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Abstract—Finding the ideal number of layers and size for
each layer is a key challenge in deep neural network design.
Two approaches for such networks exist: filter learning and
architecture learning. While the first one starts with a given
architecture and optimizes model weights, the second one aims
to find the best architecture. Recently, several visual analytics
(VA) techniques have been proposed to understand the behavior
of a network, but few VA techniques support designers in
architectural decisions. We propose a hybrid methodology based
on VA to improve the architecture of a pre-trained network by
reducing/increasing the size and number of layers. We introduce
Activation Occurrence Maps that show how likely each image
position of a convolutional kernel’s output activates for a given
class, and Class Selectivity Maps, that show the selectiveness of
different positions in a kernel’s output for a given label. Both
maps help in the decision to drop kernels that do not significantly
add to the network’s performance, increase the size of a layer
having too few kernels, and add extra layers to the model. The
user interacts from the first to the last layer, and the network is
retrained after each layer modification. We validate our approach
with experiments in models trained with two widely-known image
classification datasets and show how our method helps to make
design decisions to improve or to simplify the architectures of
such models.

Index Terms—Deep Learning, CNNs, Visual Analytics, Model
Understanding, Architecture Tuning

I. INTRODUCTION

Designing the appropriate neural network for a learning task
requires deciding over several factors such as the optimizer
algorithm, loss function, regularization parameters, activation
functions, number of layers, and type and size of each
layer [1]. Most such decisions are made empirically, using
experience from previous similar problems and general ‘good
practice’ guidelines, and often use a trial-and-error approach
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to search for the best architecture. This task is time-consuming
and may not lead to models with expected performance.

Visual Analytics (VA) techniques have recently been in-
creasingly used to help designers with architecture deci-
sions [2]. Most such approaches focus on feature understand-
ing, i.e., explain which type of features a neuron learned
to recognize, and support interpretability [3]–[8], by helping
to understand how the model process the input features to
predict output labels. However, there is still a gap between
architectural and interpretability tasks. While many VA tools
tackle the task of finding the particular features a neuron
learned [9], [10], they do not address the end-to-end problem
of deciding if these features are indeed enough or useful for the
prediction task, and, implicitly, the question whether a given
(set of) neuron(s) helps the network’s overall task.

To close this gap, we propose a VA tool to help designers
make architectural decisions on the number and size of layers
in a model. Our method uses three visualizations: Activation
Occurrence Maps (AOMs), Occurrence Difference Matrix
(ODMs), and Class Selectivity Maps (CSMs); and a novel
metric to evaluate the overall selectivity of a neuron. These
tools help the designer make decisions such as: (1) remove
neurons performing redundant roles, i.e., recognizing the same
features, or neurons that do not contribute to the prediction
process; (2) increase the size of a layer if no neurons learned
useful features for one or more classes; and (3) add more
layers to the model if sets of classes still do not present very
selective features. By following our methodology, practitioners
can guide the design of novel models from scratch or improve
pre-trained models by identifying neurons that can be dropped
— reducing overfitting — or the need for more neurons or
layers — improving performance. Additionally, our method
can help the task of transfer learning [11], as our tools can
guide the selection of the most useful features to transfer to
the new model. While the focus of our method is to address
convolutional networks (CNNs), whose convolutional neurons



from now on we call kernels, our approach can easily be
adapted to fully-connected and recurrent models.

Our paper is organized as follows. Section II discusses
related work in both architecture modeling and VA for deep
learning (DL). Section III details the DL engineering tasks
that our approach assists. Section IV explains in detail our
approach and the involved techniques and metrics. Section V
presents a series of experiments where we validate our ap-
proach on two image classification problems. Finally, Sec-
tion VI concludes the paper, outlining future work directions.

