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EWD 879

The day was closed by P. Martin-Löf… But the 50 minutes were not enough to introduce an

ignorant audience to intuitionistic type theory to the extent that it could follow a comparison

with Scottery. He was a very sympathetic speaker and convinced at least me that something

(possibly even of great conceptual elegance) was going on.

3



Aim of our paper

Can we give a constructive account of

Dijkstra’s weakest precondition semantics

in Martin-Löf type theory?
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A predicate transformer semantics for effects

• A predicate on type a is some value of type

a → Set

• A predicate transformermaps predicates to predicates:

(a → Set) → (b → Set)

• A predicate transformer semantics assigns a predicate transformer to

wp : (a → b) → (b → Set) → (a → Set)

wp = ·

Or more generally, using dependent types

wp : ((x : a) → b x) → (∀ x → b x → Set) → (a → Set)
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Example: predicates

We can illustrate the general principle using a (trivial) example:

wp : (a → b) → (b → Set) → (a → Set)

wp f P x = P (f x)

If we have a function double : N → N and the predicate:

gt17 : N → Set

gt17 x = x > 17

What is the (weakest) precondition that needs to hold in order for the result of double to satisfy

gt17 – that is double produces a number greater than 17?

Q : N → Set

Q x = gt17 (double x)
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Example: relations

But many specifications relate inputs and outputs – instead of just requiring a number greater

than 17, we may want a sorted permutation of our input list.

This follows naturally if you use dependent types.

wp : ((x : a) → b x) → (∀ x → b x → Set) → (a → Set)

Consider the following (slightly contrived) example:

• take for p : (xs : List a) → Permutation xs as the first argument;

• and isSorted : (xs : List a) → Permutation xs → Set as the second.

Than wp computes the precondition necessary for p to be a sorting function.
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Computing with effects

So far this is not particularly exciting – it is no surprise that we can compute with predicates in

Agda to reason about total functions.

But we can use the same techniques to reason about effectful functions.

This is problematic at first glance – many proof assistants based on type theory are careful to

avoid effects, but restrict themselves to a total language to ensure the soundness of the

underlying logic.

For example, if we are not careful about handling unbounded recursion, we can define ‘bogus’

proofs such as:

silly : ∀ x → x < x

silly x = silly x
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Effects
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Effectful programs

Inspired by work on algebraic effects, we are careful separate syntax and semantics.

• A free monad fixes the syntax;

• the semantics is defined by a predicate transformer.

Our ICFP paper describes the syntax and semantics for a variety of different effects in this style:

• exceptions

• mutable state

• non determinism

• general recursion
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Free monads

data Free (C : Set) (R : C → Set) (a : Set) : Set where

Pure : a → Free C R a

Step : (c : C) → (R c → Free C R a) → Free C R a

• A set C of commands;

• A function R : C → Set of responses associated with every command.

Different choices of C and R give arise to different effects.

• For example, to represent the familiar operations from the state monad, we can choose:

• Commands Get : C and Put : s → C

• Responses s for Get and ⊤ for Put
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State explicitly

Instantiating C and R accordingly yields the following data type (for some type of states s : Set):

data FS (a : Set) : Set where

Get : (s → FS a) → FS a

Put : s → FS a → FS a

Return : a → FS a

If we choose s to be the natural numbers, we can write simple programs in this style:

incr : FS a

incr = get >>= λ x → put (x + 1) >> return x
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Free monads: other examples

• Exceptions

• Commands Abort : C

• Responses ⊥

• Non-determinism

• Commands Choice : C and Fail : C

• Responses Bool for Choice and ⊥ for Fail

• General recursion on a function I → O

• Commands call : I → C

• Responses O
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Semantics for effects

In general, we want to study the meaning of Kleisli arrows – that is, programs of the form:

a → Free C R b

These correspond to ‘effectful programs’, taking an input of type a, performing effects from C and

computing a value of type b.

Given our wp function, we compute the weakest precondition associated with a Kleisli arrow:

wp : (a → Free C R b) → (Free C R b → Set) → (a → Set)

But the postcondition here is expressed as a predicate on a free monad.

