
A correct-by-construction conversion to combinators

IFIP 2.1 Online meeting

Wouter Swierstra

Utrecht University

1

Lambda calculus

The syntax of the lambda calculus should be familiar:

t := x

| t t

| λx.t

There is one key reduction rule, describing evaluation:

(λx.t) t′ →β t[x\t′]

The lambda calculus has many applications!

2

Lambda calculus

The syntax of the lambda calculus should be familiar:

t := x

| t t

| λx.t

There is one key reduction rule, describing evaluation:

(λx.t) t′ →β t[x\t′]

The lambda calculus has many applications!
2

Combinatory logic

c := x | c c | S | K | I

• Variables, application and three combinators;

• Crucially, there is no lambda abstraction.

Yet given the following reduction rules, this language is ‘equally expressive’ as lambda calculus:

• K c1 c2 → c1
• S c1 c2 c3 → (c1 c3) (c2 c3)

• I c → c

(And congruence rules for evaluating applications)

3

Combinatory logic

c := x | c c | S | K | I

• Variables, application and three combinators;

• Crucially, there is no lambda abstraction.

Yet given the following reduction rules, this language is ‘equally expressive’ as lambda calculus:

• K c1 c2 → c1
• S c1 c2 c3 → (c1 c3) (c2 c3)

• I c → c

(And congruence rules for evaluating applications)

3

Bracket abstraction

To show that these two calculi are equally expressive, we can translate from lambda terms to

combinators:

convert : Term → Comb

convert (t1 t2) = (convert t1) (convert t2)

convert x = x

convert (λx.t) = abs x (convert t)

The process of ‘bracket abstraction’ modifies the (combinatory) term corresponding to the body of

a lambda to have the same reduction behaviour:

abs x x = I

abs x c = K y if x ̸∈ FV(c)

abs x (c c′) = S (abs x c) (abs x c′)

4

Bracket abstraction

To show that these two calculi are equally expressive, we can translate from lambda terms to

combinators:

convert : Term → Comb

convert (t1 t2) = (convert t1) (convert t2)

convert x = x

convert (λx.t) = abs x (convert t)

The process of ‘bracket abstraction’ modifies the (combinatory) term corresponding to the body of

a lambda to have the same reduction behaviour:

abs x x = I

abs x c = K y if x ̸∈ FV(c)

abs x (c c′) = S (abs x c) (abs x c′) 4

Why?

• Reduction in combinatory logic no longer requires substitution.

• In the 1920’s, there was a great deal of interest in ‘logical minimalism’ – finding the smallest

foundations for mathematics.

• Combinators have been used as the target language for the compiling functional languages.

Today’s challenges

• How can we implement this translation?

• How do we use types to ensure it is correct?

5

Why?

• Reduction in combinatory logic no longer requires substitution.

• In the 1920’s, there was a great deal of interest in ‘logical minimalism’ – finding the smallest

foundations for mathematics.

• Combinators have been used as the target language for the compiling functional languages.

Today’s challenges

• How can we implement this translation?

• How do we use types to ensure it is correct?

5

Why?

• Reduction in combinatory logic no longer requires substitution.

• In the 1920’s, there was a great deal of interest in ‘logical minimalism’ – finding the smallest

foundations for mathematics.

• Combinators have been used as the target language for the compiling functional languages.

Today’s challenges

• How can we implement this translation?

• How do we use types to ensure it is correct?

5

Naive implementation in Haskell

data Term = Var String

| App Term Term

| Lambda String Term

convert :: Lambda → SKI

convert (Var x) = Var x

convert (App t1 t2) = (convert t1) `App` (convert t2)

convert (Lam x t) = abs x (convert t)

6

Bracket abstraction

abs :: Var → SKI → SKI

abs x c

| not (x `elem` fv t) = K c

abs x (Var y)

| x == y = I

abs x (App c1 c2) =

S `App` (remove x c1)

`App` (remove x c2)

But two bound variables can have the same name – yet refer to different binding sites…

7

De Bruijn indices (1972)

data Term = Var Int

| App Term Term

| Lambda Term

Now we no longer have named variables, but instead need to do bookkeeping with integers.

