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Abstract
This article presents a review of some of the principal techniques of laser cooling and
trapping that have been developed during the past 20 years. Its approach is primarily
experimental, but its quantitative descriptions are consistent in notation with most of
the theoretical literature.
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1
Introduction

The combination of laser cooling and
atom trapping has produced astounding
new tools for atomic physicists [1]. These
experiments require the exchange of mo-
mentum between atoms and an optical
field, usually at a nearly resonant fre-
quency. The energy of light h̄ω changes
the internal energy of the atom, and the
angular momentum h̄ changes the orbital
angular momentum � of the atom, as de-
scribed by the well-known selection rule
�� = ±1. By contrast, the linear momen-
tum of light p = h̄ω/c = h̄k cannot change
the internal atomic degrees of freedom,
and therefore must change the momen-
tum of the atoms in the laboratory frame.
The force resulting from this momentum
exchange between the light field and the
atoms can be used in many ways to control
atomic motion, and is the subject of this
article.

1.1
Temperature and Entropy

The idea of ‘‘temperature’’ in laser cool-
ing requires some careful discussion and
disclaimers. In thermodynamics, temper-
ature is carefully defined as a parameter
of the state of a closed system in thermal
equilibrium with its surroundings. This,
of course, requires that there be thermal
contact, that is, heat exchange, with the en-
vironment. In laser cooling, this is clearly
not the case because a sample of atoms
is always absorbing and scattering light.
Furthermore, there is essentially no heat
exchange (the light cannot be considered
as heat even though it is indeed a form
of energy). Thus, the system may very
well be in a steady state situation, but cer-
tainly not in thermal equilibrium, so the

assignment of a thermodynamic ‘‘temper-
ature’’ is completely inappropriate.

Nevertheless, it is convenient to use the
label of temperature to describe an atomic
sample whose average kinetic energy 〈Ek〉
has been reduced by the laser light, and
this is written simply as kBT/2 = 〈Ek〉,
where kB is the Boltzmann’s constant (for
the case of one dimension, 1-D). It must
be remembered that this temperature
assignment is absolutely inadequate for
atomic samples that do not have a
Maxwell–Boltzmann velocity distribution,
whether or not they are in thermal contact
with the environment; there are infinitely
many velocity distributions that have the
same value of 〈Ek〉 but are so different
from one another that characterizing them
by the same ‘‘temperature’’ is a severe
error. (In the special case where there
is a true damping force, F ∝ −v, and
where the diffusion in momentum space
is a constant independent of momentum,
solutions of the Fokker–Planck equation
can be found analytically and can lead
to a Maxwell–Boltzmann distribution that
does indeed have a temperature.)

Since laser cooling decreases the tem-
perature of a sample of atoms, there is
less disorder and therefore less entropy.
This seems to conflict with the second law
of thermodynamics, which requires the
entropy of a closed system to always in-
crease with time. The explanation lies in
the consideration of the fact that in laser
cooling, the atoms do not form a closed
system. Instead, there is always a flow of
laser light with low entropy into the sys-
tem and fluorescence with high entropy
out of it. The decrease of entropy of the
atoms is accompanied by a much larger
increase in entropy of the light field. En-
tropy considerations for a laser beam are
far from trivial, but recently it has been
shown that the entropy lost by the atoms
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is many orders of magnitude smaller than
the entropy gained by the light field.

1.2
Phase Space Density

The phase space density ρ(�r, �p, t) is
defined as the probability that a single
particle is in a region d�r around �r and
has momentum d�p around �p at time t.
In classical mechanics, ρ(�r, �p, t) is just the
sum of the ρ(�r, �p, t) values of each of the N
particles in the system divided by N. Since
the phase space density is a probability, it
is always positive and can be normalized
over the six-dimensional volume spanned
by position �r and momentum �p. For a gas
of cold atoms, it is convenient to choose the
elementary volume for ρ(�r, �p, t) to be h̄3,
so it becomes the dimensionless quantity

ρφ = nλ3
deB, (1)

where λdeB is the deBroglie wavelength of
the atoms in the sample and n is their
spatial density.

The Liouville theorem requires that ρφ

cannot be increased by using conservative
forces. For instance, in light optics one
can focus a parallel beam of light with a
lens to a small spot. However, that simply
produces a high density of light rays in the
focus in exchange for the momentum part
of ρφ because the beam entering the lens
is parallel but the light rays are divergent
at the focus.

For classical particles, the same principle
applies. By increasing the strength of the
trapping potential of particles in a trap, one
can increase the density of the atoms in the
trap but at the same time, the compression
of the sample results in a temperature
increase, leaving the phase space density
unchanged.

In order to increase the phase space
density of an atomic sample, it is necessary

to use a force that is not conservative,
such as a velocity-dependent force. In laser
cooling, the force on the atoms can be
a damping force, that is, always directed
opposite to the atomic velocity, so that
the momentum part of ρφ increases. This
process arises from the irreversible nature
of spontaneous emission.

2
Optical Forces on Neutral Atoms

The usual form of electromagnetic forces is
given by �F = q(�E + �v × �B), but for neutral
atoms, q = 0. The next order of force is the
dipole term, but this also vanishes because
neutral atoms have no inherent dipole
moment. However, a dipole moment can
be induced by a field, and this is most
efficient if the field is alternating near the
atomic resonance frequency. Since these
frequencies are typically in the optical
range, dipole moments are efficiently
induced by shining nearly resonant light
on the atoms.

If the light is absorbed, the atom
makes a transition to the excited state,
and the subsequent return to the ground
state can be either by spontaneous or by
stimulated emission. The nature of the
optical force that arises from these two
different processes is quite different and
will be described separately.

The spontaneous emission case is
different from the familiar quantum-
mechanical calculations using state vec-
tors to describe the system. Spontaneous
emission causes the state of the sys-
tem to evolve from a pure state into
a mixed state and so the density ma-
trix is needed to describe it. Sponta-
neous emission is an essential ingredient
for the dissipative nature of the optical
forces.
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2.1
Radiative Optical Forces

In the simplest case–the absorption of
well-directed light from a laser beam–the
momentum exchange between the light
field and the atoms results in a force

�F = d�p
dt

= h̄�kγp, (2)

where γp is the excitation rate of the atoms.
The absorption leaves the atoms in their
excited state, and if the light intensity
is low enough that they are much more
likely to return to the ground state by
spontaneous emission than by stimulated
emission, the resulting fluorescent light
carries off momentum h̄k in a random
direction. The momentum exchange from
the fluorescence averages zero, so the net
total force is given by Eq. (2).

The excitation rate γp depends on the
laser detuning from atomic resonance δ ≡
ωl − ωa, where ωl is the laser frequency
and ωa is the atomic resonance frequency.
This detuning is measured in the atomic
rest frame, and it is necessary that the
Doppler-shifted laser frequency in the rest
frame of the moving atoms be used to
calculate γp. In Sect. 2.3.3, we find that
γp for a two-level atom is given by the
Lorentzian

γp = s0γ /2

1 + s0 + [2(δ + ωD)/γ ]2
, (3)

where γ ≡ 1/τ is an angular frequency
corresponding to the natural decay rate of
the excited state. Here, s0 = I/Is is the ratio
of the light intensity I to the saturation
intensity Is ≡ πhc/3λ3τ , which is a few
mW cm−2 for typical atomic transitions.
The Doppler shift seen by the moving
atoms is ωD = −�k · �v (note that �k opposite
to �v produces a positive Doppler shift for

the atoms). The force is thus velocity-
dependent and the experimenters’ task is
to exploit this dependence to the desired
goal, for example, optical friction for laser
cooling.

The maximum attainable deceleration
is obtained for high intensities of light.
High-intensity light can produce faster ab-
sorption, but it also causes equally fast
stimulated emission; the combination pro-
duces neither deceleration nor cooling.
The momentum transfer to the atoms by
stimulated emission is in the opposite di-
rection to what it was in absorption, result-
ing in a net transfer of zero momentum•.

Q5
At high intensity, Eq. (3) shows saturation
of γp at γ /2, and since the force is given
by Eq. (2), the deceleration saturates at a
value �amax = h̄�kγ /2M.

2.2
Dipole Optical Forces

While detuning •|δ| � γ , spontaneous
Q6

emission may be much less frequent than
stimulated emission, unlike the case of the
dissipative radiative force that is necessary
for laser cooling, given by Eqs. (2) and (3).
In this case, absorption is most often fol-
lowed by stimulated emission, and seems
to produce zero momentum transfer be-
cause the stimulated light has the same
momentum as the exciting light. How-
ever, if the optical field has beams with at
least two different �k-vectors present, such
as in counterpropagating beams, absorp-
tion from one beam followed by stimulated
emission into the other indeed produces a
nonzero momentum exchange. The result
is called the dipole force, and is reversible
and hence conservative, so it cannot be
used for laser cooling.

The dipole force is more easily calculated
from an energy picture than from a
momentum picture. The force then derives
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from the gradient of the potential of an
atom in an inhomogeneous light field,
which is appropriate because the force is
conservative. The potential arises from the
shift of the atomic energy levels in the
light field, appropriately called the ‘‘light
shift”, and is found by direct solution of the
Schrödinger equation for a two-level atom
in a monochromatic plane wave. After
making both the dipole and rotating wave
approximations, the Hamiltonian can be
written as

H = h̄

2

[−2δ �

�∗ 0

]
(4)

where the Rabi frequency is |�| = γ
√

s0/2
for a single traveling laser beam. Solution
of Eq. (4) for its eigenvalues provides
the dressed state energies that are light-
shifted by

ωls =
[√|�|2 + δ2 − δ

]
2

. (5)

For sufficiently large detuning |δ| � |�|,
approximation of Eq. (5) leads to ωls ≈
|�|2/4δ = γ 2s0/8δ.

In a standing wave in 1-D with |δ| � |�|,
the light shift ωls varies sinusoidally from
node to antinode. When δ is sufficiently
large, the spontaneous emission rate
may be negligible compared with that of
stimulated emission, so that h̄ωls may be
treated as a potential U. The resulting
dipole force is

�F = −�∇U = − h̄γ 2

8δIs
�∇I, (6)

where I is the total intensity distribution
of the standing-wave light field of period
λ/2. For such a standing wave, the optical
electric field (and the Rabi frequency) at the
antinodes is double that of each traveling
wave that composes it, and so the total

intensity Imax at the antinodes is four times
that of the single traveling wave.

2.3
Density Matrix Description of Optical
Forces

2.3.1 Introduction
Use of the density matrix ρ for pure states
provides an alternative description to the
more familiar one that uses wave functions
and operators but adds nothing new. Its
equation of motion is ih̄(dρ/dt) = [H, ρ],
and can be derived directly from the
Schrödinger equation. Moreover, it is a
straightforward exercise to show that the
expectation value of any operator A that
represents an observable is 〈A〉 = tr (ρA).

Application of the Ehrenfest theorem
gives the expectation value of the force as
〈F〉 = −tr (ρ∇H). Beginning with the two-
level atom Hamiltonian of Eq. (4), we find
the force in 1-D to be

〈F〉 = h̄

(
∂�

∂z
ρ∗

eg + ∂�∗
∂z

ρeg

)
. (7)

Thus, 〈F〉 depends only on the off-diagonal
elements ρeg = ρ∗

ge, terms that are called
the optical coherences.

