
Calculating datastructures

Ralf Hinze and Wouter Swierstra

TU Kaiserslautern and Utrecht University

1



Calculating datastructures

There are tons of (purely functional) datastructures:

• binary random access lists;

• 2-3 trees;

• finger trees;

• binomial heaps;

• Braun trees;

• …

Who comes up with these?

2



Calculating datastructures

There are tons of (purely functional) datastructures:

• binary random access lists;

• 2-3 trees;

• finger trees;

• binomial heaps;

• Braun trees;

• …

Who comes up with these?

2



Purely functional datastructures

…data structures that can be cast as numeri-

cal representations are surprisingly common,

but only rarely is the connection to a number

system noted explicitly.

3



Calculating datastructures

• We will fix a particular API, keeping the numerical representation we use abstract for the

moment.

• We can then show how different choices of numerical representation lead to different

implementations of this API.

• Using the properties our API must satisfy, we can apply familiar type isomorphisms to

calculate the datastructure that implements the API.

All these calculations can be performed and verified in Agda.

4



Flexible arrays – the interface

Number : Set

Index : Number → Set

Array : Number → Set → Set

lookup : Array n elem → (Index n → elem)

tabulate : (Index n → elem) → Array n elem

nil : Array 0 elem

cons : elem → Array n elem → Array (1 + n) elem

head : Array (1 + n) elem → elem

tail : Array (1 + n) elem → Array n elem

5



Take 0 : Peano numbers

data Peano : Set where

zero : Peano

succ : Peano → Peano

data Index : Peano → Set where

izero : Peano (succ n)

isucc : Peano n → Peano (succ n)

6



Towards calculation…

lookup : Array n elem → (Index n → elem)

tabulate : (Index n → elem) → Array n elem

These two functions should form an isomorphism.

If we perform induction on n, we can calculate a definition of Array.

7



Index isomorphisms

Index(0) ∼= ⊥
Index(1) ∼= ⊤

Index(m+ n) ∼= Index(m) ⊎ Index(n)

Index(m · n) ∼= Index(m)× Index(n)

Index(nm) ∼= Index(m) → Index(n)

Note – these isomorphisms are not unique! There are many different choices:

• interleaving vs appending

• column major vs row major

• …

While these choices are all correct, they lead to different datastructures. 8



Calculating with generic tries

We’ll try to find an isomorphism given by the lookup and tabulate functions to ‘discover’ an

implementation of a datastructure.

If we ‘calculate’ this iso using familiar laws – we can hopefully use this to read off the

datastructures that arise.

In particular, we’ll use the laws of exponents:

X0 ∼= 1

X1 ∼= X

XA+B ∼= XA · XB

XA·B ∼=
(
XB
)A

These should be familiar from high school – but can also be read as type isomorphisms.

9



Example: vectors – base case

proof

(Index zero → elem)
∼= -- Index-0 law

(⊥ → elem)
∼= -- law of exponents

⊤
∼= -- use as definition

Array zero elem

∎

10



Example: vectors – inductive step

proof

(Index (succ n) → elem)
∼= -- definition of Index

((⊤ ⊎ Index n) → elem)
∼= -- law of exponents

(⊤ → elem) × (Index n → elem)
∼= -- law of exponents

elem × Array n elem
∼= -- use as definition

Array (succ n) elem

In this way, we have connected Peano naturals to vectors – but that’s hardly interesting…

11



Binary numbers

data Leibniz : Set where

0b : Leibniz

_1 : Leibniz → Leibniz

_2 : Leibniz → Leibniz

convert : Leibniz → Peano

convert 0b = 0

convert (n 1) = convert n · 2 + 1

convert (n 2) = convert n · 2 + 2

This representation of binary numbers is unique.

12



From vectors to trees

I’ll go through one of the two cases in some detail:

(Index (n 2) → elem)
∼= -- arithmetic on indices

(⊤ ⊎ ⊤ ⊎ Index n ⊎ Index n → elem)
∼= -- laws of exponents

elem × elem × (Index n → elem) × (Index n → elem)
∼= -- recurse

elem × elem × Array n elem × Array n elem
∼= -- use as definition

Array (n 2) elem

13



1-2 trees

In this style, we can (re)discover the type of 1-2 trees:

data Array : Leibniz → Set → Set where

Leaf : Array 0b

Node₁ : elem → Array n elem → Array n elem → Array (n 1) elem

Node₂ : elem × elem → Array n elem → Array n elem → Array (n 2) elem

The construction of the isos give us the definition of lookup and tabulate for free.

