Datatype Generic Packet Descriptions
joint work with Marcell van Geest

Wouter Swierstra
About me

- Studied Mathematics and Computer Science in Utrecht
- PhD from University of Nottingham
- Postdocs at Chalmers and Nijmegen
- OCaml developer at Vector Fabrics
- Now Assistant Professor at Utrecht University

I’ve worked with all kinds of functional languages and interactive proof assistants.

I’m now visiting Galois on sabbatical for the summer.
The problem

Data comes in all kinds of shapes and sizes.
Some of the formats and protocols used to store or transmit information in binary can be quite complex.
Example: IPv4 header

<table>
<thead>
<tr>
<th>Offsets</th>
<th>Octet</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet</td>
<td>Bit</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Version</td>
<td>IHL</td>
<td>DSCP</td>
<td>ECN</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>Identification</td>
<td>Flags</td>
<td>Fragment Offset</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>Time To Live</td>
<td>Protocol</td>
<td>Header Checksum</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>Source IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>128</td>
<td>Destination IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>192</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>256</td>
<td>Options (if IHL > 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: IPv4 packets

- The *Version* field must be equal to 0100 (i.e. 4)
- The *Internet Header Length* (IHL) specifies the number of 32-bit words the header is long. It must be at least 5;
- The *Header Checksum* occurs halfway through the header.
- The *Total Length* specifies the length of the packet in bytes. From the IHL and Total Length fields you can compute the length of the remaining data.
Problems

Parsing IPv4 is not easy.

The grammar is beyond context free: computing the length of the data or checksum involves non-trivial computations.
Problems

Parsing IPv4 is not easy.

The grammar is beyond context free: computing the length of the data or checksum involves non-trivial computations.

Specifying formats such as IPv4 is not easy

This is usually done through some combination of natural language, pseudocode, C structs/unions, RFCs,…
Problems

Parsing IPv4 is not easy.

The grammar is beyond context free: computing the length of the data or checksum involves non-trivial computations.

Specifying formats such as IPv4 is not easy

This is usually done through some combination of natural language, pseudocode, C structs/union, RFCs,…

Can we do better?
This talk

We will try to design a data type for describing various binary formats.

From such descriptions, we can generate parsers and pretty printers.
This talk

We will try to design a **data type** for describing various binary formats.

From such descriptions, we can *generate* parsers and pretty printers.

By embedding this construction in a dependently typed programming language – such as Coq, Agda, or Idris – we can prove the desired round trip property relating parsing and pretty printing.
This talk

We will try to design a **data type** for describing various binary formats.

From such descriptions, we can *generate* parsers and pretty printers.

By embedding this construction in a dependently typed programming language – such as Coq, Agda, or Idris – we can prove the desired round trip property relating parsing and pretty printing.

Crucially, we will use *dependent types* to mix computation and static type safety.
Warm up: universes

data FT : Set where
 word : (n : ℕ) → FT
 ⊗ : FT → FT → FT

[_] : FT → Set
[word n] = Vec Bit n
[t₁ ⊗ t₂] = [t₁] × [t₂]

A pair of a data type that describes a collection of types (FT) and the decoding function mapping descriptions to their corresponding types is sometimes known as a universe.
Generating parsers from descriptions

Parser : Set → Set
Parser a = List Bit → Maybe (a × List Bit)

parse : (f : FT) → Parser [f]
parse (t₁ ⊗ t₂) = _,_ <$> parse t₁ <*> parse t₂
parse (word n) = take n

where
 take : (n : ℕ) → Parser (Vec n Bit)
Pretty printing data

\[pp : (f : FT) \rightarrow \square f \rightarrow \text{List Bit} \]

\[pp \ (\text{word} \ n) \ bs \quad = \quad \text{toList} \ bs \]

\[pp \ (t_1 \ \otimes \ t_2) \ (x \ , \ y) \quad = \quad pp \ t_1 \ x \ \text{++} \ pp \ t_2 \ y \]
Round trip correctness

\[
\text{roundTrip} : (f : \text{FT}) \rightarrow (x : [f]) \rightarrow \\
\text{parse } f (\text{pp } f x) = \text{just } (x, [])
\]