2.3.2 Open Systems and the Dissipative
Force
The real value of the density matrix
formalism for atom-light interactions is
its ability to deal with open systems. By
not including the fluorescent light that is
lost from an atom-laser system undergoing
cooling, a serious omission is being made
in the discussion above. That is, the closed
system of atom plus laser light that can be
described by Schrödinger wave functions
and is thus in a pure state, undergoes
evolution to a ‘‘mixed’’ state by virtue of
the spontaneous emission. This omission
can be rectified by simple ad hoc additions
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to the equation of motion, and the result is
called the optical Bloch equations (OBE).
These are written explicitly as

dρgg

dt
= +γρee + i

2
(�∗ρ̃eg − �ρ̃ge)

dρee

dt
= −γρee + i

2
(�ρ̃ge − �∗ρ̃eg)

dρ̃ge

dt
= −

(γ

2
+ iδ

)
ρ̃ge + i

2
�∗(ρee − ρgg)

dρ̃eg

dt
= −

(γ

2
− iδ

)
ρ̃eg + i

2
�(ρgg − ρee),

(8)

where ρ̃eg ≡ ρege−iδt for the coherences.
In these equations, the terms propor-

tional to the spontaneous decay rate γ have
been put in ‘‘by hand”, that is, they have
been introduced into the OBEs to account
for the effects of spontaneous emission.
The spontaneous emission is irreversible
and accounts for the dissipation of the
cooling process. For the ground state, the
decay of the excited state leads to an in-
crease of its population ρgg proportional to
γρee, whereas for the excited state, it leads
to a decrease of ρee, also proportional to

γρee. These equations have to be solved in
order to evaluate the optical force on the
atoms.

2.3.3 Solution of the OBEs in Steady State
In most cases, the laser light is applied
for a period long compared to the typical
evolution times of atom-light interaction,
that is, the lifetime of the excited state τ =
1/γ . Thus, only the steady state solution of
the OBEs have to be considered, and these
are found by setting the time derivatives in
Eq. (8) to zero. Then the probability ρee to
be in the excited state is found to be

ρee = γp

γ
= s0/2

1 + s0 + (2δ/γ )2 = s/2

1 + s
,

(9)

where s ≡ s0/[1 + (2δ/γ )2] is the off-
resonance saturation parameter. The
excited-state population ρee increases lin-
early with the saturation parameter s for
small values of s, but for s of the order of
unity, the probability starts to saturate to a
value of 1/2. The detuning dependence of
γp (see Eq. 3) showing this saturation for
various values of s0 is depicted in Fig. 1.
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Fig. 1 Excitation rate γp as a function of the detuning δ for several
values of the saturation parameter s0. Note that for s0 > 1, the line
profiles start to broaden substantially from power broadening
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2.3.4 Radiative and Dipole Forces
Some insight into these forces emerges
by expressing the gradient of the Rabi
frequency of Eq. (7) in terms of a real
and imaginary part so that (∂�/∂z) =
(qr + iqi)�. Then Eq. (7) becomes

F = h̄qr(�ρ∗
eg + �∗ρeg)

+ ih̄qi(�ρ∗
eg − �∗ρeg) (10)

Thus, the first term of the force is related
to the dispersive part of the atom-light
interaction, whereas the second term is
related to the absorptive part of the atom-
light interaction.

To appreciate the utility of the separation
of ∇� into real and imaginary parts,
consider the interaction of atoms with a
traveling plane wave E(z) = E0(ei(kz−ωt) +
c.c.)/2. In this case, qr = 0 and qi = k, and
so the force is caused only by absorption.
The force is given by Fsp = h̄kγρee and is
the radiative force of Eqs. (2) and (3).

For the case of counterpropagating plane
waves, there is a standing wave whose
electric field is E(z) = E0 cos(kz)(e−iωt +
c.c.). Thus, qr = −k tan(kz) and qi = 0, so
there is only the dispersive part of the
force, given by

Fdip = 2h̄kδs0 sin 2kz

1 + 4s0 cos2 kz + (2δ/γ )2 . (11)

This replaces Eq. (6) for the dipole force
and removes the restriction |δ| � |�|,
thereby including saturation effects. Even
though the average of this force over a
wavelength vanishes, it can be used to
trap atoms in a region smaller than the
wavelength of the light.

2.3.5 Force on Moving Atoms
In order to show how these forces can be
used to cool atoms, one has to consider
the force on moving atoms. For the case of

atomic velocities that are small compared
with γ /k, the motion can be treated as a
small perturbation in the atomic evolution
that occurs on the time scale 1/γ . Then the
first-order result is given by

d�

dt
= ∂�

∂t
+ v

∂�

∂z
= ∂�

∂t
+ v(qr + iqi)�.

(12)

For the case of atoms moving in a standing
wave, this results in the same damping
force as Eq. (13) below.

3
Laser Cooling

3.1
Slowing Atomic Beams

Among the earliest laser cooling exper-
iments was the deceleration of atoms
in a beam [2]. The authors exploited the
Doppler shift to make the momentum
exchange (hence the force) velocity de-
pendent. It worked by directing a laser
beam opposite an atomic beam so that the
atoms could absorb light, and hence mo-
mentum h̄k, very many times along their
paths through the apparatus as shown in
Fig. 2 [2, 3]. Of course, excited-state atoms
cannot absorb light efficiently from the
laser that excited them, so between ab-
sorptions they must return to the ground
state by spontaneous decay, accompanied
by the emission of fluorescent light. The
spatial symmetry of the emitted fluores-
cence results in an average of zero net
momentum transfer from many such fluo-
rescence events. Thus, the net force on the
atoms is in the direction of the laser beam,
and the maximum deceleration is limited
by the spontaneous emission rate γ .

Since the maximum deceleration �amax =
h̄�kγ /2M is fixed by atomic parameters, it is
straightforward to calculate the minimum
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Fig. 2 Schematic diagram of apparatus for beam slowing. The tapered magnetic field is
produced by layers of varying length on the solenoid

stopping length Lmin and time tmin for
the rms velocity of atoms v̄ = 2

√
kBT/M

at the source temperature. The result is
Lmin = v2/2amax and tmin = v/amax. In
Table 1 are some of the parameters for
slowing a few atomic species of interest
from the peak of the thermal velocity
distribution.

Maximizing the scattering rate γp re-
quires δ = −ωD in Eq. (3). If δ is chosen
for a particular atomic velocity in the
beam, then as the atoms slow down, their
changing Doppler shift will take them
out of resonance. They will eventually
cease deceleration after their Doppler shift
has been decreased by a few times the
power-broadened width γ ′ = γ

√
1 + s0,

corresponding to �v of a few times
vc = γ ′/k. Although this �v of a few
m s−1 is considerably larger than the typ-
ical atomic recoil velocity vr = h̄k/M of a
few cm s−1, it is still only a small frac-
tion of the average thermal velocity v of
the atoms, such that significant further
cooling or deceleration cannot be accom-
plished.

Tab. 1 Parameters of interest for slowing
various atoms. The stopping length Lmin and
time tmin are minimum values. The oven
temperature Toven that determines the peak
velocity is chosen to give a vapor pressure of
1 Torr. Special cases are H at 1000 K for
dissociation of H2 into atoms, and He in the
metastable triplet state, for which two rows are
shown: one for a 4-K source and another for the
typical discharge temperature

Atom Toven
(K)

v

(m s−1)
Lmin
(m)

tmin
(ms)

H 1000 5000 0.012 0.005
He* 4 158 0.03 0.34
He* 650 2013 4.4 4.4
Li 1017 2051 1.15 1.12
Na 712 876 0.42 0.96
K 617 626 0.77 2.45
Rb 568 402 0.75 3.72
Cs 544 319 0.93 5.82

In order to achieve deceleration that
changes the atomic speeds by hundreds
of m s−1, it is necessary to maintain
(δ + ωD)  γ by compensating such large
changes of the Doppler shift. This can be
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done by changing ωD through the angular
dependence of �k · �v, or changing δ either
via ωl or ωa. The two most common
methods for maintaining this resonance
are sweeping the laser frequency ωl
along with the changing ωD of the
decelerating atoms [4–6], or by spatially
varying the atomic resonance frequency
with an inhomogeneous d.c magnetic
field to keep the decelerating atoms
in resonance with the fixed frequency
laser [2, 3, 7].

The use of a spatially varying magnetic
field to tune the atomic levels along the
beam path was the first method to succeed
in slowing atoms [2, 3]. It works as long
as the Zeeman shifts of the ground and
excited states are different so that the
resonant frequency is shifted. The field
can be tailored to provide the appropriate
Doppler shift along the moving atom’s
path. A solenoid that can produce such
a spatially varying field has layers of
decreasing lengths. The technical problem
of extracting the beam of slow atoms from
the end of the solenoid can be simplified by
reversing the field gradient and choosing a
transition whose frequency decreases with
increasing field [9].

For alkali atoms such as sodium, a
time-of-flight (TOF) method can be used
to measure the velocity distribution of
atoms in the beam [8]. It employs two
additional beams labeled pump and probe
from Laser 1 as shown in Fig. 2. Because
these beams cross the atomic beam at 90◦,
ωD = −�k · �v = 0, and they excite atoms at
all velocities. The pump beam is tuned
to excite and empty a selected ground
hyperfine state (hfs), and it transfers
more than 98% of the population as the
atoms pass through its 0.5 mm width.
To measure the velocity distribution of
atoms in the selected hfs, this pump
laser beam is interrupted for a period of

�t = 10 − 50 µs with an acoustic optical
modulator (AOM). A pulse of atoms in
the selected hfs passes the pump region
and travels to the probe beam. The time
dependence of the fluorescence induced
by the probe laser, tuned to excite the
selected hfs, gives the time of arrival, and
this signal is readily converted to a velocity
distribution. Figure 3 shows the measured
velocity distribution of the atoms slowed
by Laser 2.

3.2
Optical Molasses

3.2.1 Doppler Cooling
A different kind of radiative force arises
in low intensity, counterpropagating light
beams that form a weak standing wave. It
is straightforward to calculate the radiative
force on atoms moving in such a standing
wave using Eq. (3). In the low intensity
case where stimulated emission is not
important, the forces from the two light
beams are simply added to give �FOM =

125 130 135 140 145 150 155
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Fig. 3 The velocity distribution measured with
the TOF method. The experimental width of
approximately 1

6 (γ /k) is shown by the dashed
vertical lines between the arrows. The Gaussian
fit through the data yields an FWHM• of

Q7
2.97 m s−1 (figure taken from Molenaar, P. A.,
vander Straten, P., Heideman, H. G. M.,
Metcalf, H. (1997), Phys. Rev. A 55, 605–614)
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�F+ + �F−, where �F± are found from Eqs. (2)
and (3). Then the sum of the two forces is

�FOM ∼= 8h̄k2δs0�v
γ (1 + s0 + (2δ/γ )2)2 ≡ −β�v,

(13)

where terms of order (kv/γ )4 and higher
have been neglected. The force is pro-
portional to velocity for small enough
velocities, resulting in viscous damping
for δ < 0 [10, 11] that gives this technique
the name ‘‘optical molasses’’ (OM).

These forces are plotted in Fig. 4. For
δ < 0, this force opposes the velocity
and therefore viscously damps the atomic
motion. The force �FOM has maxima near
v ≈ ±γ

√
s0 + 1/2k and decreases rapidly

for larger velocities.

3.2.2 Doppler Cooling Limit
If there were no other influence on the
atomic motion, all atoms would quickly
decelerate to v = 0 and the sample would
reach T = 0, a clearly unphysical result. In

laser cooling and related aspects of optical
control of atomic motion, the forces arise
because of the exchange of momentum
between the atoms and the laser field.
These necessarily discrete steps of size h̄k
constitute a heating mechanism that must
be considered.