What happened to keeping syntax and semantics separate?
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Semantics for effects

We’d like to define semantics with the following type:

(a → Free C R b) → (b → Set) → (a → Set)

But our wp semantics has the following form:

(a → Free C R b) → (Free C R b → Set) → (a → Set)

To do so, requires a predicate transformer semantics for effects:

(b → Set) → (Free C R b → Set)

Defining predicate transformer semantics for effects boils down to defining such a function.
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Semantics for effects – exceptions

wpPartial : (a → Partial b) → (b → Set) → (a → Set)

wpPartial f P = wp f (mustPT P)

where

mustPT : (b → Set) → (Partial b → Set)

mustPT P (Pure y) = P y

mustPT P (Step Abort ) = ⊥

Here Partial refers to the free monad with a single command, Abort.

This semantics produces preconditions that guarantee Abort never happens.

But other choices exist!

• Replace ⊥ with ⊤
• Require that P holds for some default value d : a

• …
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Semantics for effects – non-determinism

allPT : (P : b → Set) → (ND b → Set)

allPT P (Pure x) = P x

allPT P (Step Fail k) = ⊤
allPT P (Step Choice k) = allPT P (k True) ∧ allPT P (k False)

Here we require P to hold for every possible result.

But again, alternatives exist.

The gambler’s nondeterminism replaces ⊤ with ⊥ and ∧ with ∨
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Semantics for effects – state

statePT : (P : (b × s) → Set) → FS b → (s → Set)

statePT P (Return x) s = P (x , s)

statePT P (Get k) s = statePT P (k s) s

statePT P (Put s' k) s = statePT P k s'

If necessary, we can also define a variant that takes an argument predicate:

s → (b × s) → Set

So that we can observer the relation between input and output states.
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State – larger example

data Tree (a : Set) : Set where

Leaf : a → Tree a

Node : Tree a → Tree a → Tree a

Exercise
Relabel such a binary tree with unique numbers assigned to each leaf.

relabel : Tree a → FS (Tree N)

relabel (Leaf _) = incr >>= Leaf

relabel (Node l r) = relabel l >>= λ l' →
relabel r >>= λ r' →
return (Node l' r')

How do we show this is correct? Well to start with, we need a specification.
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Relabelling

One way to specify the desired behaviour of our relabelling is:

P : Tree a × Nat → Tree Nat × Nat → Set

P (t , s) (t' , s') = flatten t' ≡ seq s (size t)

Where seq s x is the sequence of natural numbers starting from s of length x – it’s easy to show

that this does not contain duplicates.

Unfortunately a direct proof showing that relabel satisfies this specification gets stuck quite

quickly.
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Compositionality

We do not yet know how to reason about composite programs written using binds.

But fortunately, we can prove a lemma along these lines:

compositionality : (c : FS a) (f : a → FS b) →
∀ i P → statePT P (c >>= f) i ≡ statePT (wpState f P) c i

If you squint a bit, this is very similar to the usual relational composition used to reason about

predicate transformers:

wp(c1 ; c2, R) = wp(c1, wp(c2, R))

Only here we have a monadic bind, passing an argument to f, rather the (more implicit)

dependency between imperative programs.

Using this result, we can check that our relabelling function is indeed correct.
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Semantics for effects

This shows how to assign a weakest precondition semantics to Kleisli arrows:

(a → Free C R b) → (b → Set) → (a → Set)

But why bother with such semantics in the first place?

It seems like a rather indirect way to reason about programs!

• We can also assign predicate transformer semantics to specifications;

• And use this semantics prove that a program satisfies its specification;

• Or even derive a program from its specification.

22



Semantics for effects

This shows how to assign a weakest precondition semantics to Kleisli arrows:

(a → Free C R b) → (b → Set) → (a → Set)

But why bother with such semantics in the first place?

It seems like a rather indirect way to reason about programs!

• We can also assign predicate transformer semantics to specifications;

• And use this semantics prove that a program satisfies its specification;

• Or even derive a program from its specification.

22



Specifications
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Specifications

We define the following datatype of specifications on a function of type (x : a) → b x

record Spec (a : Set) (b : a → Set) : Set where

field

pre : a → Set

post : (x : a) → b x → Set

• A precondition consisting of a predicate on a

• A postcondition consisting of a relation between (x : a) and b x.