Proof by induction on our description \(f \).
Limitations

- This gives us a very limited language for describing products of fixed size words.
- There are no dependencies between a field and the type of the remaining fields, e.g., a length field specifying the size of the remaining data;
- There are no constraints on the values that fields may assume, e.g., a checksum field that is computed from all other fields or a constant field that must be equal to 0100.
Interlude: sigma types

```haskell
data Pair (a : Set) (b : Set) : Set where
  _,_ : a → b → Pair a b
```

Note: the type of the constructor is not dependent.

What if the type of the second component can depend on the value of the first?
Interlude: sigma types

```
data Pair (a : Set) (b : Set) : Set where
  _,_ : a → b → Pair a b
```

Note: the type of the constructor is *not* dependent.

What if the type of the second component can depend on the value of the first?

```
data Σ (a : Set) (b : a → Set) : Set where
  _,_ : (x : a) → b x → Σ a b
```

Constructive equivalent of existential quantification.
Take two data\(FT : \text{Set} \) where
\[
\begin{align*}
\text{word} & : (n : \mathbb{N}) \rightarrow FT \\
\otimes & : FT \rightarrow FT \rightarrow FT \\
\text{calc} & : (t : FT) \rightarrow [t] \rightarrow FT \\
\text{sigma} & : (t : FT) \rightarrow ([t] \rightarrow FT) \rightarrow FT
\end{align*}
\]
\[
[_] : FT \rightarrow \text{Set}
\]
\[
\begin{align*}
[\text{word } n \] & = \text{Vec Bit } n \\
[t_1 \otimes t_2 \] & = [t_1] \times [t_2] \\
[\text{calc } t \ v \] & = \top \\
[\text{sigma } t \ f \] & = \Sigma [t] (\ \backslash \ v \rightarrow [f \ v \])
\end{align*}
\]

This universe now relies on \textit{induction recursion}.

Examples: checksum

checksummedByte : FT
checksummedByte =
 sigma (word 7) (\ d → calc (word 1) (parity d))
where
 parity : Vec Bit n → Bit

- A 7 bit word;
- Followed by a single parity bit.
Examples: checksum

`checksummedByte : FT`

`checksummedByte =`

` sigma (word 7) (\ d \rightarrow calc (word 1) (parity d))`

`where`

` parity : Vec Bit n \rightarrow Bit`

- A 7 bit word;
- Followed by a single parity bit.

The corresponding type `\ [checksummedByte]` is

`\Sigma (Vec Bit 7) (\ d \rightarrow T)"
Examples: length field

\[
\text{lengthData} : \text{FT} \\
\text{lengthData} = \\
\sigma (\text{word 32}) (~d \rightarrow \text{word (fromBits d)}) \\
\text{where} \\
\text{fromBits} : \left[\text{Vec Bit } n \right] \rightarrow \mathbb{N}
\]

- A 32-bit word – the length field;
- Followed by a word of that length;
Examples: length field

```
lengthData : FT
lengthData =
  sigma (word 32) (\ d → word (fromBits d))
where
  fromBits : [ Vec Bit n ] → ℕ
```

- A 32-bit word – the length field;
- Followed by a word of that length;

The corresponding type `[lengthData]` is:

```
Σ (Vec Bit 32) (\d → Vec Bit (fromBits d))
```
Parsing

\[
\text{parse} : (f : \text{FT}) \rightarrow \text{Parser} \ [f] \\
\text{parse} (\sigma x f) \text{ input with parse } x \text{ input} \\
... \ | \ \text{just} (y, \text{rest}) = _, _ <$$> \text{ pure } y \\
\hspace{2em} <*> \text{ parse } (f y) \\
... \ | \ \text{nothing} \hspace{2em} = \text{nothing} \\
\text{parse} (\text{calc } t x) \text{ input with parse } t \text{ input} \\
... \ | \ \text{just} (y, \text{rest}) = \text{if } x == y \\
\hspace{2em} \text{then } \ \text{just} (tt, \text{rest}) \\
\hspace{2em} \text{else } \text{nothing} \\
... \ | \ \text{nothing} \hspace{2em} = \text{nothing} \\
\]

Parsing sigma types is (almost) the same as parsing pairs; to parse derived fields, we parse the desired value and check it is what we expect.
What next?

