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Pure functional programming

• Programming without assignment statements

• Recursive functions rather than loops

• Algebraic data types rather than classes and objects

Each function only depends on its inputs - there is no state or memory being mutated.

In the famous paper, Why functional programming matters Hughes (1984) writes:

The functional programmer sounds rather like a medieval monk, denying himself the plea-

sures of life in the hope that it will make him virtuous.
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Analogy: goto’s considered harmful

In the 1960’s-1970’s, the idea of structured programming emerged.

By avoiding ‘spaghetti code’ using jumps and goto’s, the control flow of a progam becomes more

predictable.

Reasoning about structured programs becomes easier: a large program can be broken into

smaller pieces that are assembled in a predictable fashion.

In purely functional programs, these pieces are independent - there is no (implicit) memory or

state connecting them.
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Functional programming 101 : list reversal

-- 'linked lists' as an algebraic data type

data List = Nil | Cons Int List

reverse :: List -> List

reverse xs = reverseAcc xs Nil

where

reverseAcc :: List -> List -> List

reverseAcc Nil acc = acc

reverseAcc (Cons x xs) acc = reverseAcc xs (Cons x acc)
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Testing functional programs

reverseProperty :: List -> Bool

reverseProperty xs = reverse (reverse xs) == xs

Property-based testing libraries like QuickCheck generate inputs for our reverse function, trying to

falsify the property we have formulated:

> quickCheck reverseProperty

OK, passed 100 tests.

5



Testing functional programs

reverseProperty :: List -> Bool

reverseProperty xs = reverse (reverse xs) == xs

Property-based testing libraries like QuickCheck generate inputs for our reverse function, trying to

falsify the property we have formulated:

> quickCheck reverseProperty

OK, passed 100 tests.

5



Reasoning about functional programs

Theorem ∀ xs , reverse (reverse xs) = xs

Proof Base case (when xs is Nil)

 reverse (reverse Nil)

  { by definition of reverse }

 = reverseAcc (reverseAcc Nil Nil) Nil

  { by definition of reverseAcc }

 = reverseAcc Nil Nil

  { by definition of reverseAcc }

 = Nil

Inductive case (when xs is of the form Cons y ys)…
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Proof assistants

We can even formalise such proofs in a proof assistant (such as Coq, Agda, Lean, or others) that

checks our reasoning:

Lemma rev_involutive : forall xs, reverse (reverse xs) = xs.

Proof.

induction xs; [ reflexivity | simpl in *; auto].

rewrite (rev_unit (rev xs) a).

now rewrite IHxs.

Qed.
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Pure functional programming

Compositional programs - each assembled from other functions that can be tested and verified

independently.

There are a variety of different techniques for verifying that a program is correct:

• testing automatically;

• writing pen and paper proofs;

• developing a formal proofs using proof assistants.

How does this compare to list reversal in an imperative language?
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Linked list reversal in C

list_t* reverse( list_t* curr ) {

list_t* prev = NULL;

while(curr != NULL) {

list_t* next = curr->tail;

curr->tail = prev;

prev = curr;

curr = next; }

return prev; }

Each cell in the list stores a value and a pointer to the remaining lists.

To reverse the list, we update the pointer in each cell to point to the previous element, until there

are no cells left.
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In-place execution
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Correctness?

Giving a formal proof that such a program is correct is very hard.

• The Hoare logic typically used to reason about imperative code is unsuitable: what if the list

structure in memory has cycles? Or if the two pointers map to lists sharing the same

memory locations? How do we find the loop invariant guaranteeing the correctness of

reversal? What variant guarantees termination?

• Extensions of Hoare logic, notably flavours of separation logic, have had a lot of success - but

these methods are certainly not elementary.

But the C algorithm has an important property: it is executed in-place - it does not need to allocate

new memory or deallocate unused memory.
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Functional reverse

reverseAcc :: List → List → List

reverseAcc Nil acc = acc

reverseAcc (Cons x xs) acc = reverseAcc xs (Cons x acc)
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The trade offs…

Despite the apparent virtues of functional programming,memory management matters.

Now reversing a linked list is not that exciting…

But many datastructures – such as splay trees or red black trees – use careful pointer management

to restructure/rebalance the tree.

Overly liberal allocation & garbage creation has a real performance impact.
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Towards in-place functional programming

Let’s revisit our reversal function.

reverseAcc :: List → List → List

reverseAcc Nil acc = acc

reverseAcc (Cons x xs) acc = reverseAcc xs (Cons x acc)

Here we see that we are both allocating a new Cons cell and creating a new ‘garbage’ Cons cell in

each recursive step.
18



In-place functional programming

reverseAcc :: List → List → List

reverseAcc Nil acc = acc

reverseAcc (Cons x xs) acc = reverseAcc xs (Cons x acc)

The reverseAcc function has a few important properties:

• we can see that we are matching on one Cons cell on the left;

• and allocating one new Cons cell on the right.

• all other variables (like x or acc) are used linearly, i.e. they are not copied or shared.

We will call such programs fully in-place – or fip for short.
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Making this more precise..
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In-place reverse in Koka

These rules (and corresponding memory reuse) have been implemented in the Koka compiler.