Since the atomic momentum changes
by h̄k, their kinetic energy changes on
an average by at least the recoil energy
Er = h̄2k2/2M = h̄ωr. This means that the
average frequency of each absorption is
at least ωabs = ωa + ωr. Similarly, the en-
ergy h̄ωa available from each spontaneous
decay must be shared between the out-
going light and the kinetic energy of
the atom recoiling with momentum h̄k.
Thus, the average frequency of each emis-
sion is ωemit = ωa − ωr. Therefore, the
light field loses an average energy of
h̄(ωabs − ωemit) = 2h̄ωr for each scatter-
ing event. This loss occurs at a rate of 2γp

(two beams), and the energy is converted
to atomic kinetic energy because the atoms

–4 –2 0 2 4
– 0.4

– 0.2

0.0

0.2

0.4

Velocity (g /k)

F
or

ce
 (

hk
g
)

Fig. 4 Velocity dependence of the optical damping forces for 1-D
optical molasses. The two dotted traces show the force from each
beam, and the solid curve is their sum. The straight line shows
how this force mimics a pure damping force over a restricted
velocity range. These are calculated for s0 = 2 and δ = −γ , so
there is some power broadening evident
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recoil from each event. The atomic sample
is thereby heated because these recoils are
in random directions.

The competition between this heating
and the damping force of Eq. (13) results
in a nonzero kinetic energy in steady state,
where the rates of heating and cooling are
equal. Equating the cooling rate, �FOM · �v, to
the heating rate, 4h̄ωrγp, we find the steady
state kinetic energy to be (h̄γ /8)(2|δ|/γ +
γ /2|δ|). This result is dependent on
|δ|, and has a minimum at 2|δ|/γ = 1,
whence δ = −γ /2. The temperature found
from the kinetic energy is then TD =
h̄γ /2kB, where TD is called the Doppler
temperature or the Doppler cooling limit.
For ordinary atomic transitions, TD is
typically below 1 mK.

Another instructive way to determine
TD is to note that the average momentum
transfer of many spontaneous emissions
is zero, but the rms scatter of these
about zero is finite. One can imagine
these decays as causing a random walk
in momentum space, similar to Brownian
motion in real space, with step size h̄k

and step frequency 2γp, where the factor
of 2 arises because of the two beams. The
random walk results in an evolution of
the momentum distribution as described
by the Fokker–Planck equation, and can
be used for a more formal treatment of
laser cooling. It results in diffusion in
momentum space with diffusion coeffi-
cient D0 ≡ 2(�p)2/�t = 4γp(h̄k)2. Then
the steady state temperature is given by
kBT = D0/β. This turns out to be h̄γ /2 as
above for the case s0  1 when δ = −γ /2.
This remarkable result predicts that the
final temperature of atoms in OM is inde-
pendent of the optical wavelength, atomic
mass, and laser intensity (as long as it is
not too large).

3.2.3 Atomic Beam
Collimation – One-dimensional Optical
Molasses – Beam Brightening
When an atomic beam crosses a 1-D OM
as shown in Fig. 5, the transverse motion
of the atoms is quickly damped while
the longitudinal component is essentially
unchanged. This transverse cooling of

Optical
molasses

Optical
molasses

Laser or
magnetic lens

Very bright
atomic beam

Oven

Fig. 5 Scheme for optical brightening of an atomic beam. First,
the transverse velocity components of the atoms are damped out
by an optical molasses, then the atoms are focused to a spot,
and finally the atoms are recollimated in a second optical
molasses (figure taken from Sheehy, B., Shang, S. Q., vander
Straten, P., Metcalf, H. (1990), Chem. Phys. 145, 317–325)
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an atomic beam is an example of a
method that can actually increase its
brightness (atoms/s-sr-cm2) because such
active collimation uses dissipative forces
to compress the phase space volume
occupied by the atoms. By contrast, the
usual focusing or collimation techniques
for light beams and most particle beams
is restricted to selection by apertures or
conservative forces that preserve the phase
space density of atoms in the beam.

This velocity compression at low in-
tensity in one dimension can be easily
estimated for two-level atoms to be about
vc/vD = √

γ /ωr ≡ √
1/ε. Here vD is the

velocity associated with the Doppler limit
for laser cooling discussed above: vD =√

h̄γ /2M. For Rb, vD = 12 cm s−1, vc =
γ /k � 4.6 m s−1, ωr � 2π × 3.8 kHz, and
1/ε � 1600. (The parameter ε charac-
terizes optical forces on atoms.) In-
cluding two transverse directions along
with the longitudinal slowing and cool-
ing discussed above, the decrease in
three-dimensional 3-D phase space vol-
ume for laser cooling of an Rb atomic
beam from the momentum contribution
alone •can exceed 106. Clearly optical

Q8
techniques can create atomic beams enor-
mously more times intense than ordinary
thermal beams and also many orders of
magnitude brighter.

3.2.4 Experiments in Three-dimensional
Optical Molasses
By using three intersecting orthogonal
pairs of oppositely directed beams, the
movement of atoms in the intersection
region can be severely restricted in all 3-D,
and many atoms can thereby be collected
and cooled in a small volume.

Even though atoms can be collected
and cooled in the intersection region, it
is important to stress that this is not a
trap (see Sect. 4 below), that is, atoms that

wander away from the center experience
no force directing them back. They are
allowed to diffuse freely and even escape,
as long as there is enough time for
their very slow diffusive movement to
allow them to reach the edge of the
region of intersection of the laser beams.
Since the atomic velocities are randomized
during the damping time M/β = 2/ωr,
atoms execute a random walk in position
space with a step size of 2vD/ωr =
λ/(π

√
2ε) ∼= few µm. To diffuse a distance

of 1 cm requires about 107 steps or about
30 s [13, 14].

In 1985, the group at Bell Labs was the
first to observe 3-D OM [11]. Preliminary
measurements of the average kinetic en-
ergy of the atoms were done by blinking
off the laser beams for a fixed interval.
Comparison of the brightness of the fluo-
rescence before and after the turnoff was
used to calculate the fraction of atoms that
left the region while it was in the dark.
The dependence of this fraction on the
duration of the dark interval was used to es-
timate the velocity distribution and hence
the temperature. This method, which is
usually referred to as release and recapture,
is specifically designed to measure the tem-
perature of the atoms, since the usual way
of measuring temperatures cannot be ap-
plied to an atomic cloud of a few million
atoms. The result was consistent with TD
as calculated from the Doppler theory, as
described in Sect. 3.2.2.

Later a more sensitive ballistic technique
was devised at NIST that showed the
astounding result that the temperature of
the atoms in OM was very much lower than
TD [15]. These experiments also found that
OM was less sensitive to perturbations
and more tolerant of alignment errors
than was predicted by Doppler theory.
For example, if the intensities of the two
counterpropagating laser beams forming
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an OM were unequal, then the force
on the atoms at rest would not vanish,
but the force on the atoms with some
nonzero drift velocity would vanish. This
drift velocity can be easily calculated by
using unequal intensities s0+ and s0−,
to derive an analog of Eq. (13). Thus,
atoms would drift out of an OM, and the
calculated rate would be much faster than
observed by deliberately unbalancing the
beams in the experiments [16].

3.3
Cooling Below the Doppler Limit

3.3.1 Introduction
It was an enormous surprise to observe
that the ballistically measured temperature
of the Na atoms was as much as 10
times lower than TD = 240 µK [15], the
temperature minimum calculated from
theory. This breaching of the Doppler limit
forced the development of an entirely new
picture of OM that accounts for the fact
that in 3-D, a two-level picture of atomic
structure is inadequate. The multilevel
structure of atomic states, and optical
pumping among these sublevels, must be
considered in the description of 3-D OM.

In response to these surprising mea-
surements of temperatures below TD, two
groups developed a model of laser cooling
that could explain the lower tempera-
tures [17, 18]. The key feature of this model
that distinguishes it from the earlier pic-
ture is the inclusion of the multiplicity of
sublevels that make up an atomic state
(e.g., Zeeman and hfs). The dynamics
of optically pumping the moving atoms
among these sublevels provides the new
mechanism for producing ultralow tem-
peratures [19].

The dominant feature of these models
is the nonadiabatic response of moving
atoms to the light field. Atoms at rest in a

steady state have ground-state orientations
caused by optical pumping processes that
distribute the populations over the differ-
ent ground-state sublevels. In the presence
of polarization gradients, these orienta-
tions reflect the local light field. In the
low-light-intensity regime, the orientation
of stationary atoms is completely deter-
mined by the ground-state distribution;
the optical coherences and the excited-
state population follow the ground-state
distribution adiabatically.

For atoms moving in a light field
that varies in space, optical pumping
acts to adjust the atomic orientation
to the changing conditions of the light
field. In a weak pumping process, the
orientation of moving atoms always lags
behind the orientation that would exist for
stationary atoms. It is this phenomenon of
nonadiabatic following that is the essential
feature of the new cooling process.

Production of spatially dependent optical
pumping processes can be achieved in
several different ways. As an example,
consider two counterpropagating laser
beams that have orthogonal polarizations,
as discussed below. The superposition of
the two beams results in a light field
having a polarization that varies on the
wavelength scale along the direction of the
laser beams. Laser cooling by such a light
field is called polarization gradient cooling.
In a 3-D OM, the transverse wave character
of light requires that the light field always
has polarization gradients.

3.3.2 Linear ⊥ Linear Polarization
Gradient Cooling
One of the most instructive models for
discussion of sub-Doppler laser cooling
was introduced in Ref. [17] and very well
described in Ref. [19]. If the polarizations
of two counterpropagating laser beams
are identical, the two beams interfere
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and produce a standing wave. When
the two beams have orthogonal linear
polarizations (same frequency ωl) with
their Ê vectors perpendicular (e.g., x̂ and
ŷ), the configuration is called lin ⊥ lin
or lin-perp-lin. Then the total field is the
sum of the two counterpropagating beams
given by

�E = E0 x̂ cos(ωlt − kz) + E0ŷ cos(ωlt + kz)

= E0[(x̂ + ŷ) cos ωlt cos kz

+ (x̂ − ŷ) sin ωlt sin kz]. (14)

At the origin, where z = 0, this becomes

�E = E0(x̂ + ŷ) cos ωlt, (15)

which corresponds to linearly polarized
light at an angle +π/4 to the x-axis. The
amplitude of this field is

√
2E0. Similarly,

for z = λ/4, where kz = π/2, the field is
also linearly polarized but at an angle −π/4
to the x-axis.

Between these two points, at z = λ/8,
where kz = π/4, the total field is

�E = E0

[
x̂ sin

(
ωlt + π

4

)

− ŷ cos
(
ωlt + π

4

)]
. (16)

Since the x̂ and ŷ components have
sine and cosine temporal dependence,
they are π/2 out of phase, and so
Eq. (16) represents circularly polarized
light rotating about the z-axis in the
negative sense. Similarly, at z = 3λ/8
where kz = 3π/4, the polarization is
circular but in the positive sense. Thus,
in this lin ⊥ lin scheme the polarization
cycles from linear to circular to orthogonal
linear to opposite circular in the space of
only half a wavelength of light, as shown in
Fig. 6. It truly has a very strong polarization
gradient.

l/2

py

px

l/2

0

0 l/4

s−

s +
k1
→

k2
→

Fig. 6 Polarization gradient field for the lin ⊥ lin
configuration

Since the coupling of the different states
of multilevel atoms to the light field de-
pends on its polarization, atoms moving
in a polarization gradient will be coupled
differently at different positions, and this
will have important consequences for laser
cooling. For the Jg = 1/2 → Je = 3/2 tran-
sition (one of the simplest transitions that
show sub-Doppler cooling [20]), the opti-
cal pumping process in purely σ+ light
drives the ground-state population to the
Mg = +1/2 sublevel. This optical pump-
ing occurs because absorption always
produces �M = +1 transitions, whereas
the subsequent spontaneous emission pro-
duces �M = ±1, 0. Thus, the average
�M ≥ 0 for each scattering event. For σ−-
light, the population is pumped toward the
Mg = −1/2 sublevel. Thus, atoms trav-
eling through only a half wavelength in
the light field, need to readjust their pop-
ulation completely from Mg = +1/2 to
Mg = −1/2 and back again.

