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Lambda calculus

The syntax of the lambda calculus should be familiar:

t := x

| t t

| λx.t

There is one key reduction rule, describing evaluation:

(λx.t) t′ →β t[x\t′]

The lambda calculus has many applications!
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Combinatory logic

c := x | c c | S | K | I

• Variables, application and three combinators;

• Crucially, there is no lambda abstraction.

Yet given the following reduction rules, this language is ‘equally expressive’ as lambda calculus:

• K c1 c2 → c1
• S c1 c2 c3 → (c1 c3) (c2 c3)

• I c → c

(And congruence rules for evaluating applications)
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Bracket abstraction

To show that these two calculi are equally expressive, we can translate from lambda terms to

combinators:

convert : Term → Comb

convert (t1 t2) = (convert t1) (convert t2)

convert x = x

convert (λx.t) = abs x (convert t)

The process of ‘bracket abstraction’ modifies the (combinatory) term corresponding to the body of

a lambda to have the same reduction behaviour:

abs x x = I

abs x c = K y if x ̸∈ FV(c)

abs x (c c′) = S (abs x c) (abs x c′)
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Why?

• Reduction in combinatory logic no longer requires substitution.

• In the 1920’s, there was a great deal of interest in ‘logical minimalism’ – finding the smallest

foundations for mathematics.

• Combinators have been used as the target language for the compiling functional languages.

Today’s challenges

• How can we implement this translation?

• How do we use types to ensure it is correct?
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Naive implementation in Haskell

data Term = Var String

| App Term Term

| Lambda String Term

convert :: Lambda → SKI

convert (Var x) = Var x

convert (App t1 t2) = (convert t1) `App` (convert t2)

convert (Lam x t) = abs x (convert t)
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Bracket abstraction

abs :: Var → SKI → SKI

abs x c

| not (x `elem` fv t) = K c

abs x (Var y)

| x == y = I

abs x (App c1 c2) =

S `App` (remove x c1)

`App` (remove x c2)

But two bound variables can have the same name – yet refer to different binding sites…
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De Bruijn indices (1972)

data Term = Var Int

| App Term Term

| Lambda Term

Now we no longer have named variables, but instead need to do bookkeeping with integers.

This is still all too easy to get wrong.
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Well scoped (Altenkirch-Reus 1999; Bird-Paterson 1999)

data Term a = Var a

| App Term Term

| Lambda (Maybe Term)

convert :: Term a → Comb a

abst :: Comb (Maybe a) → Comb a

This is clearly better – but the type signature is not (yet) a specification.
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Well typed terms (around 2005)

data Term : Ctx → Type → Set where

app : Term Γ (σ → τ) → Term Γ σ → Term Γ τ

lam : Term (σ ∷ Γ) τ → Term Γ (σ → τ)

var : Ref σ Γ → Term Γ σ

convert : Term Γ a → Comb Γ a

abst : Comb (a : Γ) b → Comb Γ (a → b)

We can use this to establish that the translation to combinators is type preserving….

But does it also preserve the intended semantics?
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Semantics preservation

• Define an evaluator for well-typed terms;

• Define a type for combinator terms that are also indexed by their semantics;

• Show that the we can define the translation to combinators:

convert : (t : Term Γ σ) → Comb Γ σ (eval t)

And achieve all of the above without writing any proof terms or type coercions.
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Evaluating well typed lambda terms

There is a well known evaluator for well typed lambda terms:

eval : Term Γ σ → (Env Γ → Val σ)

eval (App f x) env = (eval f env) (eval x env)

eval (Lam t) env = λ x → eval t (Cons x env)

eval (Var i) env = lookup i env
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Combinatory terms - indexed by their semantics

data Comb : (Γ : Ctx) → (σ : Type) → (Env Γ → σ) → Set where

S : Comb Γ ... (λ env x y z → (x z) (y z))

K : Comb Γ ... (λ env x y → x)