II. RELATED WORK

Architecture tuning is one of the main challenges for DL
engineering [12]. The simplest way to tune such networks
is to grid search for the best architecture, testing many
combinations of number/type of layers and layer sizes and
other hyperparameters, and choose the set-up maximizing
performance. This strategy is unpractical when working with
deep models because training a single model is computa-
tionally expensive. Recent approaches involve learning the
architecture adaptively during model training [13], training
a reinforcement learning model to create architectures for a
given input learning problem [14], or to automatically adapt
the network’s topology to the input sample, so that the network
can have a faster and simpler prediction process if the sample
is easy to predict or a more complex topology otherwise [15].
Still, no such methods allow designers to use their experience
to modify the model.

Several works tackle the subgoal of reducing redundant or
unimportant model components. Cogswell et al. [16] use a
regularization technique to reduce redundancy by minimizing
the cross-covariance of activations in the model’s layers.
Pruning methods can reduce the number of weights in a fixed
architecture without significant accuracy loss [17]–[20]. A
model can learn the pruned architecture alongside weights
during training [21]–[23]. Recent studies show that such
methods often achieve results similar to the same reduced
architecture learned from scratch, turning over-parameterized
training unnecessary [24]. Our approach, in contrast, provides
designer-reasoning to the network reduction process without
the need for pre-training a much larger model than necessary.

Visual Analytics (VA) has provided significant support for
deep learning [2]. Until now VA mostly focused on feature
understanding and model interpretability: Salience maps [9]
highlight the image pixels contributing most to a given neu-
ron’s activation, thereby showing to designers which image
features contribute to the prediction process. Activation Max-
imization [10] creates an image that maximizes the activation
of a given neuron, giving insights on which features the neuron
recognizes. While such methods help interpreting the learned
features, they do not tell if these features are selective towards
the possible output labels. Our approach tackles this task, as
it does not focus on which features a neuron learned, but how
useful these features are to the prediction process.

Closer to our goal, some VA methods address the goal
of evaluating the quality of a model’s components. Rauber

et al. [7] project activation vectors of hidden layers to help
deciding whether a given layer distinguishes the classes or
not. While adequate for evaluating the quality of a layer, this
approach does not give any information about the quality of
individual neurons. Zhong et al. [25] propose two metrics to
gauge neuron’s quality, but their metrics are not class-specific
like ours. Arguably closest to our work, DeepEyes [26] uses
heatmap matrices to let the user search for kernels that do
not activate for any image or activate for all images, which
in either case are ineffective kernels. Yet, they do not allow
exploring activations in different regions of the kernel’s output,
which is vital in datasets where a feature’s position may add
value to the prediction process.

III. MODELING TASKS

A DL engineer must make several hard architectural deci-
sions when using neural networks to solve a learning problem.
First, one must choose the right number and size of model
layers [27]. However, there is no analytic way to find the best
architecture a model should have to solve a problem. Designers
often end up choosing more or fewer layers/neurons than they
should, leading to the issues listed below. These issues appear
on the design of most types of model architectures — DFNs,
CNNs, RNNs, etc. — and most learning tasks — classification,
regression, generative models, etc. Our model can be adapted
to address all of those.
Too few layers: A model with fewer layers than ideal may
fail to distinguish classes separated by highly abstract features
which are created from simple features found in early layers.
Too many layers: Conversely, the use of too many layers
in a model also creates problems. Deep networks have, by
construction, a high number of parameters, which significantly
increases when adding new layers. As other ML methods,
neural models are prone to overfitting, which mainly happens
when the number of parameters in the model is too high.
A high number of layers or neurons also severely increases
the training time and the memory space required to store the
model, turning their use prohibitive in systems such as embed-
ded devices, which are increasingly necessary for applications
in fields like robotics and embedded computing [17].
Too small layers: For a neural network to operate well, it
must iteratively, layer-by-layer, change the representation of
the input to distinguish between the different classes in the
final layer [7]. It does it by recognizing low-level features that
are more likely to appear when the input belongs to a particular
class. If a layer does not have enough neurons to learn all
such features, that layer will likely harm the overall prediction
capability. When this happens, increasing the number of layers
does not help, as the next layers do not have enough ‘simple’
features to build meaningful higher-level features.
Too large layers: An overestimated number of neurons per
layer can also harm the model, increasing the chance of
overfitting, training time, and the space required for the model,
just as for a model with too many layers.
Ineffective neurons: Even if not overfitting, when training a
model having a high amount of neurons, it is unlikely that all



neurons become equally important for the task at hand after
training. While some neurons learn features that are crucial
to the prediction task, others may learn features that do not
contribute much to it or even harm the performance [23].
Redundant neurons: Multiple neurons may learn to identify
closely-related features, leading the model to have redundant
information across its components [28]. If one can find such
groups of neurons and keep from them only a subset, one can
reduce the size of trained models and maintain (nearly) the
same performance as before reduction.