Re-implementing the reverse function in Koka becomes:

fip fun reverse-acc( xs : list<a>, acc : list<a> ) : list<a>

match xs

Cons(x,xx) -> reverse-acc( xx, Cons(x,acc) )

Nil -> acc

The fip keyword indicates that a function can be executed fully in place.

The compiler checks that each FIP function can be executed in constant stack space, without

allocating or deallocating memory.

This gives great performance, while still writing purely functional programs.
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Beyond list reversal

List reversal is not so interesting - what about algorithms for trees?

type tree

Node( left : tree, key : int, right : tree )

Leaf

Let’s look at algorithms on binary search trees.

In particular, restructuring binary search trees, where accessing an element restructures the tree.
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Rotation (Allen & Munro, 1976)

fip fun rotateRight (t : tree) : tree

match t

(Node (Node (t2, a, t3), f, t1) -> Node (t2, a, Node (t3, f, t1))
23



Move to root trees

Allen & Munroe suggest repeated rotations, ensuring the key being looked up is moved to the root

of the new binary tree.

In this fashion, frequently accessed elements naturally ‘bubble up’ to the root of the tree.

Can we give a purely functional—yet in place—algorithm?
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Warm-up: lookup

The lookup function for a binary search tree should be familiar – even if we write it in a functional

language:

fun lookup (k : int, t : tree)

match t with

Node (l, x, y) ->

if k == x

then x

else if k < x

then lookup (k, l)

else lookup (k, r)

Key idea
Search through the tree recursively, accumulating the unvisited subtrees on a ‘stack’.

Once we find the element, unwind the ‘stack’ to rebuild the new tree, rotating as we move back up.
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Stacks

A simple stack of subtrees will not work – to reconstruct a binary search tree we need to record if

we went left or right!

type zipper

Done

// we went left; the tree stores bigger elements than the key being accessed

Left(up : zipper, x : int, right : tree )

// we went right; the tree stores smaller elements than the key being accessed

Right(left : tree, x : int, up : zipper )

Using these ‘zippers’ we can construct a pair of functions:

// search through the tree for the given key

fun access (key : int, t : tree, z : zipper) : (tree, zipper)

// rebuild the entire tree, rotating as necessary

fun rebuild (t : tree, z : zipper) : tree
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Accessing a given key

fip(1) fun access(t : tree, k : int, z : zipper)

match t

Node(l,x,r) -> if x == k then rebuild(z, Node(l,k,r))

else if k < x then access(l, k, Left(z,x,r))

else access(r, k, Right(l,x,z))

Leaf -> rebuild(z, Node(Leaf,k,Leaf) )

The access function has the same structure as the (more familiar) lookup function.

If the key is already present, the tree is restructured; otherwise the new key is inserted (at the

root).

The function is in-place, but may do at most one allocation.
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In-place?

fip fun access (...)

Node(l,x,r) -> if ... then access(l, k, Left(z,x,r))

Why is this in-place? We match on a node, but extend our zipper?

Memory re-use is not restricted to the same constructors or even the same types!

Instead, we only check that the variables are not duplicated or discarded;

And that the sizes of deallocations and allocations line up.
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Reconstructing the tree

fip fun rebuild(z : zipper, t : tree )

match z

Done -> t

Right(l,x,z) -> match t // we went right looking for k

Node(s,k,b) -> rebuild(z, Node( Node(l,x,s), k, b))

Left(z,x,r) -> match t // we went left looking for k

Node(s,k,b) -> rebuild(z, Node( s, k, Node(b,x,r)))

Now we rebuild the entire tree, popping elements off the zipper.

In each case, we rotate the tree as required to ensure the result remains a binary search tree.

From this definition, it is easy to see that the key k stays at the root – just as we wanted!
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Formal verification

With a bit more work, we can (and have!) written machine checked proofs that the access function:

• does not discard elements from the input tree;

• returns a binary search tree, when passed a binary search tree;

Furthermore, the fip annotations ensure that it execute in-place.
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Zippers?

The name ‘zipper’ is taken from existing literature in functional programming (Huet 1997).

A pair of a zipper and tree, allows you to ‘move focus’ to a child, without loss of information:

fip fun left (t : tree, z : zipper) : (tree, zipper)

match t

Node (l, x, r) -> (l, Left(z,x,r))

These are typically used for ‘local’ operations on binary trees; or visiting each node, as in the

Deutsch-Schorr-Waite algorithm.

Efficient destructive algorithms on binary trees may be programmed with these completely

applicative primitives, which all use constant time, since they all reduce to local pointer ma-

nipulation.

Using our fip calculus we can make this precise – and check this property statically!

(These zippers generalise very smoothly to any other algebraic datatypes.)
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Bottom-up vs top-down algorithms

The approach described by Allen & Munro yields a bottom-up algorithm:

1. Find the key in the tree (the access function)

2. Work our way back up, rotating as necessary (the rebuild function)

Alternatively, Stephenson (1980) defines a top-down algorithm for move-to-root trees.

