
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

JFP, 11 pages, 2021. © Cambridge University Press 2021 1
doi:10.1017/xxxxx

F U N C T I O N A L P E A R L

A correct-by-construction conversion to
combinators

WOUTER SWIERSTRA
Utrecht University

(e-mail: w.s.swierstra@uu.nl)

Abstract

This pearl defines a translation from well-typed lambda terms to combinatory logic, where the
preservation of types and the correctness of the translation is enforced statically.

1 Introduction

Historically, there is a close connection between the lambda calculus and combinatory
logic (Curry et al., 1958; Schönfinkel, 1924). In this pearl, we will show how to implement
a translation from the simply-typed lambda terms to combinators such that both the types
and semantics of each lambda term is preserved. While we could do so by defining a
translation scheme and proving these facts post-hoc, we instead uncover a solution that is
correct by construction and requires no further proofs or postulates.

2 Lambda calculus

To set the scene, we start by defining an evaluator for the simply typed lambda calculus in
the dependently typed programming language Agda (Norell, 2007). This evaluator features
in numerous papers and introductions on programming with dependent types (McBride,
2004; Norell, 2009, 2013; Abel, 2016), yet we include it here in its entirety for the sake of
completeness.

Types

The types of our lambda calculus consist of a single base type (ι) and functions between
types, denoted using the function space operator (⇒):

dataU : Setwhere

ι : U
⇒ : U→U→U

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

2 Submitted for publication.

We can map these types to their Agda counterparts:

Val : U→ Set

Val ι = A

Val (u1 ⇒ u2) = Val u1 →Val u2

Here the interpretation of the base type, ι, is mapped to a type A : Set, that we pro-
vide as a module parameter. The remainder of this development does not depend on the
interpretation of our base type in any meaningful way.

Finally, we will represent contexts as lists of such types:

Ctx = List U

Typically, we will use variable names drawn from the Greek alphabet to refer to types (such
as σ and τ) and contexts (Γ).

Terms

Before we define the terms of the simply typed lambda calculus, we need to decide on how
to treat variables. Initially, we will define the following inductive family, modelling valid
references to a type σ in a given context Γ:

data Ref (σ : U) : Ctx→ Setwhere

Top : Ref σ (σ :: Γ)
Pop : Ref σ Γ→ Ref σ (τ :: Γ)

Erasing the type indices, we are left with the Peano natural numbers—corresponding to
the typical De Bruijn representation of variable binding.

We can now define the data type for well-typed, well-scoped lambda terms as follows:

dataTerm : Ctx→U→ Setwhere

App : Term Γ (σ⇒ τ)→Term Γ σ→Term Γ τ

Lam : Term (σ :: Γ) τ→Term Γ (σ⇒ τ)
Var : Ref σ Γ→Term Γ σ

Each constructor mirrors a familiar typing rule: applications require the domain and argu-
ment’s type to coincide; lambda abstractions introduce a new variable in the context of the
lambda’s body; the Var constructor may be used to refer to any variable currently in scope.

Evaluation

The dependent types in the definition of Term pay dividends once we try to define an
evaluator for lambda terms. Before we can do so, however, we need to introduce a data
type for environments:

data Env : Ctx→ Setwhere

Nil : Env []
Cons : Val σ→ Env Γ→ Env (σ :: Γ)

An environment stores a value for each variable in the context Γ, as witnessed by the
following lookup function:

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

Journal of Functional Programming 3

lookup : Ref σ Γ→ Env Γ→Val σ

lookup Top (Cons x env) = x

lookup (Pop ref) (Cons x env) = lookup ref env

Note that this function is total. The type indices ensure that there is no valid variable in the
empty context; correspondingly, the lookup function need never worry about returning a
value when the environment is empty.