We identify three main tasks where our approach addresses
a subset of the above issues:
1. Find redundant or ineffective kernels: Ineffective kernels
(that do not learn to recognize features useful for recognizing
any class) are strong removal candidates without decreasing
performance. Conversely, groups of kernels (in the same layer)
that learned to recognize very similar input features can be
reinitialized to see if they next can learn more diverse features.
Alternatively, the designer can simplify such a group by
reducing it to one or a few kernels.
2. Find too small layers: When the number of kernels in a
layer is not enough to learn all the required features, two or
more classes may always activate in the same set of kernels
in that layer. This behavior makes it hard for the next layers
to build more complex features capable of recognizing each
class and can cause the model to underperform. In this case,
the designer may want to increase the layer’s size by adding
more kernels.
3. Find too shallow models: Ideally, the activations of the
model’s last hidden layer should be very discriminative, with
each class activating in a different set of neurons. If this does
not happen, e.g., if many neurons activate for multiple classes,
the designer may want to add extra layers so that the model
can build higher-level features.

Automating these tasks is challenging as it is hard or
impractical to define accurate quantitative tests to ‘query’ for
the presence of too small layers, too shallow models, kernel
redundancy, and kernel (in)effectiveness. Consider kernel re-
dundancy: Comparing all activations of just two kernels is too
expensive, as it needs |K| · |K| · |D| comparisons for |K|
kernels in a layer and |D| elements in the training set. More-
over, convolutional kernels usually output high-dimensional
activations, further increasing the complexity of such a com-
parison. Considering groups of more than two kernels makes
the problem quickly intractable. Even if such computational
costs would be acceptable, there is not an exact threshold for
defining the degree of activation similarity that makes two
kernels redundant. Comparing the learnable parameters of each
kernel is also unreliable, as different parameter sets can learn
to recognize (nearly) the same features and the function of
weight vectors is hard to interpret, especially in deeper layers.

IV. VISUAL ANALYTICS APPROACH

Most previous VA solutions for DL engineering used acti-
vation values to analyze neurons and answer questions such as
what features a kernel is learning [3], [9], [29] or for which

class it is specializing itself [8], [30]. The activations of a
neuron contain the values that will be used as input by the next
layer. We can see them as a new representation of features
from the input sample. If a neuron activates a high value
at some position because it is looking for features an input
sample has, this becomes an indication of what the neuron is
doing. Activations are easier to understand than weight values,
which are hard to interpret, especially in deeper layers where
they interact with activations produced by the composition of
many neurons with equally hard to interpret weights.

To better understand the role of a neuron, we must look
at activations produced by several inputs. Otherwise, we do
not know how useful is the feature producing high activations
in the neuron. Indeed, such a feature may appear in every
class or be an input-specific feature that does not appear
in other elements of the same class. In both cases, learning
such a feature does not help the prediction process. A typical
way to overcome this issue is to look at the mean activation
produced by a kernel for all elements of a given class [8],
[30]. If a neuron has a high mean activation, we can assume
more confidently that it indeed learned a feature useful for
that class. Yet, high mean activations can be misleading. The
activation produced by a neuron in a non-final layer serves as
input to the next layer. If the weights from the next layer that
interact with this activation value are small enough, having a
high activation may not be that important. Moreover, finding
the neuron(s) with high(est) activations does not directly help
the tasks defined in Sec. III. For instance, two kernels can
recognize essentially the same feature, but have different
activation values, due to the way their weights evolved during
training. Thus, analyzing only their mean activation value does
not tell us that there is redundancy between two kernels.

