
literature have appeared various values for loss rates and ionization rates for He (23S1 - 23P2) collisions [4–8]. These
rates disagree with each other by factors 2 to 100. In this work we present new measurements of the ionization rate
for cold he (23S1 - 23P2) collisions. The results are compared with the results that have appeared in the literature by
giving a consistent definition of the ionization rate.
Optical collisions have also been studied theoretically. For the general case of one molecular ground and one

molecular excited state models have been developed which provide a qualitative description of the increase of the
collision rate constant in the presence of nearly-resonant light [9–11]. The Julienne-Vigué model [10] gives a rather
accurate quantum mechanical description. To obtain more insight in the relevant processes we have developed a
semi-classical version of such a two-state model. A first version of the model has already been presented [4,12]. In
this work we present a corrected and improved version of the model, in which we use a partial wave formulation and
take the finite lifetime of the excited state into account. The model is used to calculate an absolute ionization rate
constant, which will be compared with the values that have appeared in the literature.
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II. EXPERIMENTAL

The experiments are performed in a magneto-optical trap (MOT). The trap is loaded with a beam of He* atoms
produced in a DC-discharge source, which is cooled with liquid helium. The mean velocity of the atoms leaving the
source is 300 m/s. Before the He* atoms are trapped in the MOT, they are Zeeman slowed with a counter-propagating
laser beam while the required Zeeman shift is produced by the magnetic field of the MOT coils. Typically we trap 106

atoms with a temperature of 1 mK and a density of a few times 109 cm−3. The atoms are cooled on the 23S1 → 23P2

transition, which has a wavelength of 1083 nm.
A probe laser is scanned in frequency around the 23S1 - 23P2 asymptote and the ion rate is measured as a function

of the probe laser frequency. The produced ions are measured with micro-channel plates. The laser light is generated
by diode lasers. The frequency of the probe laser light is calibrated using a Fabry-Perot interferometer for the relative
frequency scale and the Lamb dip to determine the absolute frequency. The uncertainty in the absolute frequency
scale is 20 MHz.
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FIG. 1. Ion rate as a function of the probe laser frequency. The probe laser frequency is expressed as the detuning ∆ with

respect to the 23S1 - 2
3P2 asymptote. The saturation parameter of the probe laser was s0 = 450.

The trapping laser is periodically switched off, since we are only interested in ionization induced by the probe laser.
The laser is switched off for 25% of the period, by detuning its frequency 500 MHz to the red of the 23S1 → 23P2

transition. This is far enough to ensure that the trapping laser does not induce many ions. The period when the
trapping laser is switched off is defined as the probing period, while the period when the trapping laser is switched on
is defined as the trapping period. The probing period is 20 µs, which is short enough to avoid significant expansion of
the cloud of trapped atoms. The probe laser is switched off in the trapping period using an acousto-optical modulator,
from which the first order diffraction beam is used as the probe laser. In this way we make sure that the cloud of
trapped atoms is not perturbed by the probe laser. The ion signal is gated and can be measured both in the probing
period and in the trapping period. In the probing period the detuning-dependent ion rate is measured, while the
signal in the trapping period is used to monitor the stability of the trapped cloud. A typical scan time is 100 s. A
typical measurement is shown in Fig. 1. Several scans were added to produce the spectrum shown in the figure.
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III. THE TWO STATE MODEL
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FIG. 2. Schematic representation of the two-state system, where energy of the ground state S-S potential is shifted by the
energy of a photon. The light is detuned with ∆ to the red of the S-P asymptote. A transition can occur at the crossing at
Rc and the grey arrow indicates the population that is not excited. The shaded regions indicate the regions where PI can take
place. The potential barrier on the S-S potential (for � �= 0) is shown with the dashed line.

In Fig. 2 a schematic representation of the two-state system is shown. The laser light is detuned to the red of the
23S1 - 23P2 asymptote with a detuning ∆. For a large detuning of ∆ � Γ, where Γ is the linewidth of the transition,
the excitation can only take place around the Condon point Rc, where a transition can occur without appreciable
change of the relative kinetic energy of the atoms.
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FIG. 3. Molecular dressed state picture, where the adiabatic potentials are shown. The system can ionize directly or
indirectly. For � �= 0 the rotational barrier on the S-S potential prevents the transient molecule to reach small internuclear
distances.

