Data types à la carte

FP AMS – 21/6/18

Wouter Swierstra
Suppose we’re implementing a small expression language in Haskell.

We can define a data type for expressions and evaluation function easily enough:

```haskell
data Expr = Val Int | Add Expr Expr

eval :: Expr -> Int
eval (Val x) = x
eval (Add l r) = eval l + eval r
```
Warm-up: expressions in Haskell

Suppose we’re implementing a small expression language in Haskell.

We can define a data type for expressions and evaluation function easily enough:

```haskell
data Expr = Val Int | Add Expr Expr

eval :: Expr -> Int
eval (Val x) = x
eval (Add l r) = eval l + eval r
```

That’s it – we can go home.
Handling changes

Code is never finished – how can we handle changing requirements?

We can add **new functions** easily enough – we don’t even have to modify any existing code

```haskell
render :: Expr -> String
render (Val x) = show x
render (Add l r) =
    parens (show l ++ " + " ++ show r)
```
Handling changes

Code is never finished – how can we handle changing requirements?

We can add **new functions** easily enough – we don’t even have to modify any existing code

```haskell
render :: Expr -> String
render (Val x)   = show x
render (Add l r) =
    parens (show l ++ " + " ++ show r)
```

But we cannot add **new constructors** without modifying the datatype and all functions defined over it.
This situation is dual to that in object oriented languages. There, we can add **new subclasses** to a class easily enough…but adding **new methods** requires updating every subclass.
Phil Wadler dubbed this the Expression Problem:

The expression problem is a new name for an old problem. The goal is to define a datatype by cases, where one can add new cases to the datatype and new functions over the datatype, without recompiling existing code, and while retaining static type safety (e.g., no casts).
Phil Wadler dubbed this the Expression Problem:

The expression problem is a new name for an old problem. The goal is to define a datatype by cases, where one can add new cases to the datatype and new functions over the datatype, without recompiling existing code, and while retaining static type safety (e.g., no casts).

How can we address the Expression Problem in Haskell?
A naive approach

```haskell
data IntExpr = Val Int | Add Expr Expr

data MulExpr = Mul IntExpr Intexpr

type Expr = Either IntExpr MulExpr

data Either a b = Inl a | Inr b
```

Question

What is wrong with this approach?
A naive approach

```haskell
data IntExpr = Val Int | Add Expr Expr

data MulExpr = Mul IntExpr Intexpr

type Expr = Either IntExpr MulExpr

data Either a b = Inl a | Inr b
```

Question
What is wrong with this approach?
We cannot freely mix addition and multiplication.
The problem

data Expr = ...

What constructors should we choose?
The problem

```haskell
data Expr = ...
```

What constructors should we choose?

Whenever we choose the constructors, we’re stuck – we won’t be able to add new ones easily.
data Expr f = In (f (Expr f))

- the type variable `f` abstracts over the constructors of our data type;
- the type variable `f` has kind `* -> *` – it’s a type constructor like `List` – it abstracts over the recursive occurrences of `subtrees`.
- By applying `f` to `Expr f`, we’ll replace the type variables in `f` with these subtrees – similar to writing recursion explicitly using `fix` or the `Y`-combinator.
- I’ll sometimes refer to `f` as a (pattern) functor.
Evaluation revisited

data AddF a = Val Int | Add a a

data Expr f = In (f (Expr f))

eval (In (Val x)) = x
eval (In (Add l r)) = eval l + eval r

We don’t seem to have gained much, except for some syntactic noise...
Combining functors

We can combine functors in a very similar manner to the Either data type:

\[
data (f :+; g) r = \text{Left} (f r) \mid \text{Right} (g r)\]

Using this insight, we can grow our expressions step by step.
Example: adding multiplication

```
data Expr f = In (f (Expr f))

data AddF a = Val Int | Add a a
data MulF a = Mul a a

type AddExpr = Expr AddF
type AddMulExpr = Expr (AddF :+: MulF)

addExample :: Expr (MulF :+: AddF)
addExample = In (Inl (Mul (In (Inr (Val 1)))
                      (In (Inr (Val 2)))))
```

This gives us the machinery to assemble *data types à la carte.*
Problems

- Constructing expressions is a pain: nobody wants to write injections by hand.
- How can we define functions over these expressions?
Functions over expressions

Usually, we write functions through pattern matching on a fixed set of branches.