Given the above, we propose to look at the proportion of
positive activations instead of their absolute values. When a
kernel outputs a positive value, it tells that it found to some
extent the learned feature. A non-positive activation value
(clamped to zero when using the common ReLU activation
function), tells that the kernel did not find such a feature.
Considering this, we can assume that a kernel that learned
a feature capable of distinguishing one class (or a set of
classes) from the rest will produce positive activations for
most elements from this class (or set of classes). Hence, if we
find kernels with a high proportion of positive activations for
elements of some class ci and a low proportion for elements
of some other class cj , we can say that this kernel is selective
toward this pair of classes.

To allow designers to find and analyze such kernels, and also
find cases, such as groups of classes for which such patterns
do not occur, we propose three visualization techniques:

The Activation Occurrence Maps (AOMs) display the pro-
portion of samples from a given class ci activating positive
values at each position of the output activation of a given
kernel k. Similar AOMs for a kernel for all classes ci indicate
kernels which react similarly over all classes, thus ineffective
for the overall network goal (Task 1). AOMs also show
kernels that strongly activate for similar input subsets, thus
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Fig. 1. Workflow that describes all the steps followed by a ML designer when
applying visual analytics in the design of neural networks.

highlighting potentially redundant kernel groups that can be
further simplified (Task 1). Set of classes producing similar
AOMs in every kernel indicate a small layer size (Task 2).
Finally, kernels producing AOMs with strong occurrence for
multiple classes is a signal of a need for more layers to
discriminate between these classes (Task 3).

The Occurrence Difference Matrix (ODM) visually summa-
rizes the difference between occurrence values in the AOMs
of two kernels ki and kj .

Finally, the Class Selectivity Maps (CSMs), which displays
how selective each image position of a given kernel k is
for distinguishing elements of class c from elements of other
classes, thus helping in the insights provided by the AOMs
(Tasks 1..3). Additionally, we propose a metric to assign an
overall selectivity value for a kernel, which allows designers
to decide which kernel should be kept in the network when
simplifying a group of redundant kernels (Task 1).

The AOM, ODM, and CSM visualizations are used to
support tasks 1..3 for DL engineering via the following VA
workflow (Fig. 1). The workflow starts with the engineer
selecting some initial network architecture (number and size
of layers), based on heuristics or good practices in the domain
(1). The network is next trained and tested, as usual (2). If
the result is deemed satisfactory, e.g., a good accuracy is
obtained, and the network’s overall size and learned features
are acceptable, the process stops (3). If not, the three views are
used to detect cases where the network’s architecture likely can
be improved (4). Rather than using automatically computed
thresholds, the engineer examines such cases visually and
decides which of tasks 1..3 (s)he wants to execute next and

where, e.g., which group of neurons is redundant and which
can be eliminated from it (5). Upon finding such a case,
the engineer next edits the network and repeats from step
2. If the accuracy drops significantly after such an edit, the
engineer undoes the edit (6). The process stops when no
additional edits can be done without losing too much accuracy,
when the engineer decides that the network has been re-
architected satisfactorily, or when the available time for editing
has finished (7).

We next describe the AOM, ODM, and CSM visualizations
for convolutional kernels. These visualizations can be easily
adapted to handle fully-connected neurons, by interpreting the
neuron’s output activation as having one single position.

A. Activation Occurrence Maps

Deep neural networks — particularly those employed in
image-based problems — often have a sequence of convolu-
tional layers with ReLU activation functions as the first layers,
typically followed by a pooling and some regularization layers
such as dropout [31]. The role of convolutional layers is to find
particular features that help in the prediction task regardless
of where these appear in the image. For example, a neuron
from the first convolutional layer takes the original image as
input and produces another image as activation. This activation
image has positive values in places where the original image
contains the feature(s) this neuron is looking for, and zero
activations (after ReLU) elsewhere [1].