We can update pretty printing and round trip proofs.
What next?

We can update pretty printing and round trip proofs.

In ideal world, where all binary formats are defined by type theorists, we would now be done.
What next?

We can update pretty printing and round trip proofs.

In ideal world, where all binary formats are defined by type theorists, we would now be done.

But...
What next?

We can update pretty printing and round trip proofs.

In ideal world, where all binary formats are defined by type theorists, we would now be done.

But…

- The computations involved are complicated! To make matters worse, we need to mix information about *how* to encode/decode data in the actual descriptions.
- Computed data (such as the header checksum in IPv4) may occur before all data on which it relies is present.
Plan of attack

1. Define a richer universe of file formats
2. Define a predicate that makes it clear when something is ‘trivial’ to parse/pretty print – we can use this to generate the (de)serialization functions.
3. Define *transformations* on this richer universe, adding new fields or massaging data somehow.
data DT : Set₁ where
 leaf : Set → DT
 ⊗ : DT → DT → DT
 sigma : (c : DT) → ([c] → DT) → DT

[] : DT → Set
[leaf A] = A
[l ⊗ r] = [l] × [r]
[sigma t f] = Σ [t] (∖ x → [f x])

We define a universe closed under arbitrary types, products, and dependent products.
data DT : Set₁ where
 leaf : Set → DT
 ⊗ : DT → DT → DT
 sigma : (c : DT) → ([c] → DT) → DT

► This universe is ‘large’ – it contains arbitrary other types. We can resolve this easily enough by parametrizing our development by a base universe.
► We arguably don’t need both products and dependent products. We find it useful to distinguish between sequencing (products) and dependency (sigma types).
Universe: example

length+word : DT
length+word =
 sigma (leaf ℤ) (\ len → leaf (Vec Bits len))

This allows us to specify dependencies *independently* of the encoding – this is particularly useful as dependencies and computations become more complex.
Of course, these descriptions contain *arbitrary* data – in particular data such as functions that cannot be serialized easily.

If the description contains only binary words in the leaves, we can parse it easily enough.
Of course, these descriptions contain *arbitrary* data – in particular data such as functions that cannot be serialized easily.

If the description contains only binary words in the leaves, we can parse it easily enough.

data IsLowLevel : DT → Set where
 leaf : IsLowLevel (leaf (Vec Bit n))
 pair : IsLowLevel l →
 IsLowLevel r →
 IsLowLevel (l ⊗ r)
 sigma : IsLowLevel c →
 ((x : [[c]]) → IsLowLevel (d x)) →
 IsLowLevel (sigma c d)
Parsing?

\[
\text{data IsLowLevel : DT \to Set where}
\]
\[
\ldots
\]
\[
\text{parse : (f : FT) \to IsLowLevel f \to Parser f}
\]

The definition of \text{parse} is pretty much identical to what we saw previously.

Proofs of the \text{IsLowLevel} predicate can be generated automatically for most formats.
data IsLowLevel : DT → Set where

... parse : (f : FT) → IsLowLevel f → Parser [f]

The definition of parse is pretty much identical to what we saw previously.

Proofs of the IsLowLevel predicate can be generated automatically for most formats.