But pattern matching on our constructors is painful (we have lots of injections in the way).

And pattern matching *fixes* the possible patterns that we accept.
Functions over expressions

Usually, we write functions through pattern matching on a fixed set of branches.

But pattern matching on our constructors is painful (we have lots of injections in the way).

And pattern matching \textit{fixes} the possible patterns that we accept.

\textbf{Idea}
Use Haskell’s class system to \textit{assemble} functions for us! Before we do this, however, we need to talk about functors and folds.
Folds capture a common pattern of traversing a data structure and computing some value.

\[
\text{foldr} :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b \\
\text{foldr cons nil } [] = nil \\
\text{foldr cons nil } (x:xs) = \text{cons } x \text{ (foldr cons nil } xs)
\]

But this also works for other data types!
Folding lists – contd.

foldr :: (a -> r -> r) -> r -> [a] -> r

Compare the types of the constructors with the types of the arguments:

(,:) :: a -> [a] -> [a]
[] :: a -> [a]

cons :: a -> b -> b
nil :: a -> b
Folding on trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

foldTree :: (b -> b -> b) -> (a -> b) -> Tree a -> b
foldTree node leaf (Leaf x) = leaf x
foldTree node leaf (Node l r) =
 node (foldTree node leaf l) (foldTree node leaf r)
Ideas in each fold

- Replace constructors by user-supplied arguments.
- Recursive substructures are replaced by recursive calls.

Can we give an account that works for any data type?
Catamorphism generically

If we know the the recursive positions, we can express the fold or *catamorphism* generically:

```haskell
class Functor f where
  fmap :: (a -> b) -> f a -> f b

cata :: (Functor f) =>
  (f a -> a) -> Expr f -> a
cata phi (In t) = phi (fmap (cata phi) t)
```

The argument to `cata` describing how to handle each constructor, \(f \ a \rightarrow a \), is sometimes called an *algebra*.
We can use the \texttt{cata} function to traverse our expressions:

\begin{verbatim}
\begin{verbatim}
cataAdd :: Expr AddF -> Int
cataAdd = cata alg
where
 alg (Add x y) = x + y
 alg (Val x) = x
\end{verbatim}
\end{verbatim}

But can we do something more open ended?
Functions over expressions

We can use the \texttt{cata} function to traverse our expressions:

\begin{verbatim}
cataAdd :: Expr AddF -> Int
\texttt{cataAdd = cata alg}
\texttt{where}
\texttt{alg (Add x y) = x + y}
\texttt{alg (Val x) = x}
\end{verbatim}

But can we do something more open ended?
Algebras using classes

More generally, to define a function over an expression – without knowing the constructors – we introduce a new type class:

```haskell
class Eval f where
    evalAlg :: f Int -> Int

    eval :: Eval f => Expr f -> Int
    eval = cata evalAlg
```
We can now add instance for all the constructors that we wish to support:

```haskell
instance Eval AddF where
    evalAlg (Add l r) = l + r
    evalAlg (Val i)   = i

instance Eval MulF where
    evalAlg (Mul l r) = l * r
```

...
To assemble the desired algebra, however, we need one more instance:

\[
\text{instance } (\text{Eval } f, \text{Eval } g) \Rightarrow \text{Eval } (f :+: g) \text{ where evalAlg } x = \ldots
\]

Question
What should this instance be?
Functions over expressions

To assemble the desired algebra, however, we need one more instance:

```haskell
instance (Eval f, Eval g) => Eval (f :+: g) where
  evalAlg (Inl x) = evalAlg x
  evalAlg (Inr y) = evalAlg y
```
The Expression Problem

- How can we write functions over expressions?
 - Use type classes
- Constructing expressions is a pain:

```haskell
addExample :: Expr (MulF :+: AddF)
addExample = In (Inl (Mul (In (Inr (Val 1)))
                     (In (Inr (Val 2)))))
```
The Expression Problem