We can now define an evaluator for the simply typed lambda calculus:

J_K : Term Γ σ→ (Env Γ→Val σ)

JApp t1 t2 K = λ env→ (J t1 K env) (J t2 K env)
J Lam t K = λ env→ λ x→ J t K (Cons x env)
JVar x K = λ env→ lookup x env

That this code type checks at all is somewhat surprising at first. It maps App constructors to
Agda’s application and Lam constructors to Agda’s built-in lambda construct. Once again,
the type indices ensure that the evaluation of the Lam construct must return a function (and
hence we may introduce a lambda). Similarly in the case for applications, evaluating t1

will return a function whose domain coincides with the type of the value arising from the
evaluation of t2. Finally, the environment of type Env Γ passed as an argument contains
just the right values for all the variables drawn from the context Γ.

3 Translation to combinatory logic

Before we can define the translation from lambda terms to combinators, we need to fix
our target language. As a first attempt, we might try something along the following lines,
replacing the Lam constructor in the Term data type with the three familiar combinators
from combinatory logic, S, K, and I:

data Comb : Setwhere

S K I : Comb

App : Comb → Comb → Comb

Var : ... → Comb

Yet if we aim for our translation to be type-preserving, the very least we can do is decorate
our combinators with the same type information as our lambda terms:

data Comb (Γ : Ctx) : U→ Setwhere

S : Comb Γ ((σ⇒ τ⇒ τ')⇒ (σ⇒ τ)⇒ (σ⇒ τ'))
K : Comb Γ (σ⇒ τ⇒ σ)
I : Comb Γ (σ⇒ σ)
App : Comb Γ (σ⇒ τ)→ Comb Γ σ→ Comb Γ τ

Var : Ref σ Γ→ Comb Γ σ

The types of both the App and Var constructors are the same as we saw for the lambda
terms; the types of the S, K, and I combinators is fixed by their intended reduction
behaviour:

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

4 Submitted for publication.

S f g x = (f x) (g x)

K x y = x

I x = x

Note that—as our Comb lacks lambdas and cannot introduce new variables—the context
is now a parameter, rather than an index as we saw for the Term data type. This is the
essence of combinatory logic: a language with variables, but without binders.

Yet we will strive to do even better. We will define a translation that preserves both the
static and dynamic semantics of our lambda terms. To achieve this, we index our com-
binators with both their types and their intended semantics, given by a function of type
Env Γ → Val u, yielding this final version of our combinators:

data Comb : (Γ : Ctx)→ (u : U)→ (Env Γ→Val u)→ Setwhere

S : Comb Γ ((σ⇒ τ⇒ τ')⇒ (σ⇒ τ)⇒ σ⇒ τ') (λ env→ λ f g x→ (f x) (g x))

K : Comb Γ (σ⇒ (τ⇒ σ)) (λ env→ λ x y→ x)

I : Comb Γ (σ⇒ σ) (λ env→ λ x→ x)

Var : (i : Ref σ Γ)→ Comb Γ σ (λ env→ lookup i env)

App : Comb Γ (σ⇒ τ) f→ Comb Γ σ x→ Comb Γ τ (λ env→ (f env) (x env))

Here the type of each base combinator (S, K, and I) contains both its type and semantics.
For example, the I combinator has type σ⇒ σ and corresponds to the lambda term λ x→ x.
None of the combinators rely on the additional environment parameter env. This environ-
ment is used in the Var constructor; just as we saw in our evaluator for lambda terms,
this environment stores a value for each variable. Finally, the App constructor applies one
combinator term to another. The type information for both the Var and App constructors
coincide with their counterparts from the Term data type; their intended semantics can be
read off from the evaluator for lambda terms, J t K, that we defined previously.

The key difference between lambda terms and SKI combinators is the the lack of lamb-
das in the latter. To handle this, we define an auxiliary function, sometimes referred to as
bracket abstraction, that maps one combinator term to another:

lambda : ∀ {f}→ Comb (σ :: Γ) τ f→ Comb Γ (σ⇒ τ) (λ env x→ f (Cons x env))

lambda S = App K S

lambda K = App KK

lambda I = App K I

lambda (App t1 t2) = App (App S (lambda t1)) (lambda t2)

lambda (Var Top) = I

lambda (Var (Pop i)) = App K (Var i)

This behaviour of the lambda function should be clear from its type: given a Comb term of
type τ using variables drawn from the context σ :: Γ, the lambda function returns a combi-
nator of type σ⇒ τ using variables drawn from the context Γ. Essentially, any occurrences
of the Var Top are replaced with the identity I; the new argument is distributed over appli-
cations using the S combinator; any other variables or base combinators discard this new
argument by introducing an additional K combinator.