We describe the system in terms of a dressed-state picture to obtain an insightful and quantitative description,
where the ground and the excited state potential are coupled by the light field. The electronic coupling is given by
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the Rabi frequency Ω, which can be found from the atomic Rabi frequency Ω2
at = s0/2Γ2

at, and is responsible for an
avoided crossing of the adiabatic potentials, which can be seen in Fig. 3. The transition from the ground to the excited
state is described in terms of the electronic coupling. Collisions in the ensemble of 23S atoms occur on the ground
state potential, with velocities determined by the temperature of the MOT. After having passed the region around the
Condon distance, a system can be either on the lower adiabatic potential, or on the upper adiabatic potential. Being
on the lower one at R < Rc means to be in the excited state. The probability for this is given by the Landau-Zener
expression [11]:

P = 1− exp
(
− πh̄Ω2

2αvrad

)
, (1)

where α is the gradient of the difference between the diabatic potentials at the crossing point Rc, and vrad is the
radial velocity. We have used the relation |H12|2 = (Ω/2)2 to express the electronic coupling in terms of the Rabi
frequency. The detuning ∆ is used to determine Rc via the relation ∆ = C3/R3

c . The Condon distances relevant for
the present discussion are found to be in the order of 100 - 1000 atomic units. At these large distances α is given by
α = 3C3/R4

c and the local Ω is approximately constant and can be calculated from Ωat.
We use Eq. 1 to formulate an expression for the ionization rate constant. The model assumes that close collisions

lead to PI with 100% probability, except if this is forbidden by the spin selection rule. This is a valid assumption, which
has been verified even for thermal collisions [15]. The expression is given in terms of the partial wave expansion of an
inelastic scattering cross section described by O�, which is the angular momentum dependent ionization probability.
The ionization rate constant K depends on the detuning ∆, the laser intensity s0, and the velocity v, and is written
as [10]

K (∆, s0, v) =
πh̄2v

µ2

�max∑
�=0

(2� + 1)Θ�O�, (2)

where µ is the reduced mass, and Θ� is a step function. The step function Θ� is introduced, because the collision
system has a well defined gerade (g) or ungerade (u) symmetry, which restricts the allowed partial waves. Since the
collision system is symmetric the weight of the allowed partial waves is doubled. Thus:

even � odd �
gerade ground state: Θ� = 2 Θ� = 0

ungerade ground state: Θ� = 0 Θ� = 2

The summation in Eq. 2 has to be carried out until a certain maximum angular momentum �max. The maximum
angular momentum is limited by the rotational barrier in the ground state and the kinetic energy of the collision
system. The system needs to reach the Condon point Rc in order make the transition, reach small internuclear
distances on the excited state potential, and contribute to the ionization. Hence �max is determined by the relation:

h̄2

2µ
�max(�max + 1)

R2
c

− C6

R6
c

>
1
2
µv2. (3)

In order to find an expression for O�, we have to distinguish the different possible paths leading to ionization. Below
we make a distinction between direct and indirect paths of ionization, either in the excited state (SP) or in the ground
state (SS):

• The direct SP contribution is possible for all allowed values of �. The system is excited on the way in at the
avoided crossing, then approaches small distances on the excited state potential without decaying spontaneously
by photon emission and Penning ionizes on the excited state potential. The corresponding probability is given
by P�S�, where P� is defined in Eq. 1 and S� = exp(−Γt�) is the survival probability in the excited state
during the approach time t�. This time is obtained from integration along the �-dependent trajectory, using
t� =

∫
dR/v�(R), with v�(R) the �-dependent radial velocity on the excited state potential curve.

• The indirect SP contribution has not been considered in earlier models [4,12]. In this case the system is not
excited on the way in. If � �=0 and Ekin < ∆, the system is partly captured and forms a transient molecule
in the upper adiabatic potential (see Fig. 3). This molecule can either dissociate by diabatic crossing on the
way out, or ionize after a diabatic crossing on the way in. While a correct calculation should use amplitudes
and phases to calculate this contribution, we content ourselves here with a calculation using probabilities. The
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total contribution can then be calculated by summation of the successive contributions, i.e., the contributions
after 1,2,3, .. oscillations. The infinite sum can be carried out and leads to the ionization probability P�S�(1 −
P�)/(1 + P�).

• For the direct SS contribution the system is not excited on the way in at the avoided crossing, then approaches
small distances on the ground state potential and Penning ionizes on the ground state potential. The corre-
sponding probability is (1 − P�). At the low collision energies in the MOT only partial waves with � = 0 can
penetrate the rotational barrier on the ground state and reach the small internuclear distances, where PI occurs,
i.e. only � = 0 contributes to the ionization.