The interaction between nearly resonant
light and atoms not only drives transitions
between atomic energy levels but also
shifts their energies. This light shift of
the atomic energy levels, discussed in
Sect. 2.2, plays a crucial role in this scheme
of sub-Doppler cooling, and the changing
polarization has a strong influence on the
light shifts. In the low-intensity limit of
two laser beams, each of intensity s0Is, the
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light shifts �Eg of the ground magnetic
substates are given by a slight variation of
the approximation to Eq. (5) that accounts
for the multilevel structure of the atoms.
We write

�Eg = h̄s0C2
geγ

2

8δ
, (17)

where Cge is the Clebsch–Gordan coeffi-
cient that describes the coupling between
the particular levels of the atom and the
light field.

In the present case of orthogonal linear
polarizations and J = 1/2 → 3/2, the light
shift for the magnetic substate Mg = 1/2
is three times larger than that of the
Mg = −1/2 substate when the light field is
completely σ+. On the other hand, when
an atom moves to a place where the light
field is σ−, the shift of Mg = −1/2 is
three times larger. So, in this case, the
optical pumping discussed above causes
a larger population to be there •in the

Q9
state with the larger light shift. This is
generally true for any transition Jg →
Je = Jg + 1. A schematic diagram showing
the populations and light shifts for this
particular case of negative detuning is
illustrated in Fig. 7.

3.3.3 Origin of the Damping Force
To discuss the origin of the cooling process
in this polarization gradient scheme,
consider atoms with a velocity v at a
position where the light is σ+-polarized, as
shown at the lower left of Fig. 7. The light
optically pumps such atoms to the strongly
negative light-shifted Mg = +1/2 state. In
moving through the light field, atoms must
increase their potential energy (climb a
hill) because the polarization of the light is
changing and the state Mg = 1/2 becomes
less strongly coupled to the light field. After
traveling a distance λ/4, atoms arrive at

0 λ /4 λ /2 3λ /4

Position (z)

 

0

E
ne

rg
y

M = +1/2

M = −1/2

Fig. 7 The spatial dependence of the light shifts
of the ground-state sublevels of the
J = 1/2 ⇔ 3/2 transition for the case of lin ⊥ lin
polarization configuration. The arrows show the
path followed by atoms being cooled in this
arrangement. Atoms starting at z = 0 in the
Mg = +1/2 sublevel must climb the potential
hill as they approach the z = λ/4 point where the
light becomes σ− polarized, and they are
optically pumped to the Mg = −1/2 sublevel.
Then they must begin climbing another hill
toward the z = λ/2 point where the light is σ+
polarized and they are optically pumped back to
the Mg = +1/2 sublevel. The process repeats
until the atomic kinetic energy is too small to
climb the next hill. Each optical pumping event
results in the absorption of light at a frequency
lower than emission, thus dissipating energy to
the radiation field

a position where the light field is σ−-
polarized, and are optically pumped to
Mg = −1/2, which is now lower than the
Mg = 1/2 state. Again, the moving atoms
are at the bottom of a hill and start to
climb. In climbing the hills, the kinetic
energy is converted to potential energy,
and in the optical pumping process, the
potential energy is radiated away because
the spontaneous emission is at a higher
frequency than the absorption (see Fig. 7).
Thus, atoms seem to be always climbing
hills and losing energy in the process.
This process brings to mind a Greek
myth, and is thus called ‘‘Sisyphus laser
cooling’’.



OE005

Laser Cooling and Trapping of Neutral Atoms 17

The cooling process described above is
effective over a limited range of atomic
velocities. The force is maximum for
atoms that undergo one optical pumping
process while traveling over a distance λ/4.
Slower atoms will not reach the hilltop
before the pumping process occurs and
faster atoms will travel a longer distance
before being pumped toward the other
sublevel, so �E/�z is smaller. In both
cases, the energy loss is smaller and
therefore the cooling process less efficient.
Nevertheless, the damping constant β

for this process is much larger than for
Doppler cooling, and therefore the final
steady state temperature is lower [17, 19].

In the experiments of Ref. [21], the
temperature was measured in a 3-D
molasses under various configurations
of the polarization. Temperatures were
measured by a ballistic technique, in which
the flight time of the released atoms was
measured as they fell through a probe
a few centimeters below the molasses
region. The lowest temperature obtained
was 3 µK, which is a factor 40 below the
Doppler temperature and a factor 15 above
the recoil temperature of Cs.

3.3.4 The Limits of Sisyphus Laser Cooling
The extension of the kind of thinking
about cooling limits in the case of Doppler
cooling to the case of the sub-Doppler
processes must be done with some care,
because a naive application of similar
ideas would lead to an arbitrarily low
final temperature. In the derivation in
Sect. 3.2.2, it is explicitly assumed that
each scattering event changes the atomic
momentum p by an amount that is a small
fraction of p and this clearly fails when
the velocity is reduced to the region of
vr ≡ h̄k/M.

This limitation of the minimum steady
state value of the average kinetic energy to

a few times Er ≡ kBTr/2 = Mv2
r /2 is intu-

itively comforting for two reasons. First,
one might expect that the last spontaneous
emission in a cooling process would leave
atoms with a residual momentum of the
order of h̄k, since there is no control over
its direction. Thus, the randomness asso-
ciated with this would put a lower limit
of vmin ∼ vr on such cooling. Second, the
polarization gradient cooling mechanism
described above requires that atoms be
localizable within the scale of ∼ λ/2π in
order to be subject to only a single polariza-
tion in the spatially inhomogeneous light
field. The uncertainty principle then re-
quires that these atoms have a momentum
spread of at least h̄k.

The recoil limit discussed here has
been surpassed by evaporative cooling
of trapped atoms [22] and two different
optical cooling methods, neither of which
can be described in simple notions. One of
these uses optical pumping into a velocity-
selective dark state [23]. The other one
uses carefully chosen, counterpropagating,
laser pulses to induce velocity-selective
Raman transitions, and is called Raman
cooling [24].

4
Traps for Neutral Atoms

In order to confine any object, it is
necessary to exchange kinetic for poten-
tial energy in the trapping field, and in
neutral atom traps, the potential energy
must be stored as internal atomic energy.
Thus, practical traps for ground-state neu-
tral atoms are necessarily very shallow
compared with thermal energy because
the energy-level shifts that result from
convenient size fields are typically con-
siderably smaller than kBT for T = 1 K.
Neutral atom trapping therefore depends



OE005

18 Laser Cooling and Trapping of Neutral Atoms

on substantial cooling of a thermal atomic
sample, and is often connected with the
cooling process. In most practical cases,
atoms are loaded from magneto-optical
traps (MOTs) in which they have been
efficiently accumulated and cooled to mK
temperatures (see Sect. 4.3), or from op-
tical molasses, in which they have been
optically cooled to µK temperatures (see
Sect. 3.2).

The small depth of typical neutral
atom traps dictates stringent vacuum
requirements because an atom cannot
remain trapped after a collision with a
thermal energy background gas molecule.
Since these atoms are vulnerable targets
for thermal energy background gas, the
mean free time between collisions must
exceed the desired trapping time. The
cross section for destructive collisions is
quite large because even a gentle collision
(i.e., large impact parameter) can impart
enough energy to eject an atom from a
trap. At pressure P sufficiently low to be
of practical interest, the trapping time is ∼
(10−8/P) s, where P is in Torr.

4.1
Dipole Force Optical Traps

4.1.1 Single-beam Optical Traps for
Two-level Atoms
The simplest imaginable optical trap con-
sists of a single, strongly focused Gaussian
laser beam (see Fig. 8) [25, 26] whose in-
tensity at the focus varies transversely with
r as

I(r) = I0e−2r2/w2
0 , (18)

Laser

2w0

Fig. 8 A single focused laser beam produces
the simplest type of optical trap

where w0 is the beam waist size. Such
a trap has a well-studied and important
macroscopic classical analog in a phe-
nomenon called optical tweezers [27–29].

With the laser light tuned below reso-
nance (δ < 0), the ground-state light shift
is negative everywhere, but largest at
the center of the Gaussian beam waist.
Ground-state atoms, therefore, experience
a force attracting them toward this cen-
ter, given by the gradient of the light
shift, which is found from Eq. (5), and for
δ/γ � s0 is given by Eq. (6). For the Gaus-
sian beam, this transverse force at the waist
is harmonic for small r and is given by

F � h̄γ 2

4δ

I0

Is

r

w2
0

e−2r2/w2
0 . (19)

In the longitudinal direction, there is
also an attractive force but it is more
complicated and depends on the details
of the focusing. Thus, this trap produces
an attractive force on the atoms in three
dimensions.

Although it may appear that the trap does
not confine atoms longitudinally because
of the radiation pressure along the laser
beam direction, careful choice of the laser
parameters can indeed produce trapping
in 3-D. This can be accomplished because
the radiation pressure force decreases as
1/δ2 (see Eqs. 2 and 3), but by contrast,
the light shift and hence the dipole force
decreases only as 1/δ for δ � � (see
Eq. 5). If |δ| is chosen to be sufficiently
large, atoms spend very little time in
the untrapped (actually repelled), excited
state because its population is proportional
to 1/δ2. Thus, a sufficiently large value
of |δ| produces longitudinal confinement
and also maintains the atomic population
primarily in the trapped ground state.

The first optical trap was demonstrated
in Na with light detuned below the D-
lines [26]. With 220 mW of dye laser light
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tuned about 650 GHz below the atomic
transition and focused to an ∼10 µm
waist, the trap depth was about 15h̄γ

corresponding to 7 mK.
Single-beam dipole force traps can

be made with the light detuned by a
significant fraction of its frequency from
the atomic transition. Such a far-off-
resonance trap (FORT) has been developed
for Rb atoms using light detuned by nearly
10% to the red of the D1 transition at
λ = 795 nm [30]. Between 0.5 and 1 W of
power was focused to a spot about 10 µm in
size, resulting in a trap 6 mK deep where
the light-scattering rate was only a few
hundreds per second. The trap lifetime
was more than half a second.

There is a qualitative difference when the
trapping light is detuned by a large frac-
tion of the optical frequency. In one such
case, Nd : YAG light at λ = 1064 nm was
used to trap Na whose nearest transition
is at λ = 596 nm [31]. In a more extreme
case, a trap using λ = 10.6 µm light from
a CO2 laser has been used to trap Cs
whose optical transition is at a frequency
∼12 times higher (λ = 852 nm) [32]. For
such large values of |δ|, calculations of
the trapping force cannot exploit the rotat-
ing wave approximations as was done for
Eqs. (4) and (5), and the atomic behavior is
similar to that in a DC field. It is impor-
tant to remember that for an electrostatic
trap Earnshaw’s theorem precludes a field
maximum, but that in this case there is in-
deed a local 3-D intensity maximum of the
focused light because it is not a static field.

4.1.2 Blue-detuned Optical Traps
One of the principal disadvantages of the
optical traps discussed above is that the
negative detuning attracts atoms to the
region of highest light intensity. This may
result in significant spontaneous emission
unless the detuning is a large fraction of

the optical frequency such as the Nd : YAG
laser trap [31] or the CO2 laser trap [32].
More important in some cases is that the
trap relies on Stark shifting of the atomic
energy levels by an amount equal to the
trap depth, and this severely compromises
the capabilities for precision spectroscopy
in a trap [33].

Attracting atoms to the region of low-
est intensity would ameliorate both these
concerns, but such a trap requires positive
detuning (blue), and an optical configu-
ration having a dark central region. One
of the first experimental efforts at a blue
detuned trap used the repulsive dipole
force to support Na atoms that were oth-
erwise confined by gravity in an optical
‘‘cup’’ [34]. Two rather flat, parallel beams
detuned by 25% of the atomic resonance
frequency were directed horizontally and
oriented to form a V-shaped trough. Their
Gaussian beam waists formed a region
�1 mm long where the potential was deep-
est, and hence provided confinement along
their propagation direction as shown in
Fig. 9. The beams were the λ = 514 nm
and λ = 488 nm from an argon laser, and
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Fig. 9 The light intensity experienced by an
atom located in a plane 30 µm above the beam
waists of two quasi-focused sheets of light
traveling parallel and arranged to form a
V-shaped trough. The x and y dimensions are in
µm (figure taken from Davidson, N., Lee, H. J.,
Adams, C. S., Kasevich, M., Chu, S. (1995), Phys.
Rev. Lett. 74, 1311–1314)
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the choice of the two frequencies was not
simply to exploit the full power of the mul-
tiline Ar laser, but also to avoid the spatial
interference that would result from the use
of a single frequency.