To let the designer identify how a kernel behaves for
different classes, and how different kernels act for the same
class, we must understand how the occurrence of positive
activations changes in different regions of the kernel’s image
output. This knowledge is needed since different classes may
present very similar features — particularly in the first layers
— but, for a given class, these features may appear more
often in a different model-layer than for other classes [30]. To
allow the designer to analyze such differences, we construct
an Activation Occurrence Map (AOM) for each (kernel, class)
pair in the layer of interest.

For a giving kernel k and a giving class c in the training set,
we compute the corresponding AOM Mk,c ⊂ RWxH , where
W and H are the dimensions of the activation produced by
the kernel k when the network process any given input image.
Each cell Mk,c

i,j in the AOM shows the proportion of training
images from class c activating positive values at position (i, j)
of the activation produced by k, and is computed as

Mk,c
i,j =

1

|Dc|
∑
x∈Dc

U(ak(x)i,j) (1)

where Dc is the set of images in the training set D belonging
to class c; ak(x)i,j is the value at position (i, j) in the
activation matrix produced by kernel k for the input sample
x; and U is the Heaviside step function.

Figure 2 displays the AOMs corresponding to the kernels
in the first (left) and second (right) layer of a model trained
with the MNIST dataset [32] (see Sec. V), with the values
Mk,c

i,j color-coded via an ordinal colormap. Rows in this image
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Fig. 2. AOMs produced by the first two layers in a model trained with
the MNIST dataset. Each row represents one of the 16 kernels in the layer,
while each column is a class. The highlighted groups (red border rectangles)
contains kernels recognizing similar features (See Sec. V). We notice that
some kernels activate more often to specific features in the images, such
as the digit structure (G1, H1), particular border orientations (G2, G4, G5),
background (G3, H4), or different handwriting styles (H2, H3, H7, H9, H9).

correspond to kernels, and columns to classes, respectively.
Rows are ordered using groups of kernels with similar AOMs.

When one kernel produces similar AOMs for all classes, it
is very likely that this kernel is not effective for the prediction
process. For example, if a position in the output of a kernel
produces positive activations — or instead, activates very
rarely — to all or almost all inputs from every class in the
training set, this position is unlikely to give the next layer
useful information about which label the model should assign.
We see such a pattern for the kernels shown in row 13 and 14
from the top in Fig. 2 (left). These kernels produce very similar
AOMs for all classes in the training set, with all positions
activating very rarely, or never at all. Hence, they are good
candidates for removal or reinitialization. We show later in
Sec. V that we can remove this type of kernel with little or
no performance reduction.

AOMs are helpful to find redundant kernels as well. When
multiple kernels display too similar maps for every class in,
this tells us that these kernels recognize very similar features,
and thus may be redundant. The kernels in groups denoted by
the red rectangles in Fig. 2 shows an example of this issue.
These kernels recognize almost identical features across the
classes, which may make unnecessary to keep both.

B. Occurrence Difference Matrix

To analyze a single layer using AOMs, we need to display
|K|·|C|·W ·H squares, where |K| is the number of kernels in
the layer, |C| is the number of classes in the training set, and
W and H are the kernel’s output dimensions. DL networks
used in complex prediction tasks often have large layers with
hundreds or even thousands of kernels. Also, training sets for
such tasks can contain as many classes [33]. Constructing
and using AOM matrices as shown in Fig. 2 has thus limited
scalability. An alternative to finding kernels producing similar

ODM - Layer 1 ODM - Layer 2 
1.0

0.5

0.0

MNIST

Fig. 3. ODMs for the two first layers in the MNIST model (see Sec. V).
The ODM is a symmetric matrix displaying the average difference between
the AOMs produced by each pair of kernels. It provides a concise overview
of the similarities than the AOMs, with the trade-off of also providing fewer
details. Nonetheless, it can be used as a first step to search for groups of
similar kernels in large layers.

AOMs (that may thus be redundant) is to build the Occurrence
Difference Matrix (ODM) of the layer.