► How can we write functions over expressions?
 ► Use type classes
 ► Constructing expressions is a pain:

```
addExample :: Expr (MulF :+: AddF)
addExample = In (Inl (Mul (In (Inr (Val 1))))
                    (In (Inr (Val 2)))))
```

Idea
Define smart constructors!
Not so smart constructors

For any fixed pattern functor, we can define auxiliary functions to assemble datatypes:

```haskell
data AddF a = Val Int | Add a a

type AddExpr = Expr AddF

add :: AddExpr -> AddExpr -> AddExpr
add l r = In (Add l r)
```

But how can we handle coproducts of pattern functors?
Automating injections

To deal with coproducts, we introduce a type class describing how to inject some ‘small’ pattern functor `sub` into a larger one `sup`:

```
class (:<:) sub sup where
  inj :: sub a -> sup a
```

What instances are there?
Instances

\[
\begin{align*}
\text{class} & \ (\llbracket:) \ \text{sub} \ \text{sup} \ \text{where} \\
& \ \text{inj} :: \ \text{sub} \ a \rightarrow \ \text{sup} \ a \\
\text{instance} & \ (\llbracket:) \ f \ f \ \text{where} \\
& \ \text{inj} = \ldots \\
\text{instance} & \ (\llbracket:) \ f \ (f \ :+\ g) \ \text{where} \\
& \ \text{inj} = \ldots \\
\text{instance} & \ ((\llbracket:) \ f \ g) \Rightarrow (\llbracket:) \ f \ (h \ :+\ g) \ \text{where} \\
& \ \text{inj} = \ldots
\end{align*}
\]

Question
How should we complete the above definitions?
Instances

class (:<:) sub sup where
 inj :: sub a -> sup a

instance (:<:) f f where
 inj = id
instance (:<:) f (f :+: g) where
 inj = Inl
instance ((:<:) f g) => (:<:) f (h :+: g) where
 inj = inj . Inr
Smart constructors

inject :: ((:<:) g f) => g (Expr f) -> Expr f
inject = In . inj

val :: (AddF :<: f) => Int -> Expr f
val x = inject (Val x)

add :: (AddF :<: f) => Expr f -> Expr f -> Expr f
add x y = inject (Add x y)

mul :: (MulF :<: f) => Expr f -> Expr f -> Expr f
mul x y = inject (Mul x y)
Results!

\[
e1 :: \text{Expr AddF} \\
e1 = \text{val 1 `add` val 2} \\
\]

\[
v1 :: \text{Int} \\
v1 = \text{eval e1} \\
\]

\[
e2 :: \text{Expr (MulF :+: AddF)} \\
e2 = \text{val 1 `mul` (val 2 `add` val 3)} \\
\]

\[
v2 :: \text{Int} \\
v2 = \text{eval e2} \\
\]
Extensibility

We can easily add new constructors:

```haskell
data SubF a = SubF a a

type NewExpr = SubF :+: MulF :+: AddF
```

Or define new functions:

```haskell
class Render f where
  render :: f String -> String
```
General recursion

What if we would like to define recursive functions without using folds?

A first attempt might be:

```haskell
class Render f where
    render :: f (Expr f) -> String
```
General recursion

What if we would like to define recursive functions without using folds?

A first attempt might be:

```haskell
class Render f where
    render :: f (Expr f) -> String
```

But this is too restrictive! We require f and the recursive pattern functors $(\text{Expr } f)$ to be the same.
Generalizing

A more general type seems better:

```haskell
class Render f where
    render :: f (Expr g) -> String
```

We can try to define an instance:

```haskell
instance Render Mul where
    render :: Mul (Expr g) -> String
    render (Mul l r) = ...
```

But now we cannot make a recursive call! We don’t know that the pattern functor g can be rendered.
General recursion

class Render f where
 render :: Render g => f (Expr g) -> String

instance Render Mul where
 render :: Mul (Expr g) -> String
 render (Mul l r) = renderExpr l
 ++ " * "/> renderExpr r

renderExpr :: Render f => Expr f -> String
 renderExpr (In t) = render t
Recap

- Pattern functors give us the mathematical machinery to describe and recursive datatypes.
- We can define a generic fold operation (\texttt{cata});
- We can use Haskell’s type classes to assemble modular datatypes and functions!
Looking back

- Pearl matured into bigger libraries, addressing some limitations of the injections (Patrik Bahr et al.)
- Inspired work in other languages, such as *The expression problem, trivially* (Wang & Oliveira), or *Meta-theory à la carte* (Delaware et al.).
- The key ideas were already written by Luc Duponcheel twenty years ago!
Further topics

- So you can combine datatypes – but can you combine monads?
- Why did you choose the `:+:` operator? Why are Haskell’s data types called algebraic?
- What are Church encodings?
Combining monads?