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

Journal of Functional Programming 5

With this definition in place, we can now define our type-preserving correct-by-
construction translation. That is, we aim to define a translation with the following
type:

translate : (t : Term Γ σ)→ Comb Γ σ J t K

Here a lambda term of type σ in the context Γ is mapped to a combinator of type σ using
variables drawn from the context Γ in such a way that the evaluation of t and semantics of
the combinator are identical, namely, J t K. The definition of this translation is now entirely
straightforward:

translate (App t1 t2) = App (translate t1) (translate t2)

translate (Lam t) = lambda (translate t)

translate (Var i) = Var i

To see why this code type checks, note that both the (dynamic) semantics of both the
App and Var constructors of the Comb data type coincide precisely with their semantics
as lambda terms, JApp t1 t2 K and JVar i K respectively. Finally, if translating the body of
a lambda produces some Comb term f, the lambda function produces a combinator term
with the semantics λ env x→ f (Cons x env). The similarity between the type of the lambda

function and the Lam branch of our evaluator is no coincidence.
These combinators are not the only possible choice of combinatorial basis. In particular,

the S combinator always passes its third argument to the first two—even if it discarded.
Can we do better?

4 An optimising translation

We can extend our choice of combinatorial basis extending the SKI combinators with two
new combinators B and C:

B f g x = (f x) g

C f g x = f (g x)

When translating an application, we now need to select between four possible choices: K,
B, C and S, depending on the variables that occur in the arguments of the application. How
can we make this choice, while still guaranteeing that types and semantics are preserved
accordingly? The key insight is that we need more information about the variables in our
lambda terms.

Contexts and subsets

Previously used a single context to capture all the variables that may be used. To account
for the variables that have been used, we need to keep track of a subset of this context. To
do so, we begin by defining the following subset predicate:

data Subset : Ctx→ Setwhere

Empty : Subset Γ
Drop : Subset Γ→ Subset (τ :: Γ)

Keep : Subset Γ→ Subset (τ :: Γ)

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

6 Submitted for publication.

A subset of some context Γ may be Empty, or it may choose to Keep or Drop the most
recently bound variable of type τ. The intended semantics of such subsets can be given by
computing the context underlying this subset predicate:

b_c : Subset Γ→ Ctx

b Empty c = []

bDropΔ c = bΔ c
bKeep {τ = τ}Δ c = τ :: bΔ c

The Empty subset corresponds to the empty context; the Drop constructor discards the
most recently bound variable, whereas the Keep constructor retains it. There is some choice
here in the design of the Subset predicate. We could have chosen that the Empty construc-
tor is the only possible subset of the empty context, Nil. Instead, we have allowed for a bit
more wiggle room—the Empty subset is a subset of any context Γ. As we shall see later
on, this distinction will be important. Note that ‘sublist’ would be slightly more precise
than subset. We will, however, use the more common terminology of subsets to refer to the
collection of variables that occur in a given lambda term.

We will need three separate operations for manipulating subsets. Not entirely coinci-
dentally, each of these operations will be used to account for the variables used in each
constructor from our Term data type. First of all, we can compute the union of two subsets:

∪ : Subset Γ→ Subset Γ→ Subset Γ

Empty ∪ sub = sub

Drop xs ∪ Drop ys = Drop (xs∪ ys)

Drop xs ∪ Keep ys = Keep (xs∪ ys)

Drop xs ∪ Empty = Drop xs

Keep xs ∪ Drop ys = Keep (xs∪ ys)

Keep xs ∪ Keep ys = Keep (xs∪ ys)

Keep xs ∪ Empty = Keep xs

The first element of a union of two subsets is only discarded, when both subsets discard
this fist element. If at least one of the two subsets retains the head element, so does the
union. The remaining cases state that the empty set is the left and right identity of the
union operation.