The ODM is a symmetric matrix D where each cell
Dki,kj

∈ R+ measures the average difference between the
AOMs corresponding to kernels ki and kj for every corre-
sponding position in the AOMs and every class in the training
set, computed as

DkI ,kJ
=

1

|C| ·W ·H
∑
c∈C

i<W∑
i=0

j<H∑
j=0

∣∣∣MkI ,c
i,j −MkJ ,c

i,j

∣∣∣ , (2)

where C is the set of classes in the training set; W and H
are the dimensions of the kernels’ output; and Mk,c

i,j is the
position (i, j) in the AOM of kernel k and class c (Eqn. 1).

Figure 3 shows the ODMs calculated for the AOMs of
both layers displayed earlier in Fig. 2. Each value DkI ,kJ

is encoded using an ordinal blue-to-red colormap. Rows and
columns in this matrix-like image follow the kernel order in
Fig. 2. In practical settings, the designer can sort rows with
a matrix-reordering algorithm [34] to easily identify similar-
value cells. We can see in Fig. 3 that kernels whose AOMs
display strong similarity in Fig. 2 also display strong similarity
in the ODM. However, ODMs are more compact than AOM
matrices: As each of its cells encodes just a single value by
color, we can easily visualize ODMs for layers up to thousand
kernels on a single screen. In contrast, the AOM matrix can
visually scale only to a few tens of kernels, given that each
of its cells requires a resolution equal to that of the activation
output. The ODM is particularly helpful for Task 1, as it can
concisely inform the designer about redundant kernels that can
be removed or reinitialized to improve the model’s accuracy.

C. Class Selectivity Maps

Our third visualization, Class Selectivity Maps (CSMs),
helps the DL engineer find how selective each position of
a kernel k’s output is towards a given class c. If a position
often activates for items of a given class c but does not often
activate for items of any other class, this position is selective
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Fig. 4. CSMs produced by the first two layers in the MNIST model (see Sec. V). Each row represents one of the 16 kernels in each layer, while each column
is a class. Kernels in each layer respect the same order of Fig. 2. With this view, we can identify regions of the kernel’s output image where some classes are
more selective, i.e., they activate more often than other classes. For instance, the kernels in group H1 display a strong selectivity towards round-shaped inner
structures in the digits, while group H2 displays stronger selectivity towards flat shapes, such as digit one. Identifying such regions is important because they
are the most likely to help the prediction process — e.g., discriminating between class 0 and 1.

towards class c, i.e., it learned how to (partially) distinguish
items of class c from items of other classes.

A CSM Sk,c is a matrix where each element Sk,c
i,j tells how

selective position (i, j) of kernel k is for class c, computed as

Sk,c
i,j =

1

|C| − 1

d6=c∑
d∈C

Mk,c
i,j −Mk,d

i,j , (3)

where C is the set of classes in the training set; and Mk,c
i,j is

the position (i, j) in the AOM of kernel k and class c (Eqn. 1).
Figure 4 shows the CSMs produced by the first and second

layer of our MNIST model (see Sec. V), i.e., the same
layers analyzed in Figs. 2 and 3. Rows indicate kernels and
columns indicate classes, like in the AOM matrix. The values
Sk,c
i,j ∈ [−1, 1] are color-coded using a two-segment colormap

ranging from cyan (0) to purple (1) and yellow (0) to red
(-1), respectively. Hence, purple regions indicate where the
analyzed kernel k is very selective towards the selected class
c; red regions indicate positions where the kernel k is very
‘dismissive’ of class c, that is, the position outputs positive
values for c far less often than for any other class. For example,
one can notice that several kernels in the 2nd layer in Fig. 4
(right) are selective in most of the digit area in images from
class ’zero’. However, some kernels, such as the one in group
H11, are more selective in the ’inner circle’ of the digit zero.
This behavior indicates how different kernels may learn the

different features of the class. We give more details about the
insights the user can take from this visualization in Section V.

