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Lists

• Lists are one of the very first data types that we teach undergraduates learning functional

programming.

• Students that go on to industry use more efficient structures to store large amounts of data,

such as finite maps or balanced binary trees.

• Students that stay in academia to do a PhD use heterogeneous lists (aka HLists) to write

evaluators for lambda calculi.
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Heterogeneous and efficient?

Question: Can we define a data structure that is both heterogeneous and efficient?

This is not a theoretical problem

Christiansen et al. wrote in their paper on Dependently Typed Haskell in Industry at ICFP last year:

the experience of profiling Crucible showed that linear access… imposed an unacceptable

overhead on the simulator
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Results

This pearl demonstrates how to implement heterogeneous binary random-access lists in Agda.

• the same API as heterogeneous lists:

• an empty structure (Nil);

• an operation to add a new element to the front (Cons);

• an operation to access elements (lookup or !!)

All these operations are total and type-safe.

• no coercions or additional lemmas needed to type check.
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This talk

I won’t try to cover the whole paper in this talk – but instead present homogeneous binary

random-access lists, originally due to Okasaki.

The heterogeneous version follows naturally from this, by indexing a data structure with a binary

random-access list storing the types of all the values it contains.
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From lists to trees

To achieve super linear access, we need to shift from lists to trees.

In a perfect world, we only ever have to store 2n elements…

This is easy to do in a perfectly balanced binary tree of depth n

n = 0 n = 1 n = 2

data Tree (a : Set) : Nat → Set where

Leaf : a → Tree a Zero

Node : Tree a n → Tree a n → Tree a (Succ n)
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Accessing elements in a tree

To denote a particular value stored in a tree of depth n, we need to n steps telling us to continue in

the left subtree or the right subtree.

data Path : Nat → Set where

Here : Path Zero

Left : Path n → Path (Succ n)

Right : Path n → Path (Succ n)

lookup : Tree a n → Path n → a

lookup (Node t1 t2) (Left p) = lookup t1 p

lookup (Node t1 t2) (Right p) = lookup t2 p

lookup (Leaf x) Here = x

Note: the indices ensure we that this function is total.
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Binary random-access lists

A binary random-access list consists of a list of perfect binary trees of increasing depth.

At the i-th position in this list, there may or may not be a perfect binary tree of depth i.
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Binary random-access lists storing three elements

,
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Binary random-access lists storing four elements
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Binary random-access lists storing five elements
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Binary numbers

Every number can be written as a sum of powers of two.

A number’s representation in binary determines the shape of the binary random-access list

storing that many elements.

data Bin : Set where

End : Bin

One : Bin → Bin

Zero : Bin → Bin

bsucc : Bin → Bin

bsucc End = One End

bsucc (One b) = Zero (bsucc b)

bsucc (Zero b) = One b
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Random access lists

data RAL (a : Set) (n : Nat) : Bin → Set where

Nil : RAL a n End

Cons1 : Tree a n → RAL a (Succ n) b → RAL a n (One b)

Cons0 : RAL a (Succ n) b → RAL a n (Zero b)

• the binary number counts the number of elements and uniquely determines the shape of

our random-access list

• the number n increases as we go down the list – the next tree is going to have more

elements (unlike vectors, for example)

• we usually start counting from n = Zero, but it’s useful to be a bit more general.

14



Positions and lookup

We can now define a type Pos n b that denotes an element stored in a RAL a n b:

data Pos (n : Nat) : Bin → Set where

Here : Path n → Pos n (One b)

There0 : Pos (Succ n) b → Pos n (Zero b)

There1 : Pos (Succ n) b → Pos n (One b)

Each position traverses the outer list of trees, ending with a path of depth n.

lookup : RAL a n b → Pos n b → a
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Adding elements

Finally, we might want to add new elements to the binary random-access list.

A first attempt might be to define a function such as:

cons : a → RAL a Zero b → RAL a Zero (bsucc b)

But we quickly get stuck – we cannot make any recursive calls as the ‘tail’ of the binary

random-access list stores larger trees.

Instead, we need to define a more general operation that adds a tree of depth n to a binary

random-access list:

consTree : Tree a n → RAL a n b → RAL a n (bsucc b)
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Conclusions

• We can extend this to the heterogeneous case:

data HRAL : RAL U n b → Set where ...

• Despite the apparent complexity, writing an ‘efficient’ lambda calculus evaluator written

using heterogeneous binary random-access lists is no harder than using heterogeneous lists.

• ‘Easy’ to port to Haskell in 130 lines of code…

• …of which 10% is language extensions pragmas

Choose the right datastructure

- and ensure that your type indices capture the key invariants.
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Recap

Question: Can we define a data structure that is both heterogeneous and efficient?

Results: This pearl demonstrates how to implement heterogeneous binary random-access lists in

Agda.

• the same API as heterogeneous lists;

• All these operations are total and type-safe; no coercions or additional lemmas needed to

type check.

Key insight: any number can be expressed as a sum of powers of two; any number of elements

can be stored in a series of perfect trees of increasing depth.
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