Next, we can map any variable reference of type Ref τ Γ to a singleton subset containing
that reference and nothing else:

[_] : Ref τ Γ→ Subset Γ

[Top] = Keep Empty

[Pop p] = Drop [p]

Finally, any subset of σ :: Γ determines a unique subset of Γ, by simply ignoring whether
the first element is kept or discarded:

pop : Subset (σ :: Γ)→ Subset Γ

pop (Drop s) = s

pop (Keep s) = s

pop (Empty) = Empty

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

Journal of Functional Programming 7

This pop operation is reminiscent of the tail operation on lists, discarding the information
about the first element and returning the remaining subset.

Co-de Bruijn terms

We can now revisit our Term data type, providing additional information about the vari-
ables that occur in a given term. This representation of variables, sometimes referred to
as the co-De Bruijn representation (McBride, 2018), extends our previous Term data type
with an additional index of type Subset Γ. This subset records the variables used in each
(sub)term:

dataTerm (Γ : Ctx) : Subset Γ→U→ Setwhere

Lam : Term (σ :: Γ)Δ τ→Term Γ (popΔ) (σ⇒ τ)
App : Term ΓΔ1 (σ⇒ τ)→Term ΓΔ2 σ→Term Γ (Δ1 ∪Δ2) τ

Var : (i : Ref σ Γ)→Term Γ [i] σ

Each constructor has the same context and type index as we saw previously; the only new
type information is in the subset, Δ. Lambda abstractions bind the top variable in the
context; applications take the union of the two subsets of variables associated with each
subterm; the variables associated with a Var constructor consists of a singleton subset of
that variable.

As it stands, this revised Term data type accurately captures the invariant in which we
are interested: which variables are used by a term. This does, however, come at a price. The
types of all the constructors of the Term data type now contain functions (pop, union and
singleton), where previously they only used variables and constructors. One consequence
of this design choice, however, is that it may complicate pattern matching: deciding the
possible constructors that may inhabit a term of some given type, becomes much more dif-
ficult. To illustrate this, suppose we want to define a function with the taking an argument
of type:

Term (σ :: Γ) (KeepΔ) τ

Which constructors of the Term data type should we match against? This is not a trivial
question: it involves checking the implementation of the singleton and union functions
to determine whether or not they can produce a subset of the form KeepΔ. As this is
not decidable in general, Agda cannot case split on such terms. To address this, we will
sometimes use relations, expressing the graph of a given function instead. For example,
consider the Union data type defined as follows:

dataUnion : Subset Γ→ Subset Γ→ Subset Γ→ Setwhere

Empty1 : Union EmptyΔΔ

Empty2 : UnionΔ EmptyΔ

Drop : UnionΔ1Δ2Δ→Union (DropΔ1) (DropΔ2) (DropΔ)

KeepDrop : UnionΔ1Δ2Δ→Union (KeepΔ1) (DropΔ2) (KeepΔ)

DropKeep : UnionΔ1Δ2Δ→Union (DropΔ1) (KeepΔ2) (KeepΔ)

KeepKeep : UnionΔ1Δ2Δ→Union (KeepΔ1) (KeepΔ2) (KeepΔ)

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

8 Submitted for publication.

We can show that the UnionΔ1Δ2Δ data type is inhabited precisely when unionΔ1Δ2

is Δ:

union : (Δ1Δ2 : Subset Γ)→UnionΔ1Δ2 (Δ1 ∪Δ2)

The definition of the union function follows the same structure of recursion as the _∪_
function, selecting the appropriate case of the Union relation depending on its inputs.
Similarly, the Singleton relation and singleton function express that a subset of the context
Γ is equal to the singleton [i], for some reference i:

data Singleton {σ : U} : Ref σ Γ→ Subset Γ→ Setwhere

Here : Singleton (Top {Γ = Γ}) (Keep Empty)