Obviously, a hollow laser beam would
also satisfy the requirement for a blue-
detuned trap, but conventional textbook
wisdom shows that such a beam is not
an eigenmode of a laser resonator [35].
Some lasers can make hollow beams,
but these are illusions because they
consist of rapid oscillations between the
TEM01 and TEM10 modes of the cavity.
Nevertheless, Maxwell’s equations permit
the propagation of such beams, and
in the recent past there have been
studies of the LaGuerre–Gaussian modes
that constitute them [36–38]. The several
ways of generating such hollow beams
have been tried by many experimental
groups and include phase and amplitude
holograms, hollow waveguides, axicons or
related cylindrical prisms, stressing fibers,
and simply mixing the TEM01 and TEM10

modes with appropriate cylindrical lenses.
An interesting experiment has been per-

formed using the ideas of Sisyphus cooling
(see Sect. 3.3.3•) with evanescent waves

Q10
combined with a hollow beam formed
with an axicon [39]. In the previously re-
ported experiments with atoms bouncing
under gravity from an evanescent wave
field [40, 41], they were usually lost to
horizontal motion for several reasons, in-
cluding slight tilting of the surface, surface
roughness, horizontal motion associated
with their residual motion, and horizon-
tal ejection by the Gaussian profile of the
evanescent wave laser beam. The authors
of Ref. [39] simply confined their atoms
in the horizontal direction by surround-
ing them with a wall of blue-detuned
light in the form of a vertical hollow
beam. Their gravito-optical surface trap

cooled Cs atoms to �3 µK at a density
of �3 × 1010/cm3 in a sample whose 1/e
height in the gravitational field was only
19 µm. Simple ballistics gives a frequency
of 450 bounces per second, and the �6-s
lifetime (limited only by background gas
collisions) corresponds to several thousand
bounces. However, at such low energies,
the deBroglie wavelength of the atoms is
�1/4 µm, and the atomic motion is no
longer accurately described classically, but
requires deBroglie wave methods.

4.2
Magnetic Traps

4.2.1 Introduction
Magnetic trapping of neutral atoms is
well suited for use in very many areas,
including high-resolution spectroscopy,
collision studies, Bose–Einstein conden-
sation (BEC), and atom optics. Although
ion trapping, laser cooling of trapped ions,
and trapped ion spectroscopy were known
for many years [42], it was only in 1985
that neutral atoms were first trapped [43].
Such experiments offer the capability of
the spectroscopic ideal of an isolated atom
at rest, in the dark, available for interaction
with electromagnetic field probes.

Because trapping requires the exchange
of kinetic energy for potential energy, the
atomic energy levels will necessarily shift
as the atoms move in the trap. These
shifts can severely affect the precision of
spectroscopic measurements. Since one
of the potential applications of trapped
atoms is in high-resolution spectroscopy,
such inevitable shifts must be carefully
considered.

4.2.2 Magnetic Confinement
The Stern–Gerlach experiment in 1924
first demonstrated the mechanical action
of inhomogeneous magnetic fields on
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neutral atoms having magnetic moments,
and the basic phenomenon was subse-
quently developed and refined. An atom
with a magnetic moment �µ can be con-
fined by an inhomogeneous magnetic field
because of an interaction between the mo-
ment and the field. This produces a force
given by

�F = �∇(�µ · �B) (20)

since E = −�µ · �B. Several different mag-
netic traps with varying geometries that
exploit the force of Eq. (20) have been
studied in some detail in the literature.
The general features of the magnetic fields
of a large class of possible traps has been
presented [44].

W. Paul originally suggested a quadru-
pole trap composed of two identical coils
carrying opposite currents (see Fig. 10).
This trap clearly has a single center in
which the field is zero, and is the simplest
of all possible magnetic traps. When the
coils are separated by 1.25 times their
radius, such a trap has equal depth in the
radial (x-y plane) and longitudinal (z-axis)

I

I

Fig. 10 Schematic diagram of the coil
configuration used in the quadrupole trap and
the resultant magnetic field lines. Because the
currents in the two coils are in opposite
directions, there is a |�B| = 0 point at the center

directions [44]. Its experimental simplicity
makes it most attractive, both because of
ease of construction and of optical access
to the interior. Such a trap was used in the
first neutral atom trapping experiments at
NIST on laser-cooled Na atoms for times
exceeding 1 s, and that time was limited
only by background gas pressure [43].

The magnitude of the field is zero at
the center of this trap, and increases in all
directions as

B = ∇B
√

ρ2 + 4z2, (21)

where ρ2 ≡ x2 + y2 and the field gradient
is constant (see Ref. [44]). The field gradi-
ent is constant along any line through the
origin, but has different values in differ-
ent polar directions because of the ‘4’ in
Eq. (21). Therefore, the force of Eq. (20)
that confines the atoms in the trap is
neither harmonic nor central, and orbital
angular momentum is not conserved.

The requisite field for the quadrupole
trap can also be provided in two dimen-
sions by four straight currents as indicated
in Fig. 11. The field is translationally in-
variant along the direction parallel to the
currents, so a trap cannot be made this
way without additional fields. These are
provided by end coils that close the trap, as
shown.

Although there are very many different
kinds of magnetic traps for neutral parti-
cles, this particular one has played a special

II
+

−

−

+

Fig. 11 The Ioffe trap has four straight current
elements that form a linear quadrupole field. The
axial confinement is accomplished with end coils
as shown. These fields can be achieved with
many different current configurations as long as
the geometry is preserved
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role. There are certain conditions required
for trapped atoms not to be ejected in a
region of zero field such as occurs at the
center of a quadrupole trap (see Sects. 4.2.3
and 4.2.4). This problem is not easily cured;
the Ioffe trap has been used in many of the
BEC experiments because it has |�B| �= 0
everywhere.

4.2.3 Classical Motion of Atoms in a
Quadrupole Trap
Because of the dependence of the trapping
force on the angle between the field
and the atomic moment (see Eq. 20), the
orientation of the magnetic moment with
respect to the field must be preserved
as the atoms move about in the trap.
Otherwise, the atoms may be ejected
instead of being confined by the fields
of the trap. This requires velocities low
enough to ensure that the interaction
between the atomic moment �µ and the
field �B is adiabatic especially when the
atom’s path passes through a region
where the field magnitude is small and
therefore the energy separation between
the trapping and nontrapping states is
small. This is especially critical at the
low temperatures of the BEC experiments.
Therefore energy considerations that focus
only on the trap depth are not sufficient
to determine the stability of a neutral
atom trap; orbit and/or quantum state
calculations and their consequences must
also be considered.

For the two-coil quadrupole magnetic
trap of Fig. 10, stable circular orbits of
radius ρ1 in the z = 0 plane can be found
classically by setting µ∇B = Mv2/ρ1, so
that v = √

ρ1a, where a ≡ µ∇B/M is
the centripetal acceleration supplied by
the field gradient (cylindrical coordinates
are appropriate). Such orbits have an
angular frequency of ωT = √

a/ρ1. For
traps of a few centimeter size and a few

hundred Gauss depth, a ∼ 250 m s−2, and
the fastest trappable atoms in circular
orbits have vmax ∼ 1 m s−1 so ωT/2π ∼
20 Hz. Because of the anharmonicity
of the potential, the orbital frequencies
depend on the orbit size, but in general,
atoms in lower-energy orbits have higher
frequencies.

For the quadrupole trap to work, the
atomic magnetic moments must be ori-
ented with �µ · �B < 0 so that they are
repelled from regions of strong fields.
This orientation must be preserved while
the atoms move around in the trap even
though the trap fields change directions
in a very complicated way. The condi-
tion for adiabatic motion can be written
as ωZ � |dB/dt|/B, where ωZ = µB/h̄ is
the Larmor precession rate in the field.

Since v/ρ1 = v∇B/B = |dB/dt|/B for a
uniform field gradient, the adiabaticity
condition is

ωZ � ωT . (22)

More general orbits must satisfy a simi-
lar condition. For the two-coil quadrupole
trap, the adiabaticity condition can be eas-
ily calculated. Using v = √

ρ1a for circular
orbits in the z = 0 plane, the adiabatic con-
dition for a practical trap (∇B ∼ 1 T/m) re-
quires ρ1 � (h̄2/M2a)1/3 ∼ 1 µm as well
as v � (h̄a/M)1/3 ∼ 1 cm s−1. Note that
violation of these conditions (i.e., v ∼
1 cm s−1 in a trap with ∇B ∼ 1 T/m) re-
sults in the onset of quantum dynamics for
the motion (deBroglie wavelength ≈ orbit
size).

Since the nonadiabatic region of the trap
is so small (less than 10−18 m3 compared
with typical sizes of ∼2 cm, corresponding
to 10−5 m3), nearly all the orbits of most
atoms are restricted to regions where
they are adiabatic. Therefore, most of
such laser-cooled atoms stay trapped for
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many thousands of orbits corresponding
to several minutes. At laboratory vacuum
chamber pressures of typically 10−10 torr,
the mean free time between collisions that
can eject trapped atoms is ∼2 min, so the
transitions caused by nonadiabatic motion
are not likely to be observable in atoms
that are optically cooled.

4.2.4 Quantum Motion in a Trap
Since laser and evaporative cooling have
the capability to cool atoms to energies
where their deBroglie wavelengths are on
the scale of the orbit size, the motional
dynamics must be described in terms
of quantum mechanical variables and
suitable wave functions. Quantization of
the motion leads to discrete bound states
within the trap having �µ · �B < 0, and also a
continuum of unbound states having �µ · �B
with opposite sign.

Studying the behavior of extremely slow
(cold) atoms in the two-coil quadrupole
trap begins with a heuristic quantization
of the orbital angular momentum using
Mr2ωT = nh̄ for circular orbits. The en-
ergy levels are then given by

En = 3

2
E1n2/3, where

E1 = (Ma2 h̄2)1/3 ∼ h × 5 kHz, (23)

For velocities of optically cooled atoms of
a few cm s−1, n ∼ 10 − 100. It is readily
found that ωZ = nωT , so that the adiabatic
condition of Eq. (22) is satisfied only for
n � 1.

These large-n bound states have small
matrix elements coupling them to the
unbound continuum states [45]. This can
be understood classically since they spend
most of their time in a stronger field, and
thus satisfy the condition of adiabaticity
of the orbital motion relative to the
Larmor precession. In this case, the

separation of the rapid precession from
the slower orbital motion is reminiscent
of the Born–Oppenheimer approximation
for molecules.

On the other hand, the small-n states,
whose orbits are confined to a region near
the origin where the field is small, have
much larger coupling to the continuum
states. Thus, they are rapidly ejected from
the trap. The transitions to unbound states
resulting from the coupling of the motion
with the trapping fields are called Majorana
spin flips, and effectively constitute a ‘‘hole’’
at the bottom of the trap. The evaporative
cooling process used to produce very cold,
dense samples reduces the average total
energy of the trapped atoms sufficiently
that the orbits are confined to regions
near the origin and so, such losses
dominate [44, 45].