This algorithm accumulates two (unfinished) trees, corresponding to the left and right children of

the final root.

As we search for the desired key, we ‘enqueue’ new subtrees on these unfinished trees.

A purely functional account for such algorithms requires some work – just as implementing a

purely functional stack is easier than a queue.
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What about the imperative pseudocode?
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Verifying imperative version

Using a proof assistant, we have given a formal proof of correctness of both top-down and

bottom-up move to root trees.

That is, we can prove a Hoare triple of (roughly) the following form:

Lemma heap_mtr_insert_td_correct (k : key) (p : ptr) (t : tree) :

{ is_tree t p }

heap_mtr_insert_td k p

{ is_tree (mtr_insert_td k t) p }.

In this way, we prove that the functional version (mtr_insert_td) coincides precisely with the

(published) imperative algorithms (heap_mtr_insert_td).
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Verifying the imperative version

• These proofs are non-trivial! If you’ve ever tried to write out a formal proof in Hoare logic for

any program longer than 5 lines, you know there is a lot of bookkeeping involved.

• The logics and theorem proving technology are fairly impressive - the proof is about 50 loc,

half of which is formulating the loop invariant.

• The functional implementation captures the key parts of the specification – and forms the

heart of the loop invariant.

• This is (to the best of our knowledge) the first formal proof of these algorithms.
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Frommove-to-root trees to splay trees

Move-to-root trees guarantee that a freshly accessed key always moves to the root.

But it does not do any rebalancing along the way…

The more established splay trees (Sleator and Tarjan 1985) address precisely this issue.

The key difference is in the rebuild function that tries to rebalance the resulting tree.
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Rebuilding splay trees
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Rebuilding splay trees

fip fun rebuild(z : zipper, t : tree ) : tree

match tree

Node(tl,tx,tr) -> match z

Done -> Node(tl,tx,tr)

Right(rl,rx,Done) -> Node(Node(rl,rx,tl),tx,tr) // zig

Left(Done,lx,lr) -> Node(tl,tx,Node(tr,lx,lr))

Right(rl,rx,Right(l,x,up)) -> rebuild(up, Node(Node(Node(l,x,rl),rx,tl),tx,tr)) // zigzig

Left(Right(l,x,up),lx,lr) -> rebuild(up, Node(Node(l,x,tl),tx,Node(tr,lx,lr)))

Right(rl,rx,Left(up,x,r)) -> rebuild(up, Node(Node(rl,rx,tl),tx,Node(tr,x,r))) // zigzag

Left(Left(up,x,r),lx,lr) -> rebuild(up, Node(tl,tx,Node(tr,lx,Node(lr,x,r))))
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Benchmarks - is it fast?

Comparing the same algorithm across different languages is always going to be unfair.

• Koka, Haskell, and OCaml have automatic memory management - as opposed to C;

• Haskell and OCaml use mark-and-sweep garbage collectors; Koka uses reference counting.

• Koka uses arbitrary precision integers for keys and all comparisons and arithmetic

operations include branches for the case where big integer arithmetic is required;

• Haskell is lazy, most other functional languages are not.
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Benchmarks

10M pseudorandom insertions of a key between 0 and 100.000 on an initially empty tree. 40



Beyond splay trees

• We have similar results for red-black trees and the more recent ziptrees (Tarjan, Levy &

Timmel 2021) - in some cases, this leads to (slightly) improved algorithms over the best

known implementations.

• Using similar ideas, we can write in place sorting algorithms in a functional style – including

mergesort and quicksort.

• Okasaki’s famous book on Purely functional datastructures is chock-full of fip algorithms…
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Conclusions

• Best-of-both worlds approach: purely functional programs with low memory usage.

• Elementary verification techniques only! Structural induction on trees suffices.

• Modern proof assistants can relate the functional and imperative versions.

• Performance is on par with best known implementations.
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Questions?

43



When to execute in place?

Even if a function is fip, it is not always safe to execute it in place.

Consider the following example:

fun makePalindrome( xs : list<a>) : list<a>

return (append(xs, reverse(xs))

Clearly this call to reverse should not run in place!

When can we tell it is safe to execute fip functions in place?
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Static vs dynamic checks

Koka uses a reference counted garbage collection.

As a result, we know at execution time how many references exist to any given value.

We can check if a reference is unique at run-time and re-use existing memory locations when

possible:

fip fun reverse-acc( xs : list<a>, acc : list<a> ) : list<a>

match xs

Cons(x,xx) ->

val addr = if is-unique(xs) then &xs else { dup(x); dup(xx); decref(xs); alloc(2) }

reverse-acc( xx, Cons@addr(x,acc) )...
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So what’s our the papers

• In place versions of:
• Splay trees;

• Schorr Waite traversal of trees;

• Generic map over any algebraic datatype;

• Red black tree insertion;

• Mergesort;

• Finger tree insertions;

• …

• Top-down & bottom-up implementations of:
• move to root trees;

• splay trees;

• zip trees;

• proofs that they ‘are all equal’;

• proofs that the functional versions coincide with published imperative ones.

• Lots of metatheory, showing that it is safe to execute fip programs in place. 46