There : (i : Ref σ Γ)→ Singleton iΔ→ Singleton (Pop i) (DropΔ)

singleton : (i : Ref τ Γ)→ Singleton i [i]

singleton Top = Here

singleton (Pop i) = There i (singleton i)

Evaluation

We now turn our attention to defining an evaluator for our new Term data type. Rather than
take an environment Env Γ, storing a value for all possible variables drawn from Γ as we
did previously, we now choose the following type for our evaluator:

J_K : Term ΓΔ σ→ (Env bΔ c→Val σ)

Here we take an environment of type Env bΔ c as argument, storing variables for all the
variables that are used, rather than the variables that might be used. To accomplish this, we
need to define three functions for projecting the relevant parts of an argument environment:

prj1 : UnionΔ1Δ2Δ→ Env bΔ c→ Env bΔ1 c
prj2 : UnionΔ1Δ2Δ→ Env bΔ c→ Env bΔ2 c
prj : { i : Ref σ Γ}→ Singleton iΔ→ Env bΔ c→Val σ

Each of these definitions follows the inductive structure of the Union and Singleton

relations, triggering the reduction in the Env bΔ c type.
The evaluator itself is only slightly more complicated than the one we saw initially:

J_K : Term ΓΔ σ→ (Env bΔ c→Val σ)

J Lam {Δ = KeepΔ} t K = λ env→ λ x→ J t K (Cons x env)
J Lam {Δ = DropΔ} t K = λ env→ λ → J t K env
J Lam {Δ = Empty} t K = λ env→ λ → J t KNil
JVar i K = λ env→ prj (singleton i) env

JApp {Δ1 = Δ1} {Δ2 = Δ2} t1 t2 K = λ env→ let env1 = prj1 (unionΔ1Δ2) env in

let env2 = prj2 (unionΔ1Δ2) env in

(J t1 K env1) (J t2 K env2)

The Var case projects the single value of type Val σ from the argument environment. The
case for applications recurses as expected, projecting the relevant values from the input

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

Journal of Functional Programming 9

environment. Finally, the case for lambda abstractions is more interesting. Evaluation con-
tinues on the body of the lambda t, but the environment is only extended with the freshly
bound variable x, when it occurs in t. Otherwise, it can be safely discarded.

Combinators revisited

We can now revisit our language representing the terms of combinatory logic. Initially, our
data type declaration had the following form:

data Comb : (Γ : Ctx)→ (σ : U)→ (Env Γ→Val σ)→ Setwhere

However, we now want to keep track of an additional subset Δ : Subset Γ, that tracks
the variables that occur in each subterm. Hence we may consider defining a type for
combinators using the following declaration:

data Comb : (Γ : Ctx)→ (Δ : Subset Γ)→ (σ : U)→ (Env Γ→Val σ)→ Setwhere

Yet there is one further adaptation necessary. Previously, our evaluator mapped a term in
Term Γ σ to a function Env Γ→Val σ. In the preceding pages, however, our evaluator now
takes an environment of type Env bΔ c as its argument. Correspondingly, we declare our
data type for combinatory logic terms as follows:

data Comb : (Γ : Ctx)→ (Δ : Subset Γ)→ (σ : U)→ (Env bΔ c→Val σ)→ Setwhere

S : Comb Γ Empty ((σ⇒ (τ⇒ τ'))⇒ ((σ⇒ τ)⇒ (σ⇒ τ'))) λ env f g x→ (f x) (g x)

B : Comb Γ Empty ((σ⇒ τ)⇒ (τ'⇒ σ)⇒ (τ'⇒ τ)) λ env f g x→ f (g x)

C : Comb Γ Empty ((σ⇒ τ⇒ τ')⇒ τ⇒ σ⇒ τ') λ env f g x→ (f x) g

K : Comb Γ Empty (σ⇒ (τ⇒ σ)) λ env x y→ x

I : Comb Γ Empty (σ⇒ σ) λ env x→ x

App : ∀ {f x}→ Comb ΓΔ1 (σ⇒ τ) f→ Comb ΓΔ2 σ x→
(u : UnionΔ1Δ2Δ)→
Comb ΓΔ τ λ env→ (f (prj1 u env)) (x (prj2 u env))

