The Problem of the Dutch National Flag

Wouter Swierstra
IFIP WG 2.1 #66
Jeremy’s Problem
The State Monad

State s a := s -> a * s

return : a -> State s a

(>>=) : State s a

-> (a -> State s b)

-> State s b
relabel : State nat (Tree nat)
relabel t = match t with
 | Leaf _ =>
 get >>= fun c =>
 put (c + 1) >>=
 return (Leaf c)
 | Node l r =>
 relabel l >>= fun l' =>
 relabel r >>= fun r' =>
 return (Node l' r')
end
Idea:
Decorate the state monad with pre- and postconditions.
Pre- and postconditions

Define the following types:

\[
\begin{align*}
\text{Pre} & : = s \rightarrow \text{Prop} \\
\text{Post} (a : \text{Set}) & : = s \rightarrow a \rightarrow s \rightarrow \text{Prop}
\end{align*}
\]
Define the following type:

\[
\text{HoareState } s \ P \ a \ Q := \\
\{ i : s \mid P i \} \to \\
\{ (x,f) : a \ast s \mid Q i x f \}
\]
Plan

• Define return and bind with a fancy HoareState type.

• Choose a suitable type for our relabelling function.
Relabelling revisited

The type of relabel becomes:

HoareState

(fun i => True)

(Tree nat)

(fun i t f =>

 flatten t = [i .. i + size t])
Relabelling revisited

The type of relabel becomes:

HoareState

(fun i => True)

(Tree nat)

(fun i t f =>

\[\text{flatten } t = [i .. i + \text{size } t] \]

\(\land f = i + \text{size } t \)\)
The Problem of the Dutch National Flag

Wouter Swierstra
IFIP WG 2.1 #66
Type Theory

Per Martin-Löf

- A foundation of constructive mathematics;
- a functional programming language.
Type Theory
Per Martin-Löf

• A foundation of constructive mathematics:
 • a functional programming language.

Really?
What about...

- mutable references?
- arrays?
- exceptions?
- concurrency?
- a GUI?
- a foreign function interface?
- network communication?
- a compiler?
- general recursion?
- file manipulation?
- random numbers?
- ...
There is a row of buckets numbered from 1 to n. It is given that:

- each bucket contains one pebble
- each pebble is either red, white, or blue.

A mini-computer is placed in front of this row of buckets and has to be programmed in such a way that it will rearrange (if necessary) the pebbles in the order of the Dutch national flag.

A Discipline of Programming, E.W. Dijkstra
Specification

- The mini-computer supports two commands:
 - `swap (i,j)` exchanges the pebbles in buckets numbered i and j for \(1 \leq i, j \leq n \);
 - `read (i)` returns the colour of the pebble in bucket number i for \(1 \leq i \leq n \).

- Solution should use one pass only and constant memory.
The Problem of the Dutch National Flag

Wouter Swierstra
IFIP WG 2.1 #66
The Problem of the Dutch National Flag

Wouter Swierstra
IFIP WG 2.1 #66
Known to be red
Known to be red

Known to be white
Can we find a solution:

- that terminates on all inputs;
- satisfies the specification;
- and has machine verified proofs of both these properties.
Plan of attack

• Use the dependently typed programming language Agda to:
 • implement the mini-computer;
 • write an algorithm that sorts the pebbles;
 • prove the algorithm correct.
The Mini-Computer
Pebbles

data Pebble : Set where
 Red : Colour
 White : Colour
Natural numbers

```
data Nat : Set where
    Zero : Nat
    Succ : Nat -> Nat
```
data Buckets : Nat -> Set where
 Nil : Buckets Zero
 Cons : Pebble -> Buckets n -> Buckets (Succ n)
The state monad

State : Nat -> Set -> Set
State n a =
 Buckets n -> Pair a (Buckets n)

return : a -> State n a
>>= : State n a ->
 (a -> State n b) -> State n b
data Index : Nat -> Set where
 One : Index (Succ n)
 Next : Index n ->
 Index (Succ n)
Indices

data Index : Nat -> Set where
 One : Index (Succ n)
 Next : Index n ->
 Index (Succ n)
Reading

read : Index n -> State Pebble
read i bs = (bs ! i , bs)
where
! : Buckets n -> Index n
 -> Pebble
(Cons p _) ! One = p
(Cons _ ps) ! (Next i) = ps ! i
swap : Index n -> Index n
 -> State n Unit
swap i j =
 read i >>= \pi ->
 read j >>= \pj ->
 write i pj >>
 write j pi
Back to the problem
An approximation

\[
\text{sort} :: \text{Index n} \rightarrow \text{Index n} \\
\rightarrow \text{State n Unit}
\]
\[
\text{sort } r \ w = \\
\quad \text{if } w == r \ \text{then return unit} \\
\quad \text{else case read } r \ \text{of} \\
\quad \quad \text{Red} \rightarrow \text{sort } (r + 1) \ w \\
\quad \quad \text{White} \rightarrow \text{swap } r \ w \gg \\
\quad \quad \quad \text{sort } r \ (w - 1)
\]
An approximation

sort :: Index n -> Index n
 -> State n Unit
sort r w =
 if w == r then return unit
 else case read r of
 Red -> sort (r + 1) w
 White -> swap r w >>
 sort r (w - 1)