Assuming all data is binary words, we can call our parse function. But what if it isn’t?
Conversions

We can specify how to convert from one representation to another:

```
data Conversion (t₁ t₂ : DT) : Set where
  convert : (enc : [t₁] → [t₂]) →
            (dec : [t₂] → Maybe [t₁]) →
            ((x : [t₁]) → (dec (enc x) ≡ just x))
  Conversion t₁ t₂
```

This is a *semi-partial isomorphism* – or shift in representation – between two types, `[t₁]` and `[t₂]`.
Categories of conversions

These conversions are closed under composition.

\(\cdot \circ \cdot \) : Conversion \(t_1 \to t_2 \) →
Conversion \(t_2 \to t_3 \) →
Conversion \(t_1 \to t_3 \)

And we can define an identity conversion:

\(\text{idConvert} \) : Conversion \(t \to t \)
Example: Explicit Congestion Notification (ECN)

\[
\text{data ECN : Set where}
\]
\[
\begin{align*}
\text{Non-ECT} & : \text{ECN} \\
\text{ECT0} & : \text{ECN} \\
\text{ECT1} & : \text{ECN} \\
\text{CE} & : \text{ECN}
\end{align*}
\]
\[
\begin{align*}
\text{enc} : \text{ECN} & \to \text{Vec Bit 2} \\
\text{dec} : \text{Vec Bit 2} & \to \text{ECN} \\
\text{enc-dec} : (x : \text{ECN}) & \to \text{dec (enc x) } \equiv \text{just } x
\end{align*}
\]

Conversions describe the shift in representation of one field – but how do we extend this to handle a complete description?
Converting descriptions

```
data DTX : DT → Set₁ where
  convert : Conversion t₁ t₂ → DTX t₁
  pair    : DTX l → DTX r → DTX (l ⊗ r)
  sigma   : DTX c → ((x : [ c ]) → DTX (d x)) → DTX (sigma c d)
```

You can think of $\text{DTX } t$ as a transformation on the description t – applying certain data conversions at specific points in the description.

Once again, there is an identity transformation and we can compute the reflexive-transitive closure, DTX^*.
Example: converting natural numbers to bits

\[
\text{DT} = \text{int32} \circ \text{vec} \circ \text{bits}
\]

where

\[
\text{int32} : \text{Conversion} \mathbb{N} (\text{Vec Bit 32})
\]
\[
\text{copy} : \text{Conversion} t t
\]
Example: converting natural numbers to bits

\[
\begin{align*}
\text{length+word} &: \text{ DT} \\
\text{length+word} &= \\
&\quad \text{sigma (leaf } \mathbb{N}) (\lambda \text{ len }\rightarrow \text{ leaf } (\text{Vec Bits len})) \\
\text{length+word+enc} &: \text{ DTX length+word} \\
\text{length+word+enc} &= \text{sigma int32 (\lambda \text{ len }\rightarrow \text{ copy})} \\
&\text{where} \\
&\quad \text{int32} : \text{ Conversion } \mathbb{N} (\text{Vec Bit 32}) \\
&\quad \text{copy} : \text{ Conversion } t t
\end{align*}
\]

Describing the lengths of IPv4 packets in this style is really worth the additional effort.
Calculating new types and values

\[
\text{extendType} : \ DTX \ t \rightarrow DT \\
\text{extendValue} : \ (tx : DTX \ t) \rightarrow \\
\hspace{1cm} [t] \rightarrow [extendType \ tx]
\]

Using these functions we can calculate a new modified description, call the corresponding parser, and convert the result back to the desired format.
What’s missing?

There were two problems we set out to solve initially:

► The computations need to mix information about *how* to encode/decode data in the actual descriptions.
What’s missing?

There were two problems we set out to solve initially:

- The computations need to mix information about *how* to encode/decode data in the actual descriptions.

Done
What’s missing?

There were two problems we set out to solve initially:

- The computations need to mix information about how to encode/decode data in the actual descriptions.

Done

- Computed data (such as the header checksum in IPv4) may occur before all data on which it relies is present.
What’s missing?

There were two problems we set out to solve initially:

- The computations need to mix information about how to encode/decode data in the actual descriptions.