Var : (i : Ref σ Γ)→ (s : Singleton iΔ)→ Comb ΓΔ σ (λ env→ prj s env)

In principle, not much has changed. The base combinator, such as S and B, are deco-
rated with an empty subset. The general pattern—adding additional information about their
types and corresponding lambda terms—should be familiar by now. The constructors for
application, App, and variables, Var, are variations of the ones we saw previously. Each
application records how the union of the variables in the subsets Δ1 and Δ2 gives rise to
Δ. Similarly, the subset associated with a variable is a singleton. The behaviour associated
with each of these constructors can be read off of the cases for application and variables
from the semantics of terms we defined previously.

To complete our development, we now seek to define a translation from lambda terms
to these combinators:

translate : (t : Term ΓΔ σ)→ Comb ΓΔ σ J t K

Just as we saw previously, we can map variables to variables and applications to applica-
tions. The key question is: how do we handle lambda bindings? Previously, we defined a
single function:

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

10 Submitted for publication.

lambda : Comb (σ :: Γ) τ f→ Comb Γ (σ⇒ τ) (λ env x→ f (Cons x env))

Yet we can now see from the evaluation function, that we will need to distinguish between
whether or not the freshly bound variable x is used. Before we can do so, however, we
define a pair of functions:

str-stop : ∀ {f : Env []→Val τ} → Comb (σ :: Γ) (Empty) τ f → Comb Γ Empty τ f

str-drop : ∀ {f : Env bΔ c→Val τ}→ Comb (σ :: Γ) (DropΔ) τ f→ Comb ΓΔ τ f

These functions are dual to the usual ‘weakening’ operation, where you introduce an
unused variable. Instead, they establish a ‘strengthening’ principle, proving that unused
arguments may be discarded safely. Their definition is entirely straightforward, pattern
matching on the argument combinator and recursing over applications.

We can use such strengthening functions to define our first variation of the lambda func-
tion. If we know that an argument is unused, we can introduce the K combinator directly
and discard it:

drop-lambda : ∀ {f}→
Comb (σ :: Γ) (DropΔ) τ f→ Comb ΓΔ (σ⇒ τ) (λ env → f env)

drop-lambda t = App K (str-drop t) Empty1

The more interesting case is when the freshly bound variable is used in the combinator we
have constructed so far. To handle this case, we introduce a keep-lambda function whose
type signature mirrors the lambda function we saw previously:

keep-lambda : ∀ {f}→
Comb (σ :: Γ) (KeepΔ) τ f→ Comb ΓΔ (σ⇒ τ) (λ env v→ f (Cons v env))

It is here that we must decide which combinator to use, depending on which subterms
depend on the freshly bound variable. We can distinguish the following cases:

keep-lambda (Var Top Here) = I

keep-lambda (App t1 t2 (KeepKeep u)) =

App (App S (keep-lambda t1) Empty1) (keep-lambda t2) u

keep-lambda (App t1 t2 (KeepDrop u)) =

App (App C (keep-lambda t1) Empty1) (str-drop t2) u

keep-lambda (App t1 t2 (DropKeep u)) =

App (App B (str-drop t1) Empty1) (keep-lambda t2) u

The first two cases are familiar: we can use the S combinator to pass the freshly bound vari-
able to both arguments of an application; the only possible variable is Var Top, which we
map to the I combinator as before. The next two cases are new: depending on which sub-
term depends on the freshly bound variable, we select the B or C combinator accordingly.
We recurse over the subterm that uses the variable; we apply our strengthening principle to
the subterm that does not, proving that this variable can be safely discarded. The complete
definition of keep-lambda includes two cases, corresponding to the Empty1 and Empty2

constructors of the Union data type, which are handled similarly.
The two functions, keep-lambda and drop-lambda, pattern match on a combinator term

with a particular subset of variables. If we were to use functions rather than relations in the
indices of the constructors of the Comb data type, we would run into unification problems

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

Journal of Functional Programming 11

during pattern matching. The relations, while introducing some overhead, clarify the three
cases that can result in a subset of variables of the from KeepΔ.