I’ll often write such specifications as [ pre , post ].

But how can we assign semantics to such specifications?
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Semantics for specifications

wpSpec : Spec a b → (P : (x : a) → b x → Set) → (a → Set)

wpSpec [ pre , post ] P = λ x → (pre x) ∧ (∀ y → post x y → P x y)

We can relate programs and specifications by relating the corresponding predicate transformers.

This idea – assigning predicate transformer semantics to specifications – is one of the key insights

of the refinement calculus studied by Morgan, Back and von Wright.
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Refinement

Given two predicate transformers, we can use the refinement relation to compare them:

_⊑_ : (pt1 pt2 : (b → Set) → (a → Set)) → Set

pt1 ⊑ pt2 = forall P x → pt1 P x → pt2 P x

This relation is reflexitive, transitive and (morally) asymmetric.

Proving a program p satisfies it specification s amounts to showing:

wpSpec s ⊑ wpEffect p
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Refinements between programs

Not only can relate a program with its specification, but we can also compare two different

programs using the refinement relation.

• For pure functions, f ⊑ g holds precisely when f and g are extensionally equal;

• For partial functions, f ⊑ g precisely when f and g agree on the domain of f;

• For non-deterministic functions, f ⊑ g is equivalent to the subset relation.

• The gambler’s non-deterministic semantics flips f and g.

• For state, f ⊑ g corresponds to the usual weaker-pres and stronger-posts.

This is rather a nice result – the refinement relation captures the expected relation between

effectful programs in a general way.
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Compositionality of refinement

Pure functional programmers are spoiled. We’re used to referential transparency, which allows us

to employ equational reasoning.

For all sensible predicate transformers, we can show the following result:

compositionality : (f1 f2 : a → Free C R b) (g1 g2 : b → Free C R c) →
wp f1 ⊑ wp f2 →
wp g1 ⊑ wg g2 →
wp (f1 >=> g1) ⊑ wp (f2 >=> g2)

Here we can reap the rewards of indirection: the verification of effectful programs is

compositional.
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Program verification

wpSpec [pre,post] ⊑

c

cwp c

In this fashion we can show a program—given by a Free C R a—satisfies some specification.

But can we calculate a program from its specification?

Let’s consider values of the type Free C R (a + Spec a)

We can assign them semantics by composing the semantics for specifications and effects.
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Program calculation

[pre,post]

⊑
c

s1 s2
⊑

c

c’

s3 s4 s5

s2 ⊑

c

c’

s4 s5

s2

Typically, we prove little lemmas showing how each individual choice of command gives rise to

new specifications, for which we must subsequently derive programs.

This style of calculation relies heavily on the compositionality of our semantics.

Even if you’re not interested in program calculation, this gives you a ‘small-step debugger’ that you

can use during verification.
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Soundness

All of our predicate transform semantics for effects have the following form:

pt : (b → Set) → (Free C R b → Set)

But this is quite strange in a way – why is the predicate you return is meaningful in any way?

The degenerate case:

pt P c = ⊤

is type correct, but why is it still wrong?
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Soundness

Typically, we write these predicate transformers with an ‘intended’ semantics in mind.

runState : FS a → s → a × s

We should show that the predicates we compute are sound with respect to these ‘handlers’.

In words, every result returned by this handler satisfies the desired postcondition when the

computed precondition holds.

If you’re familiar with Dijkstra monads:

• the computational monad corresponds to this run function;

• the specification monad corresponds to the predicate transformer semantics.
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More than a single effect?

So far, we’ve only talked about the semantics of different effects in isolation.

What about combining state and non-determinism? Or general recursion?

• Free monads are closed under coproducts and compose nicely;

• Our predicate transformer semantics are defined as folds over free monads – these alse

compose nicely;

• We can put these together to study the predicate transformer semeanticsc of compositions

of effects.

Anne Baanen and I have a recent paper at MSFP where we use this to write parsers for regular

languages.
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Conclusion

• This gives a constructive & functional account of predicate transformer semantics.

• This approach works for a variety of different effects.

• We can relation effectful functions to their specifications in a compositional fashion.

• And even calculate programs from their spec.

Something (possibly of great conceptual elegance) is going on.
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