This is still all too easy to get wrong.

8

De Bruijn indices (1972)

data Term = Var Int

| App Term Term

| Lambda Term

Now we no longer have named variables, but instead need to do bookkeeping with integers.

This is still all too easy to get wrong.

8

Well scoped (Altenkirch-Reus 1999; Bird-Paterson 1999)

data Term a = Var a

| App Term Term

| Lambda (Maybe Term)

convert :: Term a → Comb a

abst :: Comb (Maybe a) → Comb a

This is clearly better – but the type signature is not (yet) a specification.

9

Well typed terms (around 2005)

data Term : Ctx → Type → Set where

app : Term Γ (σ → τ) → Term Γ σ → Term Γ τ

lam : Term (σ ∷ Γ) τ → Term Γ (σ → τ)

var : Ref σ Γ → Term Γ σ

convert : Term Γ a → Comb Γ a

abst : Comb (a : Γ) b → Comb Γ (a → b)

We can use this to establish that the translation to combinators is type preserving….

But does it also preserve the intended semantics?

10

Semantics preservation

• Define an evaluator for well-typed terms;

• Define a type for combinator terms that are also indexed by their semantics;

• Show that the we can define the translation to combinators:

convert : (t : Term Γ σ) → Comb Γ σ (eval t)

And achieve all of the above without writing any proof terms or type coercions.

11

Evaluating well typed lambda terms

There is a well known evaluator for well typed lambda terms:

eval : Term Γ σ → (Env Γ → Val σ)

eval (App f x) env = (eval f env) (eval x env)

eval (Lam t) env = λ x → eval t (Cons x env)

eval (Var i) env = lookup i env

12

Combinatory terms - indexed by their semantics

data Comb : (Γ : Ctx) → (σ : Type) → (Env Γ → σ) → Set where

S : Comb Γ ... (λ env x y z → (x z) (y z))

K : Comb Γ ... (λ env x y → x)

I : Comb Γ ... (λ env x → x)

Var : (i : Ref σ Γ) → Comb Γ σ (lookup i)

App : Comb Γ (σ → τ) f → Comb Γ σ x → Comb Γ τ (λ env → (f env) (x env))

Now all that we still need to do is define the desired conversion:

convert : (t : Term Γ σ) → Comb Γ σ (eval t)

13

Combinatory terms - indexed by their semantics

data Comb : (Γ : Ctx) → (σ : Type) → (Env Γ → σ) → Set where

S : Comb Γ ... (λ env x y z → (x z) (y z))

K : Comb Γ ... (λ env x y → x)

I : Comb Γ ... (λ env x → x)

Var : (i : Ref σ Γ) → Comb Γ σ (lookup i)

App : Comb Γ (σ → τ) f → Comb Γ σ x → Comb Γ τ (λ env → (f env) (x env))

Now all that we still need to do is define the desired conversion:

convert : (t : Term Γ σ) → Comb Γ σ (eval t)

13

Conversion to combinators

convert : (t : Term Γ σ) → Comb Γ σ (eval t)

convert (App t₁ t₂) = App (convert t₁) (convert t₂)

convert (Var i) = Var i

convert (Lam t) = abs (convert t)

The first two cases are easy and ‘obviously correct’.

What about the abs function?

14

Correct by construction bracket abstraction

abs : Comb (σ ∷ Γ) τ f → Comb Γ (σ → τ) (λ env x → f (Cons x env))

abs S = App K S

abs K = App K K

abs I = App K I

abs (App f x) = App (App S (abs f)) (abs x)

abs (Var Top) = I

abs (Var (Pop i)) = App K (Var i)

The abs function turns the body of lambda into a combinator that behaves precisely as the

desired lambda abstraction!

15

Why does this work?

This seems like a parlour trick – a correct by construction conversion without doing any proofs.