These functions rely on the empty set being a left identity of the union of sub-
sets. For example, in the drop-lambda function, we build an application of the form
App K (str-drop t). To establish this has the desired subset Δ, we need to show that the
union arising from the application, also has the index Δ. This follows from the Empty1

constructor of the Union data type. Note that if we had taken the empty subset Empty to
have type Subset [], this would no longer hold definitionally and would instead require an
additional lemma proving this fact.

Using these two variations of the lambda function, we can revisit our translation to
combinatory logic:

translate : (t : Term ΓΔ σ)→ Comb ΓΔ σ J t K
translate (App t1 t2) = App (translate t1) (translate t2) (union)

translate (Lam {Δ = DropΔ} t) = drop-lambda (translate t)

translate (Lam {Δ = KeepΔ} t) = keep-lambda (translate t)

translate (Lam {Δ = Empty} t) = App K (str-stop (translate t)) Empty2

translate (Var x) = Var x (singleton x)

As we saw previously, applications and variables are not particularly interesting. The real
work is done in the case for lambda bindings. Depending on if the freshly bound variable is
used or not, either keep-lambda or drop-lambda is invoked, after translating the lambda’s
body.

5 Reflection

Although the translation schemes are reasonably straightforward, finding them was not.
Writing dependently typed programs in this style—folding a program’s specification into
its type—may feel like a bit of a parlour trick, where the right choice of definitions ensure
the entire construction is correct. Yet reading through these definitions post hoc—like so
often with Agda programs—does not always tell how they were written.

In particular, the type safe translation from lambda terms to SKI combinators is a ques-
tion I have set my students in the past. Proving this translation correct, requires defining
a semantics for combinatory terms and showing that the translation is semantics preserv-
ing. Interestingly, this direct proof requires an axiom—functional extensionality—in the
case for lambdas, as we need to prove two functions equal. Yet the structure of proof is
simple enough: it relies exclusively on induction hypotheses and a property of the lambda

function. It is this observation that makes it possible to incorporate the correctness proofs
in the definitions themselves. Extending the translation scheme to also use the B and C

combinators is harder—but follows naturally once you have the right choice of variable
representation.

As our starting point, we have taken the ‘traditional’ simply-typed lambda calculus.
More recent work by Kiselyov (2018), shows how a slight modification to the traditional
typing rules allows for a denotation semantics as combinators directly. Formalising this in
a proof assistant, however, is left as an exercise for the reader.

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

12 Submitted for publication.

References

Abel, A. (2016) Agda tutorial. 13th International Symposium, FLOPS 2016, Kochi, Japan, March
4-6, 2016, Proceedings. Springer.

Curry, H. B., Feys, R., Craig, W., Hindley, J. R. and Seldin, J. P. (1958) Combinatory logic. Vol. 1.
North-Holland Amsterdam.

Kiselyov, O. (2018) lambda to ski, semantically. International Symposium on Functional and Logic
Programming pp. 33–50. Springer.

McBride, C. (2004) Epigram: Practical programming with dependent types. International School on
Advanced Functional Programming pp. 130–170. Springer.

McBride, C. (2018) Everybody’s got to be somewhere. Electronic Proceedings in Theoretical
Computer Science 275(Jul):53–69.

Norell, U. (2007) Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology.

Norell, U. (2009) Dependently typed programming in Agda. Advanced Functional Programming:
6th International School AFP pp. 230–266. Springer Berlin Heidelberg.

Norell, U. (2013) Interactive programming with dependent types. Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming. ICFP ’13, pp. 1–2. ACM.

Schönfinkel, M. (1924) Über die bausteine der mathematischen logik. Mathematische annalen
92(3):305–316.

	Introduction
	Lambda calculus
	Translation to combinatory logic
	An optimising translation
	Reflection