Done

- Computed data (such as the header checksum in IPv4) may occur before all data on which it relies is present.

How can we add new fields to existing descriptions?
Idea: a new constructor for the DTX type

data DTX (top : DT) : DT → Set where
 ...
 insert : ...

We add a new type parameter to the DTX type, representing the ‘global’ description that we’re transforming.

We add a new constructor to the DTX type, inserting new fields to an existing description.
Idea: a new constructor for the DTX type

data DTX (top : DT) : DT → Set where

... insert : (t' : DT) → Side → ([top] → [t']) → DTX top t

data Side : Set where
 left right : Side

Calling insert t' left f – inserts a field of type t' before the current format, calculated from the value of all the other fields ([top]) using the function f.
Example: inserting a checksum

\[
t : DT \\
t = \text{length} + \text{word} + \text{enc} \\
\text{checksummed} : \text{DTX} \ t \ t \\
\text{checksummed} = \text{insert (leaf Bit) left checksum} \\
\quad \text{where} \\
\quad \text{checksum} : [t] \rightarrow \text{Bit}
\]

Here we can insert a checksum bit \textit{before} the remaining data.
Calculating new types and values

`extendType : \{t : DT\} → DTX` `top t → DT`

`extendType \{t = t\} (insert t' left _) = t' ⊗ t`

`extendType \{t = t\} (insert t' right _) = t ⊗ t'`

`extendValue : (tx : DTX top t) →`
`[top] → [t] → [extendType tx]`

`extendValue (insert t' left f) dtop d = (f dtop , d)`

`extendValue (insert t' right f) dtop d = (d , f dtop)`

Once again, given any description transformation (a value of type DTX), we can compute the resulting description and convert the results of parsing.
Checking parsed values

Of course, we cannot decide whether or not a checksum is correct before parsing the remaining data. We can, however, read in the data and check it validity post hoc:

\[
\text{check : (tx : DTX t t) } \rightarrow \\
[\text{extendType tx }] \rightarrow \text{Maybe [t]}
\]

Alternatively, we can define single top-level function that parses and validates all data.
The type of the function used to compute derived fields in the insertion constructor is:

\[
\lbrack \text{top} \rbrack \rightarrow \lbrack \text{t}' \rbrack
\]

Given the entire top-level data structure, we need to compute a value of type \text{t}'.

But what if we want to perform \textit{conditional} extensions on existing data?
Example: maximum element of a vector

vecBits : DT
vecBits = sigma ℕ (\ len → Vec Bit len)

insertMax : DTX vecBits vecBits
insertMax = sigma copy iMax
 where
 iMax : (len : ℕ) → DTX vecBits (Vec ℕ len)
iMax zero = copy
iMax (suc n) = insert ℕ right maxVec
maxVec : [] vecBits → ℕ

We need to compute the maximum of any vector, even if we only want to add a new field to non-empty vectors.
Solution

The argument to `insert` that calculates new values has the type:

\[
\begin{align*}
\llbracket \text{top} \rrbracket & \rightarrow \llbracket t' \rrbracket \\
\end{align*}
\]

We want to make it more specific, allowing it to refer to the current subtree:

\[
\begin{align*}
(d : \llbracket \text{top} \rrbracket) & \rightarrow (v : \llbracket t \rrbracket) \rightarrow \text{Select} \ d \ v \\
& \rightarrow \llbracket t' \rrbracket \\
\end{align*}
\]

In our maximum vector example, this would correspond to having a non-empty vector as argument, rather than having to handle all possible cases.
Selection (sketched)

To make the type of insertion more precise, we update the type of our transformations:

\[
data _\triangleright_ : DT \to DT \to Set \text{ where}
\]
\[
\ldots
\]

\[
data DTX (top : DT) :
(t : DT) \to (s : top \triangleright t) \to Set \text{ where}
\]
\[
\otimes : DTX top l (s \gg fst) \to DTX top r (s \gg snd) \to
DTX top (l \otimes r) s
\]
\[
\ldots
\]

This lets us give the more precise type to the \texttt{insert} constructor.
Recap

- A universe describing arbitrary types closed under (dependent) products.
Recap

- A universe describing arbitrary types closed under (dependent) products.