There have been different solutions
to this problem of Majorana losses for
confinement of ultracold atoms for the
BEC experiments. In the JILA-experiment,
the hole was rotated by rotating the
magnetic field, and thus, the atoms do
not spend sufficient time in the hole to
make a spin flip. In the MIT experiment,
the hole was plugged by using a focused
laser beam tuned to the blue side of atomic
resonance, which expelled the atoms from
the center of the magnetic trap. In the
Rice experiment, the atoms were trapped
in an Ioffe trap, which has a nonzero
field minimum. Most BEC experiments
are now using the Ioffe trap solution.

4.3
Magneto-optical Traps

4.3.1 Introduction
The most widely used trap for neutral
atoms is a hybrid employing both optical
and magnetic fields to make a magneto-
optical trap (MOT), first demonstrated in
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1987 [46]. The operation of an MOT de-
pends on both inhomogeneous magnetic
fields and radiative selection rules to ex-
ploit both optical pumping and the strong
radiative force [46, 47]. The radiative in-
teraction provides cooling that helps in
loading the trap and enables very easy op-
eration. MOT is a very robust trap that
does not depend on precise balancing of
the counterpropagating laser beams or on
a very high degree of polarization.

The magnetic field gradients are modest
and have the convenient feature that
the configuration is the same as the
quadrupole magnetic traps discussed in
Sect. 4.2.2. Appropriate fields can readily
be achieved with simple, air-cooled coils.
The trap is easy to construct because it can
be operated with a room-temperature cell
in which alkali atoms are captured from
the vapor. Furthermore, low-cost diode
lasers can be used to produce the light
appropriate for many atoms, so the MOT
has become one of the least expensive ways
to make atomic samples with temperatures
below 1 mK.

Trapping in an MOT works by opti-
cal pumping of slowly moving atoms in
a linearly inhomogeneous magnetic field
B = B(z) (see Eq. 21), such as that formed
by a magnetic quadrupole field. Atomic
transitions with the simple scheme of
Jg = 0 → Je = 1 have three Zeeman com-
ponents in a magnetic field, excited by each
of three polarizations, whose frequencies
tune with the field (and therefore with po-
sition) as shown in Fig. 12 for 1-D. Two
counterpropagating laser beams of oppo-
site circular polarization, each detuned
below the zero-field atomic resonance by
δ, are incident as shown.

Because of the Zeeman shift, the excited
state Me = +1 is shifted up for B >

0, whereas the state with Me = −1 is
shifted down. At position z′ in Fig. 12,

z ′

Me = +1

Me = 0

Me = −1

Mg = 0
Position

Energy

s−
 beam

d+d

wl

d−

s+
 beam

Fig. 12 Arrangement for an MOT in 1-D. The
horizontal dashed line represents the laser
frequency seen by an atom at rest in the center of
the trap. Because of the Zeeman shifts of the
atomic transition frequencies in the
inhomogeneous magnetic field, atoms at z = z′
are closer to resonance with the σ− laser beam
than with the σ+ beam, and are therefore driven
toward the center of the trap

the magnetic field, therefore, tunes the
�M = −1 transition closer to resonance
and the �M = +1 transition further out of
resonance. If the polarization of the laser
beam incident from the right is chosen
to be σ− and correspondingly σ+ for the
other beam, then more light is scattered
from the σ− beam than from the σ+ beam.
Thus, the atoms are driven toward the
center of the trap where the magnetic field
is zero. On the other side of the center of
the trap, the roles of the Me = ±1 states are
reversed and now more light is scattered
from the σ+ beam, again driving the atoms
toward the center.

So far, the discussion has been limited
to the motion of atoms in 1-D. However,
the MOT scheme can easily be extended
to 3-D by using six instead of two laser
beams. Furthermore, even though very
few atomic species have transitions as
simple as Jg = 0 → Je = 1, the scheme
works for any Jg → Je = Jg + 1 transition.
Atoms that scatter mainly from the σ+
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laser beam will be optically pumped toward
the Mg = +Jg substate, which forms a
closed system with the Me = +Je substate.

4.3.2 Cooling and Compressing Atoms in
an MOT
For a description of the motion of atoms
in an MOT, consider the radiative force in
the low intensity limit (see Eqs. 2 and 3).
The total force on the atoms is given by
�F = �F+ + �F−, where �F± can be found from
Eqs. (2) and (3), and the detuning δ± for
each laser beam is given by δ± = δ ∓ �k ·
�v ± µ′B/h̄. Here, µ′ ≡ (geMe − ggMg)µB

is the effective magnetic moment for the
transition used. Note that the Doppler
shift ωD ≡ −�k · �v and the Zeeman shift
ωZ = µ′B/h̄ both have opposite signs for
opposite beams.

The situation is analogous to the velocity
damping in an OM from the Doppler effect
as discussed in Sec. 3.2, but here the effect
also operates in position space, whereas
for molasses it operates only in velocity
space. Since the laser light is detuned
below the atomic resonance in both cases,
compression and cooling of the atoms is
obtained simultaneously in an MOT.

When both the Doppler and Zeeman
shifts are small compared to the detuning
δ, the denominator of the force can be
expanded as for Eq. (13) and the result
becomes

�F = −β�v − κ�r, (24)

where the damping coefficient β is defined
in Eq. (13). The spring constant κ arises
from the similar dependence of �F on the
Doppler and Zeeman shifts, and is given
by κ = µ′β∇B/h̄k

The force of Eq. (24) leads to damped
harmonic motion of the atoms, where the
damping rate is given by �MOT = β/M
and the oscillation frequency ωMOT =

√
κ/M. For magnetic field gradients ∇B ≈

0.1 T m−1, the oscillation frequency is typ-
ically a few kHz, and this is much smaller
than the damping rate that is typically a
few hundred kHz. Thus, the motion is
overdamped, with a characteristic restor-
ing time to the center of the trap of
2�MOT/ω2

MOT ≈ several milliseconds for
typical values of detuning and intensity of
the lasers.

4.3.3 Capturing Atoms in an MOT
Although the approximations that lead to
Eq. (24) for force hold for slow atoms near
the origin, they do not apply for the capture
of fast atoms far from the origin. In the
capture process, the Doppler and Zeeman
shifts are no longer small compared to
the detuning, so the effects of the position
and velocity can no longer be disentangled.
However, the full expression for the force
still applies and the trajectories of the
atoms can be calculated by numerical
integration of the equation of motion [48].

The capture velocity of an MOT is
serendipitously enhanced because atoms
traveling across it experience a decreasing
magnetic field just as in beam deceleration
described in Sect. 3.1. This enables reso-
nance over an extended distance and ve-
locity range because the changing Doppler
shift of decelerating atoms can be com-
pensated by the changing Zeeman shift as
atoms move in the inhomogeneous mag-
netic field. Of course, it will work this
way only if the field gradient ∇B does not
demand an acceleration larger than the
maximum acceleration amax. Thus, atoms
are subject to the optical force over a dis-
tance that can be as long as the trap size,
and can therefore be slowed considerably.

The very large velocity capture range
vcap of an MOT can be estimated by using
Fmax = h̄kγ /2 and choosing a maximum
size of a few centimeters for the beam
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diameters. Thus, the energy change can
be as large as a few K, corresponding
to vcap ∼ 100 m s−1 [47]. The number of
atoms in a vapor with velocities below vcap
in the Boltzmann distribution scales as
v4

cap, and there are enough slow atoms to
fall within the large MOT capture range
even at room temperature, because a few
K includes 10−4 of the atoms.

4.3.4 Variations on the MOT Technique
Because of the wide range of applications
of this most versatile kind of atom trap, a
number of careful studies of its properties
have been made [47, 49–56], and several
variations have been developed. One of
these is designed to overcome the density
limits achievable in an MOT. In the
simplest picture, loading additional atoms
into an MOT produces a higher atomic
density because the size of the trapped
sample is fixed. However, the density
cannot increase without limit as more
atoms are added. The atomic density
is limited to ∼1011 cm−3 because the
fluorescent light emitted by some trapped
atoms is absorbed by others.

One way to overcome this limit is to
have much less light in the center of the
MOT than at the sides. Simply lowering
the laser power is not effective in reducing
the fluorescence because it will also reduce
the capture rate and trap depth. But those
advantageous properties can be preserved
while reducing fluorescence from atoms at
the center if the light intensity is low only
in the center.

The repumping process for the alkali
atoms provides an ideal way of imple-
menting this idea [57]. If the repumping
light is tailored to have zero intensity at
the center, then atoms trapped near the
center of the MOT are optically pumped
into the ‘‘wrong’’ hfs state and stop fluo-
rescing. They drift freely in the ‘‘dark’’ at

low speed through the center of the MOT
until they emerge on the other side, into
the region where light of both frequen-
cies is present and begin absorbing again.
Then they feel the trapping force and are
driven back into the ‘‘dark’’ center of the
trap. Such an MOT has been operated at
MIT [57] with densities close to 1012/cm3,
and the limitations are now from colli-
sions in the ground state rather than from
multiple light scattering and excited-state
collisions.

5
Optical Lattices

5.1
Quantum States of Motion

As the techniques of laser cooling ad-
vanced from a laboratory curiosity to a tool
for new problems, the emphasis shifted
from attaining the lowest possible steady
state temperatures to the study of ele-
mentary processes, especially the quantum
mechanical description of the atomic mo-
tion. In the completely classical description
of laser cooling, atoms were assumed to
have a well-defined position and momen-
tum that could be known simultaneously
with arbitrary precision. However, when
atoms are moving sufficiently slowly that
their deBroglie wavelength precludes their
localization to less than λ/2π , these de-
scriptions fail and a quantum mechanical
description is required. Such exotic be-
havior for the motion of whole atoms, as
opposed to electrons in the atoms, had not
been considered before the advent of laser
cooling simply because it was too far out of
the range of ordinary experiments. A series
of experiments in the early 1990s provided
dramatic evidence for these new quantum
states of motion of neutral atoms, and
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led to the debut of deBroglie wave atom
optics.

The quantum description of atomic
motion requires that the energy of such
motion be included in the Hamiltonian.
The total Hamiltonian for atoms moving
in a light field would then be given by

H = Hatom + Hrad + Hint + Hkin, (25)

where Hatom describes the motion of the
atomic electrons and gives the internal
atomic energy levels, Hrad is the energy of
the radiation field and is of no concern here
because the field is not quantized, Hint
describes the excitation of atoms by the
light field and the concomitant light shifts,
and Hkin is the kinetic energy operator of
the motion of the center of mass of the
atoms. This Hamiltonian has eigenstates
of not only the internal energy levels and
the atom-laser interaction that connects
them, but also that of the kinetic energy
operatorHkin ≡ P2/2M. These eigenstates
will therefore be labeled by quantum
numbers of the atomic states as well as
the center of mass momentum p. An atom
in the ground state, |g; p〉, has an energy
Eg + p2/2M, that can take on a range of
values.

In 1968, V.S. Letokhov [58] •suggested
Q11

that it is possible to confine atoms in the
wavelength-size regions of a standing wave
by means of the dipole force that arises
from the light shift. This was first accom-
plished in 1987 in 1-D with an atomic beam
traversing an intense standing wave [59].
Since then, the study of atoms confined
to wavelength-size potential wells has be-
come an important topic in optical control
of atomic motion because it opens up con-
figurations previously accessible only in
condensed matter physics using crystals.

The limits of laser cooling discussed in
Sect. 3.3.4 suggest that atomic momenta
can be reduced to a ‘‘few’’ times h̄k. This

means that their deBroglie wavelengths are
equal to the optical wavelengths divided by
a ‘‘few’’. If the depth of the optical potential
wells is high enough to contain such very
slow atoms, then their motion in potential
wells of size λ/2 must be described
quantum mechanically, since they are
confined to a space of size comparable
to their deBroglie wavelengths. Thus, they
do not oscillate in the sinusoidal wells as
classical localizable particles, but instead
occupy discrete, quantum mechanical
bound states [60], as shown in the lower
part of Fig. 13.