• For the indirect SS contribution the system is excited on the way in, then spontaneously decays to the ground
state, and Penning ionizes in the ground state, which is only possible for � = 0. The corresponding probability
is P�(1 − S�).

The ionization probability to be used in Eq. 2 thus becomes the sum of those four terms:

O� = P�S� + P�S� (1− P�) / (1 + P�) = 2P�S�/ (1 + P�) for � �= 0
O� = P�S� + (1− P�) + P�(1− S�) = 1 for � = 0. (4)
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FIG. 4. Calculated ionization rate constant as a function of ∆. The direct and the indirect contributions, as discussed in the
text, are shown. The symbols represent the calculation. A smoothed line is drawn to correct for structure that arises, due to
the finite steps in the velocity distribution that have been used in the calculation.

In a numerical program, the evaluation of expression Eq. 4 for the ionization rate constant is easily carried out. In
Fig. 4 the total calculated ionization rate constant and the direct and indirect contributions to it are shown. It can be
seen that the direct SP contribution is the dominant contribution. The crucial quantity that determines the quality of
the result is the excitation probability function, which is approximated using the Landau-Zener formula in Eq. 1. While
this approximation is expected to be valid for large detunings (∆ � Γ), when the region of distances where transitions
induced by the radiation occur is rather narrow [13], its validity for small detunings is questionable. To check whether
the approximation is good enough, we have calculated the excitation probability with a quantum-mechanical model
(N.B. eventueel meer hierover op deze plaats) and find the agreement with the semi-classical Landau-Zener excitation
probability to be good.

IV. CALCULATION OF THE ABSOLUTE IONIZATION RATE CONSTANT

In this section we describe the procedure we followed to calculate the absolute ionization rate constant for the 23S1

- 23P2 system, using the semi-classical two-state model described above.
To calculate the absolute ionization rate we have used the actual long-range potential curves connected to the 23S1

- 23P2 asymptote. The potentials have been constructed using the Movre-Pichler analysis [14]. This method has
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been used to calculate long-range potentials for alkali-atoms and we have applied it to the He 23S1 - 23P2 system.
(ref?) In total there are 54 potentials for the He 23S1 - 23P system. For the calculation of the ionization rate the nine
potentials which are attractive and connect to the 23S1 - 23P2 asymptote are used. These potentials are shown in Fig.
? At the large distances that are relevant for the calculation of the ionization rate constant, the potentials behave as
−C3/R3. Due to the fine-structure interaction the potentials are mixed and hence deviate from the −C3/R3 behavior
at distances of 100 - 500 a0, while at smaller distances of 20 - 100 a0 the potentials behave again as −C3/R3. The
potentials have been calculated in the range from 20 - 1000 a0. (meer?)
For all potentials we have calculated the C3 coefficients, the linewidths for spontaneous emission Γ, and the Penning

ionization probability p. The PI probability is deduced from the spin character of the state at large internuclear
distances, where the spin states are mixed. We have assumed that at short range, where S is a good quantum
number, the singlet and triplet spin states ionize with unity probability and the quintet states ionize with zero
probability. A list of the properties of the potentials connected to the 23S1 - 23P2 asymptote is given in Tab. I.
The excited state potentials can be populated from various potentials connected to the 23S1 - 23S1 potentials. These

potentials are degenerate at the distances where the excitations are made, but we characterize them by the total spin
quantum number and its projection on the internuclear axis. Since the potentials are degenerate we can choose any
axis. We found that when the system is excited to the 23S1 - 23P2 system, every ground state potential is mainly
coupled to one excited state potential and that the coupling to other excited states is an order of magnitude weaker.
In principle, allowed contributions from all ground to all excited states should be taken into account, but we have
used an approximation where only the dominant contribution has been included in the calculation. We find that all
dominant transitions are π transitions. For the excited states the spin states are mixed and the Hund’s case (a) ground
states couple only with a fraction of the excited Hund’s case (c) states. This fraction is given by w, where w is the
population probability of the fraction of the excited state coupling with the ground state. We use w to obtain the Rabi
frequency for each ground to excited state transition, since we need the Rabi frequency to evaluate the Landau-Zener
expression. The characteristic Rabi frequency Ωmol for each pair is given by Ωmol = (Ωat/Γat) Γmol

√
w.