What about the other operations?

14



1-2 trees

In this style, we can (re)discover the type of 1-2 trees:

data Array : Leibniz → Set → Set where

Leaf : Array 0b

Node₁ : elem → Array n elem → Array n elem → Array (n 1) elem

Node₂ : elem × elem → Array n elem → Array n elem → Array (n 2) elem

The construction of the isos give us the definition of lookup and tabulate for free.

What about the other operations?

14



Example: a 1-2 tree with 17 elements

0

2 4

8

1612

6

1410

1 3

7

1511

5

139

• Each node has 1 or 2 elements: just enough to ensure the remainding number of elements

is even.

• Note that ‘odd elements’ are stored in one subtree and ‘even elements’ in the other.

15



Adding new elements

To add a new element to the ‘front’ of the tree, we distinguish three cases:

cons : elem → Array n elem → Array (succ n) elem

cons x₀ (Leaf) = Node₁ x₀ Leaf Leaf

cons x₀ (Node₁ x₁ l r) = Node₂ x₀ x₁ l r

cons x₀ (Node₂ x₁ x₂ l r) = Node₁ x₀ (cons x₁ l) (cons x₂ r)

• A Node₁ becomes a Node₂, with the new element at the front.

• A Node₂ becomes a Node₁ – but we need to add the two elements to the respective subtrees.

16



Alternatives

Once we have this infrastructure, it is easy to explore variations..

(Index (n 2) → elem)
∼= -- arithmetic on indices

(⊤ ⊎ Index (succ n) ⊎ Index n → elem)
∼= -- laws of exponents

elem × (Index (succ n) → elem) × (Index n → elem)
∼= -- use as definition

Array (n 2) elem

Instead of having 1-2 nodes – we can have nodes with a single element.

17



Braun trees

data Array : Leibniz → Set → Set where

Leaf : Array 0b elem

Node₁ : elem → Array n elem → Array n elem → Array (n 1) elem

Node₂ : elem → Array (succ n) elem → Array n elem → Array (n 2) elem

Each node stores a single element; the two subtrees may store a different number of elements,

but differ by at most one.

18



Extending Braun trees

cons : elem → Array n elem → Array (succ n) elem

cons x₀ (Leaf) = Node₁ x₀ Leaf Leaf

cons x₀ (Node₁ x₁ l r) = Node₂ x₀ (cons x₁ r) l

cons x₀ (Node₂ x₁ l r) = Node₁ x₀ (cons x₁ r) l

The two subtrees swap! Every even element becomes odd and visa versa.

19



Random access lists

(Index (n 2) → elem)
∼= -- arithmetic on indices

(⊤ ⊎ ⊤ ⊎ Index (2 · n) → elem)
∼= -- laws of exponents

elem × elem × (Index n → elem × elem)
∼= -- use as definition

Array (n 2) elem

Instead of having two subtrees, we can also have one ‘tail’ with twice as many elements.

20



Random access lists

data Array : Leibniz → Set → Set where

nil : Array 0b elem

one : elem → Array n (elem × elem) → Array (n 1) elem

two : elem → elem → Array n (elem × elem) → Array (n 2) elem

A linear structure with a subtree of pairs rather than pair of subtrees.

As a result, we no longer use the interleaving of even-odd elements, but rather elements are

stored in ‘usual’ order.

21



Example: random access list of 17 elements

1

161514131211109

1

8765

2

4321

1

0

22



What else?

We go through a lot more details in the paper:

• explicit proofs of isomorphisms;

• computing index types for various structures;

• many more operations: cons, snoc, tail, lookup, etc.

• lots of pretty pictures

23



What next?

• Ko has already shown how to describe binary heaps as ornaments on skey binary numbers.

• Isomorphisms are quite a strong criteria – do weaker conditions suffice?

• Isomorphisms are quite a strong criteria – can we get more out of them by going cubical?

24