The :+: operator is the canonical way to combine the constructors of a datatype.

Can we use the same operation to combine monads?

That is, if \(m_1 \) and \(m_2 \) are monads, can we construct a monad \(m_1 :+: m_2 \)?
Combining monads?

The `:+:` operator is the canonical way to combine the constructors of a datatype.

Can we use the same operation to combine monads?

That is, if \(m_1 \) and \(m_2 \) are monads, can we construct a monad \(m_1 :+: m_2 \)?

The paper ‘Composing Monads Using Coproducts’ explores this idea.

This construction works, but does not account for the ‘interaction’ between \(m_1 \) and \(m_2 \).

Yet there is a class of monads for which this construction does work.
In the labs, we saw the following data type:

```haskell
data Teletype a =
  Get (Char -> Teletype a)
  | Put Char (Teletype a)
  | Return a

instance Monad Teletype where
...
```

Can we describe this using pattern functors?
Using pattern functors

```haskell
data TeletypeF r =
  Get (Char -> r)
  | Put Char r

data Teletype a =
  In (TeletypeF (Teletype a))
  | Return a
```
Free monads

We can capture this pattern as a so-called free monad:

```
data Free f a =
    In (f (Free f a))
  | Return a
```

For any functor \(f \) this definition is a monad.

Question

Why? What other familiar monads are free?
instance (Functor f) => Monad (Term f) where

 return x = Return x

 (Return x) >>= f = f x

 (In t) >>= f = In (fmap (>>= f) t)
Combining monads

Using the same machinery we saw previously, we can combine *free* monads in a uniform fashion.

```plaintext
data FileSystem a =
    ReadFile FilePath (String -> a)
  | WriteFile FilePath String a

class Functor f => Exec f where
    execAlgebra :: f (IO a) -> IO a

cat :: FilePath -> Term (Teletype :+: FileSystem) ()
```

This gives us a more fine-grained collection of *effects* that can all be run in the IO monad.
Algebraic datatypes

Haskell’s data types are sometimes called *algebraic datatypes* – why?
Algebraic datatypes

The :+:: and :*:: (pairing) operators behave similarly to * and + on numbers. The unit type () is a like 1.

For example, for any type t we can show 1 * t is isomorphic to t.

Or for any types t and u, we can show t * u is isomorphic to u * t.

Similarly, t :+: u is isomorphic to u :+: t.

Question
What is the unit of :+::?
Church encodings revisited

Using this definition, we can now give a more precise account of the Church encoding of algebraic data structures that we saw previously.

The idea behind Church encodings is that we identify:

- a data type (described as the least fixpoint of a functor)
- the fold over this datatype
Church encoding: lists

type Church a = forall r . r -> (a -> r -> r) -> r

-- reconstruct a list by applying constructors
from :: Church a -> [a]
from f = ...

-- map a list to its fold
to :: [a] -> Church a
to xs = ...
Church encoding: lists

\[
\text{type Church } a = \forall r . r \to (a \to r \to r) \to r
\]

-- reconstruct a list by applying constructors
from :: Church a \to [a]
from f = f [] (:)

-- map a list to its fold
to :: [a] \to Church a
to xs = \nil cons \to \text{foldr cons nil xs}
Generic Church encoding

type Church f = forall r . (f r -> r) -> r

cata :: Functor f => (f a -> a) -> Fix f -> a
cata f (In t) = f (fmap (cata f) t)

to :: Functor f => Fix f -> Church f
to t = \f -> cata f t

from :: Functor f => Church f -> Fix f
from f = f In