TABLE I. Properties of the excited state potentials connected to the 23S1 - 2
3P1 asymptote. The C3 coefficient is expressed

in terms of the dispersion coefficient µ (iets hierover?). The excited fraction is the fraction of the state that can be excited from
the ground state. The polarization is the polarization of the light required to make the excitation. The ground state potentials
where they are excited from are also shown.

Ground state Excited state
Symm. Σ Symm. Γ C3 w p pol.

(Γat) (µ)
1Σ+

g 0 0+u 1.271 -0.536 0.509 0.89 π
5Σ+

g −2 2u 1.016 -0.455 0.394 0.59 π
5Σ+

g −1 1u 1.582 -0.313 0.522 0.27 π
5Σ+

g 0 0+u 1.984 -0.242 0.505 0.08 π
5Σ+

g 1 1u 1.582 -0.313 0.522 0.275 π
5Σ+

g 2 2u 1.016 -0.455 0.394 0.59 π
3Σ+

u −1 1g 1.217 -0.516 0.557 0.86 π
3Σ+

u 0 0−g 1.538 -0.333 0.500 0.75 π
3Σ+

u 1 1g 1.217 -0.516 0.557 0.86 π
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We use the nine values of Ωmol to calculate the total ionization rate constant. The rate constant for each of the
nine contributions is calculated using the two-state model. The total ionization rate constant is obtained by summing
over the nine contributions and weighing each contribution with a statistical factor of 1/9, where each rate constant
is multiplied by its own Penning ionization probability p.
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FIG. 5. The scaled measured ionization curve and the calculated ionization curve as a function of the detuning of the probe

laser. The ion rate constant is expressed in arbitrary units.

The result of such a calculation, averaged over the thermal velocity distribution, corresponding to a temperature of
1 mK, is shown in Fig. 5. In the calculation we take into account that only a third of the light has the π- polarization
required to make the transitions shown in Tab. I. Since for the measured curve neither a reliable absolute calibration
was possible, nor a reliable determination of the background, we adapted the measured curve to the calculated one
by choosing the background and the normalization to obtain best agreement. Therefore the comparison between the
measurement and the calculation yields only information on the accuracy of the predicted shape of the curve. In
Fig. 5 we can see that the shape of the ionization rate constant is very accurately predicted by the calculation. The
slightly higher values in certain detuning ranges can be attributed to the photoassociation resonances discussed by
Herschbach et al. [16]. The excitation of these bound states is not included in the semi-classical two-state model, so
we expect to see these deviations. Therefore we can state that there is agreement within experimental error. This is
a remarkable result considering the complexity of the system and the simplification that we made.
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V. COMPARISON OF CALCULATED AND MEASURED ABSOLUTE IONIZATION RATE CONSTANTS
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FIG. 6. Ionization rate constant calculated for s0 = 50 (dashed line) and s0 = 200 (solid line).

Since the agreement of the calculated behavior of the ionization rate constant with the measured behavior is so
good, we are confident that the calculated absolute ionization rate constant should also be reasonably accurate. This
is especially interesting, because existing experimentally determined absolute ionization rates are uncertain by factors
of 2 to 100 [4–8]. In this section we will compare our calculated absolute ionization rate constant with the experimental
ionization rate constants. All of these values have been determined at the detuning where the ionization rate constant
is maximal, but under different experimental circumstances. Especially, different laser intensities have been used and
slightly different MOT conditions and correspondingly slightly different temperatures. Our model allows us to judge
the possible influence of these different conditions. As an example, we show the ionization rate constant in Fig. 6
calculated at a temperature of 1 mK for different saturation parameters, namely s0 = 50 and s0 = 200. We notice
that the maximum value of the ionization rate constant, Kion

max, is rather insensitive to the varied parameter. Since
the uncertainties of the available experimental values are much larger than the variation of the calculated maximum
rate constant for different experimental conditions, it is not necessary to account for these differences. It is sufficient
to compare the calculated Kion

max with the maximum values reported in the literature.
To be able to compare the measured and calculated rate constants, we must take care to use identical definitions

for the rate constant. Therefore it is necessary to briefly outline the procedures that have been applied to obtain
experimental ionization rate constants for optical collisions. In most experiments the ionization rate constant Kion