The basic ideas of the quantum me-
chanical motion of particles in a periodic
potential were laid out in the 1930s with the
Kronig–Penney model and Bloch’s theo-
rem, and optical lattices offer important
opportunities for their study. For example,

0 l/4 l/2
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3l/4 l
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Fig. 13 Energy levels of atoms moving in the
periodic potential of the light shift in a standing
wave. There are discrete bound states deep in
the wells that broaden at higher energy, and
become bands separated by forbidden energies
above the tops of the wells. Under conditions
appropriate to laser cooling, optical pumping
among these states favors populating the lowest
ones as indicated schematically by the arrows
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these lattices can be made essentially free
of defects with only moderate care in
spatially filtering the laser beams to as-
sure a single transverse mode structure.
Furthermore, the shape of the potential
is exactly known and does not depend
on the effect of the crystal field or the
ionic energy level scheme. Finally, the
laser parameters can be varied to mod-
ify the depth of the potential wells without
changing the lattice vectors, and the lat-
tice vectors can be changed independently
by redirecting the laser beams. The sim-
plest optical lattice to consider is a 1-D
pair of counterpropagating beams of the
same polarization, as was used in the first
experiment [59].

Of course, such tiny traps are usually
very shallow, so loading them requires
cooling to the µK regime. Even atoms
whose energy exceeds the trap depth
must be described as quantum mechanical
particles moving in a periodic potential
that display energy band structure [60].
Such effects have been observed in very
careful experiments.

Because of the transverse nature of light,
any mixture of beams with different �k-
vectors necessarily produces a spatially
periodic, inhomogeneous light field. The
importance of the ‘‘egg-crate’’ array of
potential wells arises because the asso-
ciated atomic light shifts can easily be
comparable to the very low average atomic
kinetic energy of laser-cooled atoms. A
typical example projected against two di-
mensions is shown in Fig. 14.

Atoms trapped in wavelength-sized
spaces occupy vibrational levels similar
to those of molecules. The optical spec-
trum can show Raman-like sidebands that
result from transitions among the quan-
tized vibrational levels [61, 62] as shown in
Fig. 15. These quantum states of atomic

Fig. 14 The ‘‘egg-crate’’ potential of an optical
lattice shown in two dimensions. The potential
wells are separated by λ/2

motion can also be observed by stimu-
lated emission [62, 63] and by direct RF
spectroscopy [64, 65].

5.2
Properties of 3-D Lattices

The name ‘‘optical lattice’’ is used rather
than optical crystal because the filling
fraction of the lattice sites is typically
only a few percent (as of 1999). The limit
arises because the loading of atoms into
the lattice is typically done from a sample
of trapped and cooled atoms, such as an
MOT for atom collection, followed by an
OM for laser cooling. The atomic density in
such experiments is limited by collisions
and multiple light scattering to a few times
1011 cm−3. Since the density of lattice sites
of size λ/2 is a few times 1013 cm−3, the
filling fraction is necessarily small. With
the advent of experiments that load atoms
directly into a lattice from a BEC, the filling
factor can be increased to 100%, and in
some cases it may be possible to load more
than one atom per lattice site [66, 67].

In 1993 a very clever scheme was
described [68]. It was realized that an n-
dimensional lattice could be created by
only n + 1 traveling waves rather than
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Fig. 15 (a) Fluorescence spectrum in a 1-D lin ⊥ lin optical molasses. Atoms are first
captured and cooled in an MOT, and then the MOT light beams are switched off leaving a pair
of lin ⊥ lin because of spontaneous emission of the atoms to the same vibrational state from
which they are excited, whereas the sideband on the left (right) is due to spontaneous
emission to a vibrational state with one vibrational quantum number lower (higher) (see
Fig. 13). The presence of these sidebands is a direct proof of the existence of the band
structure. (b) Same as (a) except that the 1-D molasses is σ+ − σ−, which has no spatially
dependent light shift and hence no vibrational states (figure taken from Jessen, P. S., Gerz, C.,
Lett, P. D., Phillips, W. D., Rolston, S. L., Spreeuw, R. J. C., Westbrook, C. I. (1992), Phys. Rev.
Lett. 69, 49–52)

2n. The real benefit of this scheme is
that in case of phase instabilities in the
laser beams, the interference pattern is
only shifted in space, but the interference
pattern itself is not changed. Instead
of producing optical wells in 2-D with
four beams (two standing waves), these
authors used only three. The �k-vectors
of the coplanar beams were separated by
2π/3, and they were all linearly polarized
in their common plane (not parallel
to one another). The same immunity
to vibrations was established for a 3-
D optical lattice by using only four
beams arranged in a quasi-tetrahedral
configuration. The three linearly polarized
beams of the 2-D arrangement described
above were directed out of the plane
toward a common vertex, and a fourth
circularly polarized beam was added.
All four beams were polarized in the
same plane [68]. The authors showed that
this configuration produced the desired
potential wells in 3-D.

5.3
Spectroscopy in 3-D Lattices

The group at NIST developed a new
method that superposed a weak probe
beam of light directly from the laser upon
some of the fluorescent light from the
atoms in a 3-D OM, and directed the
light from these combined sources onto
on a fast photodetector [70]. The resulting
beat signal carried information about the
Doppler shifts of the atoms in the optical
lattices [61]. These Doppler shifts were
expected to be in the sub-MHz range for
atoms with the previously measured 50-
µK temperatures. The observed features
confirmed the quantum nature of the
motion of atoms in the wavelength-size
potential wells (see Fig. 15) [15].

The NIST group also studied atoms
loaded into an optical lattice using Bragg
diffraction of laser light from the spatially
ordered array [71]. They cut off the laser
beams that formed the lattice, and before
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the atoms had time to move away from
their positions, they pulsed on a probe
laser beam at the Bragg angle appropriate
for one of the sets of lattice planes. The
Bragg diffraction not only enhanced the
reflection of the probe beam by a factor
of 105, but by varying the time between
the shut-off of the lattice and turn-on of
the probe, they could also measure the
‘‘temperature’’ of the atoms in the lattice.
The reduction of the amplitude of the
Bragg-scattered beam with time provided
some measure of the diffusion of the atoms
away from the lattice sites, much like the
Debye–Waller factor in X-ray diffraction.

5.4
Quantum Transport in Optical Lattices

In the 1930s, Bloch realized that applying
a uniform force to a particle in a periodic
potential would not accelerate it beyond a
certain speed, but instead would result
in Bragg reflection when its deBroglie
wavelength became equal to the lattice
period. Thus, an electric field applied to
a conductor could not accelerate electrons

to a speed faster than that corresponding
to the edge of a Brillouin zone, and
that at longer times the particles would
execute oscillatory motion. Ever since then,
experimentalists have tried to observe
these Bloch oscillations in increasingly
pure and/or defect-free crystals.

Atoms moving in optical lattices are ide-
ally suited for such an experiment, as was
beautifully demonstrated in 1996 [69]. The
authors loaded a 1-D lattice with atoms
from a 3-D molasses, further narrowed the
velocity distribution, and then instead of
applying a constant force, simply changed
the frequency of one of the beams of the
1-D lattice with respect to the other in
a controlled way, thereby creating an ac-
celerating lattice. Seen from the atomic
reference frame, this was the equivalent of
a constant force trying to accelerate them.
After a variable time ta, the 1-D lattice
beams were shut off and the measured
atomic velocity distribution showed beau-
tiful Bloch oscillations as a function of ta.
The centroid of the very narrow velocity
distribution was seen to shift in velocity
space at a constant rate until it reached
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Fig. 16 Plot of the measured velocity distribution verses. time in the accelerated 1-D lattice.
(a) Atoms in a 1-D lattice are accelerated for a fixed potential depth for a certain time ta and
the momentum of the atoms after the acceleration is measured. The atoms accelerate only
to the edge of the Brillouin zone where the velocity is +vr, and then the velocity distribution
appears at −vr. (b) Mean velocity of the atoms as a function of the quasi-momentum, that
is, the force times the acceleration time (figure taken from Ben Dahan, M., Peik, E.,
Reichel, J., Castin, Y., Salomon, C. (1996), Phys. Rev. Lett. 76, 4508–4511)
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vr = h̄k/M, and then it vanished and reap-
peared at −vr as shown in Fig. 16. The
shape of the ‘‘dispersion curve’’ allowed
measurement of the ‘‘effective mass’’ of
the atoms bound in the lattice.

6
Bose–Einstein Condensation

6.1
Introduction

In the 1920s, Bose and Einstein predicted
that for sufficiently high phase space
density, ρφ ∼ 1 (see Sect. 1.2), a gas of
atoms undergoes a phase transition that is
now called Bose–Einstein condensation.
It took 70 years before BEC could be
unambiguously observed in a dilute gas.
From the advent of laser cooling and
trapping, it became clear that this method
could be instrumental in achieving BEC.

BEC is another manifestation of quanti-
zation of atomic motion. It occurs in the
absence of resonant light, and its onset is
characterized by cooling to the point where
the atomic deBroglie wavelengths are com-
parable to the interatomic spacing. This is
in contrast with the topics discussed in
Sect. 5 where the atoms were in an optical
field and their deBroglie wavelengths were
comparable to the optical wavelength λ.

Laser cooling alone is inherently inca-
pable of achieving ρφ ∼ 1. This is easily
seen from the recoil limit of Sect. 3.3.4
that limits λdeB to λ/‘‘few’’. Since the cross
section for optical absorption near reso-
nance is σ ∼ λ2 near ρφ ∼ 1, this limit of
λdeB ∼ λ/‘‘few’’ results in the penetration
depth of the cooling light into the sample
being smaller than λ. Thus, the sample
would have to be extremely small and con-
tain only a few atoms, hardly a system
suitable for investigation.

Temperatures lower than the recoil limit
are readily achieved by evaporative cooling,
and so all BEC experiments employ it in
their final phase. Evaporative cooling is
inherently different from the other cooling
processes discussed in Sect. 3, and hence
discussed here separately.

Since the first observations in 1995, BEC
has been the subject of intense investiga-
tion, both theoretical and experimental. No
attempt is made in this article to even ad-
dress, much less cover, the very rich range
of physical phenomena that have been un-
veiled by these studies. Instead, we focus
on the methods to achieve ρφ ∼ 1 and
BEC.

6.2
Evaporative Cooling

Evaporative cooling is based on the
preferential removal of those atoms from
a confined sample with an energy higher
than the average energy followed by a
rethermalization of the remaining gas by
elastic collisions. Although evaporation is
a process that occurs in nature, it was
applied to atom cooling for the first time
in 1988 [72].

One way to think about evaporative
cooling is to consider cooling of a con-
tainer of hot liquid. Since the most
energetic molecules evaporate from the
liquid and leave the container, the remain-
ing molecules obtain a lower temperature
and are cooled. Furthermore, it requires
the evaporation of only a small fraction
of the liquid to cool it by a considerable
amount.

Evaporative cooling works by remov-
ing the higher-energy atoms as sug-
gested schematically in Fig. 17. Those
that remain have much lower average en-
ergy (temperature) and so they occupy a
smaller volume near the bottom of the
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Fig. 17 Principle of the evaporation technique.
Once the trap depth is lowered, atoms with
energy above the trap depth can escape and the
remaining atoms reach a lower temperature

trap, thereby increasing their density. For
trapped atoms, it can be achieved by lower-
ing the depth of the trap, thereby allowing
the atoms with energies higher than the
trap depth to escape, as discussed first by
Hess [73]. Elastic collisions in the trap then
lead to a rethermalization of the gas. This
technique was first employed for evapora-
tive cooling of hydrogen [72, 74–76]. Since
both the temperature and the volume de-
crease, ρφ increases.

Recently, more refined techniques have
been developed. For example, to sustain
the cooling process the trap depth can
be lowered continuously, achieving a
continuous decrease in temperature. Such
a process is called forced evaporation and is
discussed in Sect. 6.3 below.