This only works because the direct proof appeals only to induction hypotheses and a lemma about

abs - which we rolled into the correct by construction definition of the abs function.

As a result, we can fold the proof into the entire development.

But surely this breaks for anything more complicated?

16

Beyond SKI

The SKI combinators are not the only choice of combinators.

Alternatives are more careful about handling applications:

abs (App t₁ t₂) = App (App S (abs t₁)) (abs t₂)

If t₁ or t₂ do not use the most recently bound variable, we can short-cut the translation and

discard it immediately.

We can introduce two new combinators:

B f g x = (f x) g

C f g x = f (g x)

17

The problem

We need to test which combinator (S, B, or C) to use for every application.

Using named variables, we might write:

abs x (App t₁ t₂)

| x `elem` (fv t₁)

&& x `elem` fv t₂ = ... use S

| x `elem` (fv t₁) = ... use B

| x `elem` (fv t₂) = ... use C

| otherwise = ... use K

But why does this preserve types? Let alone semantics…

18

co-de Bruijn

We don’t just care about which variablesmay be in scope – but also need to know whether they are

used or not.

In Agda, it’s better to shift to a different representation of variables:

data Term (Γ : Ctx) : Subset Γ → Type → Set where

What are the constructors?

App : Term Γ Δ₁ (σ → τ) → Term Γ Δ₂ σ → Term Γ (Δ₁ ∪ Δ₂) τ

Var : (i : Ref σ Γ) → Term Γ (singleton i) σ

Lam : Term (σ ∷ Γ) Δ τ → Term Γ (pop Δ) (σ → τ)

19

co-de Bruijn

We don’t just care about which variablesmay be in scope – but also need to know whether they are

used or not.

In Agda, it’s better to shift to a different representation of variables:

data Term (Γ : Ctx) : Subset Γ → Type → Set where

What are the constructors?

App : Term Γ Δ₁ (σ → τ) → Term Γ Δ₂ σ → Term Γ (Δ₁ ∪ Δ₂) τ

Var : (i : Ref σ Γ) → Term Γ (singleton i) σ

Lam : Term (σ ∷ Γ) Δ τ → Term Γ (pop Δ) (σ → τ)

19

Choosing the best combinator

Using this representation, we know exactly which variables are used in both branches of the

application:

App : Term Γ Δ₁ (σ → τ) → Term Γ Δ₂ σ → Term Γ (Δ₁ ∪ Δ₂) τ

By inspecting Δ₁ and Δ₂, we distinguish four cases:

• both Δ₁ and Δ₂ use the bound variable of type σ - use S

• Δ₁ uses the freshly bound variable of type σ, but Δ₂ does not - use B

• Δ₂ uses the freshly bound variable of type σ, but Δ₁ does not - use C

• neither Δ₁ nor Δ₂ use the freshly bound variable - use K

We can define a type preserving ‘optimising’ translation in the same style.

And establish correctness without using an (external) proof.

20

Choosing the best combinator

Using this representation, we know exactly which variables are used in both branches of the

application:

App : Term Γ Δ₁ (σ → τ) → Term Γ Δ₂ σ → Term Γ (Δ₁ ∪ Δ₂) τ

By inspecting Δ₁ and Δ₂, we distinguish four cases:

• both Δ₁ and Δ₂ use the bound variable of type σ - use S

• Δ₁ uses the freshly bound variable of type σ, but Δ₂ does not - use B

• Δ₂ uses the freshly bound variable of type σ, but Δ₁ does not - use C

• neither Δ₁ nor Δ₂ use the freshly bound variable - use K

We can define a type preserving ‘optimising’ translation in the same style.

And establish correctness without using an (external) proof.

20

Conclusions

• Such correct by construction ‘proofs’ work – but it took me more than one try to find the

right definitions;

• This presentation loses how these definitions are found.

• I typically found myself ensuring type preservation first, checking my definitions and starting

a proof of correctness, before folding this back into the types themselves.

• The choice of variable binding makes this problem either trivial or very hard.

21