or the collision rate constant K was obtained from a measurement of the decay rate β of the MOT, when stopping
the loading of the MOT. Note, that the collision rate constant K is a measure for all collisions resulting in trap loss,
while the ionization rate constant Kion only takes into account the collisions where an ion is formed. The ion rate
or fluorescence rate is used to monitor the decrease of the density n. The valid assumption is made, that the decay
is mainly due to collisions between trapped atoms. Hence a loss rate constant β is defined by dn/dt = −βn2, where
β = 2K. The factor 2 stems from the fact, that in one trap loss collision two atoms escape from the trap. We use the
same definition in the semi-classical two-state model, i.e. dnion/dt = Kn2, where nion is the ion density.
In order to experimentally determine the value of K, one needs to know n on an absolute scale. This poses

severe problems and is the reason for the rather large uncertainties of the experimentally determined rate constants.
Furthermore, some confusion has arisen because the experimentally determined rate constants have not been defined
in the consistent way described above. Instead, one has argued that the ionization rate constant should be defined as
the rate constant for ionization in collisions of excited 23P2 atoms with ground state 23S1 atoms. Hence the decay
is given by dnion/dt = 2K ′npns = 2K ′πp(1 − πp)n2, where πp is the population of the excited state [5]. The factor
of 2 comes from the fact that we cannot distinguish between a collision of a S with a P atom and a P with a S
atom. The rate constant at the detuning where the ion rate constant is maximal, K ′

max is then found by assuming
that the ensemble is saturated, i.e. that πp = 1/2. For a given measured ion rate constant this leads to the relation
K ′

max = 2Kmax, where Kmax is our maximum rate constant.
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TABLE II. Comparison of experimental values of Kmax and Kion
max with the theoretical value predicted by our two-state

model and with each other. The corrected values are based on the definitions given in the text.

Reference Published Corrected Published Corrected
βmax Kmax Kion

max’ Kion
max

(cm3/s) (cm3/s) (cm3/s) (cm3/s)

Bardou 7× 10−8 3.4× 10−8 - -
et al. [5] uncertainty:

factor 4
Tol (1.3 ± 0.3) (6.5± 0.3) - -
et al. [6] ×10−8 ×10−9

Browaeys 3× 10−8 1.5× 10−8 - -
et al. [8] uncertainty:

factor 2
Kumakura - - (8.3 ± 2.5) (2.1 ± 0.6)
et al. [7] ×10−8 ×10−8

Mastwijk - - (1.9 ± 0.8) (1.3 ± 0.6)
et al. [4] ×10−9 ×10−9

This work - - - 2.5× 10−8

9



This definition of K ′
max is unphysical, which can be seen as follows. The rate constant is the product of the collision

velocity and the cross section for ionization. This cross section is limited by the number of partial waves that can
contribute. For ∆ � Γ, πp goes to zero, while K still has a value of the order of Kmax, as can be seen in Fig. 5.
In that case the definition dnion/dt = 2K ′πp (1− πp)n2 would lead to unphysically large values of K ′, which would
require ionization cross sections exceeding the maximum cross section, given the total number of partial waves. In
Tab. II an overview is given of the measured values of β and Kion

max’ that are found in the literature. These values
have been corrected to agree with our definition of Kmax as defined above. In some of the experiments the collision
rate constant Kmax is determined and in other experiments the ionization rate constant Kion

max is determined. Since
we cannot estimate for each experiment the fraction of collisions that do lead to losses from the trap, but do not lead
to ionization, we cannot compare every value with the calculation.
We notice that the experimentally determined ionization rate constant of Kumakura et al. [7] agrees within given

limits of error with the value predicted by our calculation. However, the value of Mastwijk et al. [4] does not agree
with the calculated ionization rate, which is due to an error made in determining the transmission through the mass
spectrometer used to measure the ion rate. It is difficult to estimate the accuracy of the calculated value, as a result of
the approximations that have been made. However, the Kion

max is virtually independent of the experimental conditions
used in the experiment. We therefore estimate that if our assumptions are correct, the calculated cross section is
accurate to within 20%. We cannot calculate the collision loss rate Kmax from Kion

max, but it is clear that the Kion
max

should be a fraction of Kmax.

VI. CONCLUSION

We have developed a semi-classical model to describe Penning ionization in optical collisions. The model is a
two-state model, using a partial wave expansion and the Landau-Zener approximation to calculate the excitation
rate. The predicted ionization rate constant as a function of the detuning of the light agrees well with measurements
that we have done. Furthermore we have calculated the absolute ionization rate constant and compared it with
measured absolute rate coefficients that have appeared in the literature. We have calculated an absolute ionization
rate constant Kmax = 2.5× 10−8 cm3/s. If we use a consistent definition of Kmax we find good agreement with most
quoted experimentally determined values.
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