6.2.1 Simple Model
This section describes a simple model of
evaporative cooling. Since such cooling is
not achieved for single atoms but for the
whole ensemble, an atomic description of
the cooling process must be replaced by
thermodynamic methods. These methods
are completely different from the rest of the
material in this article, and will therefore
remain rather elementary.

Several models have been developed
to describe this process, but we present
here the simplest one [77] because of its
pedagogical value [22]. In this model, the
trap depth is lowered in one single step
and the effect on the thermodynamic
quantities, such as temperature, density,
and volume, is calculated. The process can
be repeated and the effects of multiple
steps added up cumulatively.

In such models of evaporative cooling,
the following assumptions are made:

1. The gas behaves sufficiently ergodically,
that is, the distribution of atoms
in phase space (both position and
momentum) depends only on the
energy of the atoms and the nature
of the trap.

2. The gas is assumed to begin the
process with ρφ  1 (far from the BEC
transition point), and so it is described
by classical statistics.

3. Even though ρφ  1, the gas is cold
enough that the atomic scattering is
pure (s-wave) quantum mechanical,
that is, the temperature is sufficiently
low that all higher partial waves do
not contribute to the cross section.
Furthermore, the cross section for
elastic scattering is energy-independent
and is given by σ = 8πa2, where a is the
scattering length. It is also assumed that
the ratio of elastic to inelastic collision
rates is sufficiently large that the elastic
collisions dominate.

4. Evaporation preserves the thermal na-
ture of the distribution, that is, the
thermalization is much faster than the
rate of cooling.

5. Atoms that escape from the trap neither
collide with the remaining atoms nor
exchange energy with them. This is
called full evaporation.
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6.2.2 Application of the Simple Model
The first step in applying this simple model
is to characterize the trap by calculating
how the volume of a trapped sample
of atoms changes with temperature T .
Consider a trapping potential that can be
expressed as a power law given by

U(x, y, z) = ε1

∣∣∣∣ x

a1

∣∣∣∣
s1

+ ε2

∣∣∣∣ y

a2

∣∣∣∣
s2

+ ε3

∣∣∣∣ z

a3

∣∣∣∣
s3

, (26)

where aj is a characteristic length and sj the
power, for a certain direction j. Then the
volume occupied by trapped atoms scales
as V ∝ Tξ [78], where

ξ ≡ 1

s1
+ 1

s2
+ 1

s3
. (27)

Thus, the effect of the potential on the
volume of the trapped sample for a
given temperature can be reduced to a
single parameter ξ . This parameter is
independent of how the occupied volume
is defined, since many different definitions
lead to the same scaling. When a gas is held
in a 3-D box with infinitely high walls, then
s1 = s2 = s3 = ∞ and ξ = 0, which means
that V is independent of T , as expected.
For a harmonic potential in 3-D, ξ = 3/2;
for a linear potential in 2-D, ξ = 2; and for
a linear potential in 3-D, ξ = 3.

The evaporative cooling model itself [77]
starts with a sample of N atoms in volume
V having a temperature T held in an in-
finitely deep trap. The strategy for using
the model is to choose a finite quantity η,
and then (1) lower the trap depth to a value
ηkBT , (2) allow for a thermalization of the
sample by collisions, and (3) determine the
change in ρφ .

Only two parameters are needed to com-
pletely determine all the thermodynamic

quantities for this process (the values af-
ter the process are denoted by a prime).
One of these is ν ≡ N′/N, the fraction of
atoms remaining in the trap after the cool-
ing. The other is γ (This γ is not to be
confused with the natural width of the ex-
cited state.), a measure of the decrease in
temperature caused by the release of hot
atoms and subsequent cooling, modified
by ν, and defined as

γ ≡ log(T ′/T)

log(N′/N)
= log(T ′/T)

log ν
. (28)

This yields a power-law dependence for
the decrease in temperature caused by
the loss of the evaporated particles, that
is, T ′ = Tνγ . The dependence of the
other thermodynamic quantities on the
parameters ν and γ can then be calculated.

The scaling of N′ = Nν, T ′ = Tνγ , and
V ′ = Vνγ ξ can provide the scaling of
all the other thermodynamic quantities
of interest by using the definitions for
the density n = N/V , the phase space
density ρφ = nλ3

deB ∝ nT−3/2, and the
elastic collision rate kel ≡ nσ v ∝ nT1/2.
The results are given in Table 2. For a
given value of η, the scaling of all quantities

Tab. 2 Exponent q for the scaling of the
thermodynamic quantities X ′ = Xνq with the
reduction ν of the number of atoms in the trap

Thermodynamic
variable

Symbol Exponent q

Number of
atoms

N 1

Temperature T γ

Volume V γ ξ

Density n 1 − γ ξ

Phase space
density

ρ 1 − γ (ξ + 3/2)

Collision rate k 1 − γ (ξ − 1/2)
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depends only on γ . Note that for successive
steps j, ν has to be replaced with ν j.

The fraction of atoms remaining is fully
determined by the final trap depth η for
a given potential characterized by the trap
parameter ξ . In order to determine the
change of the temperature in the cooling
process, it is necessary to consider in
detail the distribution of the atoms in the
trap, and this is discussed more fully in
Refs. [1, 22, 77].

6.2.3 Speed of Evaporation
So far, the speed of the evaporative cooling
process has not been considered. If the
trap depth is ramped down too quickly, the
thermalization process does not have time
to run its course and the process becomes
less efficient. On the other hand, if the
trap depth is ramped down too slowly,
the loss of particles by inelastic collisions
becomes important, thereby making the
evaporation inefficient.

The speed of evaporation can be found
from the principle of detailed balance[22].
Its application shows that the ratio of the
evaporation time and the elastic collision
time is

τev

τel
=

√
2eη

η
. (29)

Note that this ratio increases exponentially
with η.

Experimental results show that ∼2.7
elastic collisions are necessary to rether-
malize the gas [79]. In order to model the
rethermalization process, Luiten et al [80]
have discussed a model based on the Boltz-
mann equation where the evolution of the
phase space density ρ(�r, �p, t) is calculated.
This evolution is not only caused by the
trapping potential, but also by collisions
between the particles. Only elastic col-
lisions, whose cross section is given by
σ = 8πa2 with a as the scattering length,

are considered. This leads to the Boltz-
mann equation [81].

6.2.4 Limiting Temperature
In the models discussed so far, only
elastic collisions have been considered,
that is, collisions where kinetic energy
is redistributed between the partners.
However, if part of the internal energy
of the colliding partners is exchanged with
their kinetic energy during •collision, then

Q12
it is inelastic. Inelastic collisions can cause
problems for two reasons: (1) the internal
energy released can cause the atoms to
heat up and (2) the atoms can change their
internal states, and the new states may
no longer be trapped. In each case, such
collisions can lead to trap loss and are
therefore not desirable.

Apart from collisions with the back-
ground gas and three-body recombination,
there are two inelastic processes that are
important for evaporative cooling of alkali
atoms: dipolar relaxation and spin relax-
ation. The collision rate nkdip for them
at low energies is independent of veloc-
ity [82]. Since the elastic collision rate is
given by kel = nσ vrel, the ratio of good
(= elastic) to bad (= relaxation) collisions
goes down when the temperature does.
This limits the temperature to a value Te

near which •the ratio between good and
Q13

bad collisions becomes unity, and Te is
given by

kBTe =
πMk2

dip

16σ 2 . (30)

The limiting temperature for the alkalis
is of the order of 1 nK, depending on the
values of σ and kdip.

In practice, however, this ratio has to
be considerably larger than unity, and
so the practical limit for evaporative
cooling occurs when the ratio is ∼103 [22].
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In the model of Ref. [80], the authors
discuss different strategies for evaporative
cooling. Even for the strategy of the
lowest temperature, the final temperature
is higher than Te.

The collision rate between atoms with
one in the excited state (S + P collisions) is
also much larger at low temperatures than
the rate for such collisions with both atoms
in the ground state (S + S collisions). Since
S + P collisions are generally inelastic and
the inelastic energy exchange generally
leads to a heating of the atoms, increasing
the density increases the loss of cold
atoms. To achieve BEC, resonant light
should therefore be avoided, and thus laser
cooling is not suitable for achieving BEC.

6.3
Forced Evaporative Cooling

In all the earliest experiments that achieved
BEC, the evaporative cooling was ‘‘forced’’
by inducing rf transitions to magnetic
sublevels that are not bound in the
magnetic trap. Atoms with the highest
energies can access regions of the trap
where the magnetic field is stronger, and
thus their Zeeman shifts would be larger.
A correspondingly high-frequency rf field
would cause only these most energetic
atoms to undergo transitions to states
that are not trapped, and in doing so, the
departing atoms carry away more than the
average energy. Thus, a slow sweep of
the rf frequency from high to low would
continuously shave off the high-energy tail
of the energy distribution, and thereby
continuously drive the temperature lower
and the phase space density higher. The
results of evaporative cooling from the first
three groups that have obtained BEC have
shown that using this rf shaving technique,
it is much easier to select high-energy

atoms and waste them than it is to cool
them.

For the evaporation of the atoms, it
is important that atoms with an energy
above the cutoff are expelled from the trap.
By using RF-evaporation, one can expel
the atoms in all three dimensions equally
and thus obtain a true 3-D evaporation. In
the case of the TOP•-trap, the atoms are

Q14
evaporated along the outer side of the cloud
that is exposed to the highest magnetic
field on the average. This is a cylinder
along the direction of rotation axis of the
magnetic field and thus the evaporation
takes place in 2-D.

Once the energy of the atoms becomes
very small, the atoms sag because of gravity
and the outer shell of the cloud is no longer
at a constant magnetic field. Atoms at the
bottom of the trap have the highest energy
and thus the evaporation becomes 1-D. In
case of harmonic confinement, Utrap =
U′′z2/2, the equipotential surface is at
z ≈ √

2ηkBT/U′′. Now, the gravitational
energy is given by Ugrav = mgz and
thus the limiting temperature for 1-D
evaporation to take place is given by [22]

kBT <
2η(mg)2

µB′′ (31)

For a curvature of B′′ = 500 T m−2, the
limiting temperature becomes 1 µK for 7Li,
10 µK for 23Na, and 150 µK for 87Rb. Below
this temperature, evaporation becomes
less efficient.

In the three experiments that obtained
BEC for the first time in 1995, the problem
of this ‘‘gravitational sag’’ was not known,
but it did not prevent the experimentalist
from observing BEC. The solution used
in those experiments was because of the
light mass (7Li), tight confinement (23Na),
and TOP trap (87Rb). In the last case, the
axis of rotation is in the z-direction and



OE005

36 Laser Cooling and Trapping of Neutral Atoms

Tab. 3 Typical numbers for the phase space density as obtained in the
experiments aimed at achieving BEC. The different stages of cooling and
trapping the atoms will be discussed in the Appendix

Stages T λdeB n ρφ

Oven 300 ◦C 0.02 nm 1010 cm−3 10−16

Slowing 30 mK 2 nm 108 cm−3 10−12

Pre-cooling 1 mK 10 nm 109 cm−3 10−9

Trapping 1 mK 10 nm 1012 cm−3 10−6

Cooling 1 µK 0.3 µm 1011 cm−3 3 × 10−3

Evaporation 70 nK 1 µm 1012 cm−3 2.612

thus the evaporation always remains 2-
D. Table 3 shows typical values of ρφ for
various situations.

7
Conclusion

In this article, we have reviewed some
of the fundamentals of optical control of
atomic motion. The reader is cautioned
that this is by no means an exhaustive
review of the field, and that many impor-
tant and current topics have been omitted.
Much of the material here was taken from
our recent textbook [1], and the reader is
encouraged to consult that source for the
origin of many of the formulas presented
in the present text, as well as for further
reading and more detailed references to
the literature.
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