I : Comb Γ ... (λ env x → x)

Var : (i : Ref σ Γ) → Comb Γ σ (lookup i)

App : Comb Γ (σ → τ) f → Comb Γ σ x → Comb Γ τ (λ env → (f env) (x env))

Now all that we still need to do is define the desired conversion:

convert : (t : Term Γ σ) → Comb Γ σ (eval t)
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Conversion to combinators

convert : (t : Term Γ σ) → Comb Γ σ (eval t)

convert (App t₁ t₂) = App (convert t₁) (convert t₂)

convert (Var i) = Var i

convert (Lam t) = abs (convert t)

The first two cases are easy and ‘obviously correct’.

What about the abs function?
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Correct by construction bracket abstraction

abs : Comb (σ ∷ Γ) τ f → Comb Γ (σ → τ) (λ env x → f (Cons x env))

abs S = App K S

abs K = App K K

abs I = App K I

abs (App f x) = App (App S (abs f)) (abs x)

abs (Var Top) = I

abs (Var (Pop i)) = App K (Var i)

The abs function turns the body of lambda into a combinator that behaves precisely as the

desired lambda abstraction!
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Why does this work?

This seems like a parlour trick – a correct by construction conversion without doing any proofs.

This only works because the direct proof appeals only to induction hypotheses and a lemma about

abs - which we rolled into the correct by construction definition of the abs function.

As a result, we can fold the proof into the entire development.

But surely this breaks for anything more complicated?
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Beyond SKI

The SKI combinators are not the only choice of combinators.

Alternatives are more careful about handling applications:

abs (App t₁ t₂) = App (App S (abs t₁)) (abs t₂)

If t₁ or t₂ do not use the most recently bound variable, we can short-cut the translation and

discard it immediately.

We can introduce two new combinators:

B f g x = (f x) g

C f g x = f (g x)
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The problem

We need to test which combinator (S, B, or C) to use for every application.

Using named variables, we might write:

abs x (App t₁ t₂)

| x `elem` (fv t₁)

&& x `elem` fv t₂ = ... use S

| x `elem` (fv t₁) = ... use B

| x `elem` (fv t₂) = ... use C

| otherwise = ... use K

But why does this preserve types? Let alone semantics…
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co-de Bruijn

We don’t just care about which variablesmay be in scope – but also need to know whether they are

used or not.

In Agda, it’s better to shift to a different representation of variables:

data Term (Γ : Ctx) : Subset Γ → Type → Set where

What are the constructors?

App : Term Γ Δ₁ (σ → τ) → Term Γ Δ₂ σ → Term Γ (Δ₁ ∪ Δ₂) τ

Var : (i : Ref σ Γ) → Term Γ (singleton i) σ

Lam : Term (σ ∷ Γ) Δ τ → Term Γ (pop Δ) (σ → τ)
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Choosing the best combinator

Using this representation, we know exactly which variables are used in both branches of the

application:

App : Term Γ Δ₁ (σ → τ) → Term Γ Δ₂ σ → Term Γ (Δ₁ ∪ Δ₂) τ

By inspecting Δ₁ and Δ₂, we distinguish four cases:

• both Δ₁ and Δ₂ use the bound variable of type σ - use S

• Δ₁ uses the freshly bound variable of type σ, but Δ₂ does not - use B

• Δ₂ uses the freshly bound variable of type σ, but Δ₁ does not - use C

• neither Δ₁ nor Δ₂ use the freshly bound variable - use K

We can define a type preserving ‘optimising’ translation in the same style.

And establish correctness without using an (external) proof.
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Conclusions

• Such correct by construction ‘proofs’ work – but it took me more than one try to find the

right definitions;

• This presentation loses how these definitions are found.

• I typically found myself ensuring type preservation first, checking my definitions and starting

a proof of correctness, before folding this back into the types themselves.

• The choice of variable binding makes this problem either trivial or very hard.
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