- A predicate stating when elements of this universe are ‘easy’ to parse.
Recap

- A universe describing arbitrary types closed under (dependent) products.

- A predicate stating when elements of this universe are ‘easy’ to parse.

- Generic parse and pretty print functions – satisfying the expected round trip property.
Recap

- A universe describing arbitrary types closed under (dependent) products.

- A predicate stating when elements of this universe are ‘easy’ to parse.

- Generic parse and pretty print functions – satisfying the expected round trip property.

- Transformations allowing you to modify data representation or insert new fields.
Recap

- A universe describing arbitrary types closed under (dependent) products.
- A predicate stating when elements of this universe are ‘easy’ to parse.
- Generic parse and pretty print functions – satisfying the expected round trip property.
- Transformations allowing you to modify data representation or insert new fields.

Together this gives you a ‘DSL’ for describing binary data.
Case study: IPv4

<table>
<thead>
<tr>
<th>Offsets</th>
<th>Octet</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet</td>
<td>Bit</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Version</td>
<td>IHL</td>
<td>DSCP</td>
<td>ECN</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>Identification</td>
<td>Flags</td>
<td>Fragment Offset</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>Time To Live</td>
<td>Protocol</td>
<td>Header Checksum</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>Source IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>128</td>
<td>Destination IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>160</td>
<td>Options (if IHL > 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>192</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>256</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Types of fields

- **Enumerations** – such as the ECN or Protocol fields – these are easy to model in Agda; we can describe their low-level encodings later using a suitable conversion.

- **(Bounded) natural numbers** – the Total Length or Internet Header Length are big-endian integers. We typically use Fin \((2^{32})\) to describe a 32-bit integer – this makes the computations using these fields easier. Conversions describe how to serialize such values to words.
Types of fields (continued)

- **Constants** – the Version field must be 0100. These can be inserted into a description.
- **Variable length words** – the Data and Options field contain words of variable length. Using sigma types we can capture the dependency between fields. The calculations involved can be a bit messy…
Complete description of IPv4 in four steps:

1. Basic definition describing the data stored in a packet.
2. Insert constant fields and converting convenient lengths to their actual representation.
3. Binary encoding of all high-level data.
4. Insertion of checksums.

Compiled to Haskell and tested against existing IPv4 implementations.
Results

Complete description of IPv4 in four steps:

1. Basic definition describing the data stored in a packet.
2. Insert constant fields and converting convenient lengths to their actual representation.
3. Binary encoding of all high-level data.
4. Insertion of checksums.

Compiled to Haskell and tested against existing IPv4 implementations.

Found a bug in our implementation – choice of big-endian vs. little-endian of integers.
Further work

- Better error messages when parsing fails.
- Named fields – either using Strings, reflection, or singleton types.
- Proofs of (in)equalities are no fun in Agda.
Take home messages

Data type generic programming uses type structure to derive new functions.
Take home messages

Data type generic programming uses type structure to derive new functions.

In this domain, we’ve studied how to *transform* such descriptions to accommodate for external constraints, imposed by existing binary formats.
Take home messages

Data type generic programming uses type structure to derive new functions.

In this domain, we’ve studied how to *transform* such descriptions to accommodate for external constraints, imposed by existing binary formats.

Instead of writing arbitrary transformations on descriptions, we have a ‘deep embedding’ of various well-behaved transformations.
Take home messages

Data type generic programming uses type structure to derive new functions.

In this domain, we’ve studied how to transform such descriptions to accommodate for external constraints, imposed by existing binary formats.

Instead of writing arbitrary transformations on descriptions, we have a ‘deep embedding’ of various well-behaved transformations.

From these transformations, we can calculate new type descriptions and their associated parsers for realistic binary formats.
Questions?