Why does this terminate?
sort :: Index n -> Index n
 -> State n Unit
sort r w =
 if r == w then return unit
 else case read r of
 White ->
 Red -> swap r w >>
 sort r (w - 1)
 sort (r + 1) w
 sort r (w - 1)
An approximation

sort :: Index n -> Index n -> State n Unit

sort r w =
 if r == w then return unit
 else case read r of
 White ->
 Red -> swap r w >>
 sort r (w - 1)
 sort (r + 1) w
 sort r (w - 1)

Only terminates if \(r \leq w \)
Manipulating Indices

sort :: Index n -> Index n
 -> State n Unit
sort r w =
 if r == w then return unit
 else case read r of
 White -> sort (r + 1) w
 Red -> swap r w >>
 sort r (w - 1)
Two problems

- We need to increment and decrement inhabitants of $\text{Index } n$;
- We need to prove that our algorithm terminates.
Next : Index n -> Index (Succ n)
Injection

\[\text{inj} : \text{Index } n \rightarrow \text{Index } (\text{Succ } n)\]
\[\text{inj One} = \text{One}\]
\[\text{inj } (\text{Next } i) = \text{Next } (\text{inj } i)\]
Next or inj
Idea

- Only increment the image of inj;
- Only decrement the image of Next.
data _<=_ : (i j : Index n) -> Set where
 Base : (i : Index (Succ n)) -> One <= i
 Step : (i j : Index n) ->
 (i <= j) -> (Next i <= Next j)
Difference

data Diff : (i j : Index n) -> Set where
 Base : (i : Index n) -> Diff i i
 Step : (i j : Index n) ->
 Diff i j -> Diff (inj i) (Next j)
Sort

\[
\text{sort} : (r \ w : \text{Index } n) \to \\
\text{Diff } r \ w \to \\
\text{State } n \ \text{Unit}
\]
Sort – Base case

\[\text{sort} : (r \ w : \text{Index } n) \to \text{Diff } r \ w \to \text{State } n \ \text{Unit}\]

\[\text{sort } \cdot \text{i } \cdot \text{i } \text{(Base } i) = \text{return unit}\]
sort : (r w : Index n) ->
Diff r w ->
State n Unit
sort : (r w : Index n) ->
Diff r w ->
State n Unit
sort .(inj i) .(Next j) (Step i j d) =
sort : (r w : Index n) ->
 Diff r w ->
 State n Unit
sort .(inj i) .(Next j) (Step i j d) =
read (inj i) >>= \p ->
case p of
 Red ->
 White ->
sort : (r w : Index n) ->
 Diff r w ->
 State n Unit
sort .(inj i) .(Next j) (Step i j d) =
 read (inj i) >>= \p ->
 case p of
 Red -> sort (Next i) (Next j) ?
 White ->
sort : (r w : Index n) ->
 Diff r w ->
 State n Unit

sort .(inj i) .(Next j) .(Step i j d) =
read (inj i) >>= \p ->
case p of
 Red -> sort (Next i) (Next j) ?
 White ->
 swap (inj i) (Next j) >>
 sort (inj i) (inj j) ?
Lemmas

- We need to prove a few useful lemmas:
 - $\text{Diff } i \ j \rightarrow \text{Diff } (\text{Next } i) \ (\text{Next } j)$
 - $\text{Diff } i \ j \rightarrow \text{Diff } (\text{inj } i) \ (\text{inj } j)$
Lemmas

- We need to prove a few useful lemmas:
 - \(\text{Diff } i \ j \rightarrow \text{Diff } (\text{Next } i) \ (\text{Next } j) \)
 - \(\text{Diff } i \ j \rightarrow \text{Diff } (\text{inj } i) \ (\text{inj } j) \)

...but even then the algorithm is not *structurally* recursive.
data Diff : (i j : Index n) -> Set where
 Base : (i : Index n) -> Diff i i
 Step : (i j : Index n) ->
 Diff (inj i) (inj j) ->
 Diff (Next i) (Next j) ->
 Diff (inj i) (Next j)
Verification
Verification
the easy part
Formalizing the Invariant

Invariant : (r w : Index n)
 -> Buckets n -> Set
Invariant r w bs =
 (\forall i -> w < i -> bs ! i = White)
 && (\forall i -> i < r -> bs ! i = Red)
Correctness Theorem

∀ r w bs,
Invariant r w bs ->
∃ m : Index n,
Invariant m m (sort r w bs)
Proof sketch

• Proof proceeds by induction on Diff

• Distinguish three cases:
 • Base case (trivial);
 • No swap happens (not too hard);
 • Swap happens (a bit trickier).

• In the latter two cases, we establish the invariant holds and make a recursive call.
The Dutch National Flag

• The *structure* of the algorithm stays the same.
 • similar invariant;
 • similar termination proof.
• Program does more case analysis...
 • ... and so do the proofs.
• Messier but no harder.
Conclusions

• You need a PhD to verify a four line C program in Agda.
• …but it is possible to verify non-structurally recursive, ‘impure’ functions in type theory.