D. Kernel Selectivity

While CSMs depict well the selectivity of different regions
in each kernel of a layer, they do not assign an overall
selectivity value for the whole kernel. Having such a value
would help when deciding which kernel to keep in the model
from a group of redundant kernels or evaluate if a kernel
is a good candidate for removal or reinitialization due to its
poor contribution to the model (Task 1). This editing of the
network can have three added values. First, one can keep
the most selective kernel and thereby minimize the potential
performance loss when simplifying the network. Secondly, the
network size is decreased leading to the already mentioned
speed and space benefits. Finally, the overall performance can
be increased by reinitializing unsatisfactory kernels that do not
aggregate useful features or introduce overfitting to the model.

Given the matrix Sk containing all the CSMs of kernel k
for every position and class, we compute the overall selectivity
s(k) of kernel k as

s(k) =
∑

c0,c1∈C|c0 6=c1

|avg(Sk,c0)− avg(Sk,c1)|, (4)

where C is the set of classes in training set, and avg(Sk,c)
is the average value of all positions in the CSM for kernel k



Fig. 5. The MNIST model (top) contains two convolutional layers followed by
a max pooling layer, a hidden fully-connected layer, and the output decision
layer. After training, this model achieves 96.96% accuracy on the test set. The
CIFAR10 model (bottom) contains a more complex architecture with three
sequential groups of layers formed by two convolutions, one max pooling and
one dropout layer followed by a hidden dense layer and the output decision
layer. After training, the model achieves 80.54% accuracy on the test set.

and class c. In Sec. V, we demonstrate the usefulness of our
metric with an experiment.

V. EXPERIMENTS

We ran a series of experiments to show how designers can
use our techniques to perform the tasks described in Sec. III.
For this, we use two image classification models trained with
two widely-known datasets: (1) MNIST, containing images of
handwritten digits from 0 to 9; and (2) CIFAR10, containing
images displaying an object belonging to one of ten different
classes — airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. For both datasets, we aim to design
a deep neural network that can classify images into the
respective ten classes. Figure 5 displays the architecture for
both models. In this experiment, we apply our method to the
activation of each convolutional layer before pooling. How-
ever, the method can easily be applied after the subsequent
pooling layer — regardless of the pooling technique —, as
these layers contain a more concise representation of the
features identified in the previous layer.

A. Analysis and layer size reduction of the MNIST model

We next use our VA tools to simplify this model but keep
a high accuracy. After training, we create the visualizations
shown in Figs. 2, 3, and 4 using all training-set images.
Following the insights from our VA approach, we remove
kernels that do not help the prediction task, either because
they do not recognize features useful to distinguish any class or
because they are redundant vs other same-layer kernels (Task
1, Sec. III). A more complex alternative to kernel removal is to
reinitialize these kernels, so we prefer removal for simplicity.

We start our analysis by looking at the AOMs of the first
convolutional layer kernels (Fig. 2 left). In row 14, we easily
spot a kernel whose most positions rarely activate for any class.
So, this is a kernel that most likely does not contribute to the
prediction task. Also, we noticed groups of kernels with very
similar patterns of activation occurrence. For example, kernels
in the G1 group often activate at pixels inside the digit area,

and rarely at pixels outside it. These kernels learn a similar
feature: to recognize the digit structure.

The other kernels in the visualized layer show the opposite
pattern: They activate more often in pixels outside the digit
area than inside. These kernels recognize features such as
the different border orientations that appear in each class.
However, they do not necessarily have the same role: Some
of them activate more often around the top of the digit, e.g.,
group G4, while others activate more often around the bottom
of the digit, e.g., group G2. Still, some of these kernels look
to be quite redundant vs each other, and thus may not add
useful information to the prediction. To check this, we look at
the occurrence difference matrix (ODM) for this layer (Fig. 3
left). Here, we can spot several groups of kernels with strong
similarity (cells with dark blue shades).

Next, we analyze the CSMs produced by these potentially
redundant kernels (Fig. 4 left). While the AOMs show us
which kernel regions activate for different classes, the CSMs
show whether these activations are selective or not, i.e., if high-
occurrence activations provide enough information to help the
network decide if the input belongs to a given class or not.
The CSMs show us that kernels in the last three rows are not
selective towards any class, which makes them unlikely to be
relevant to the model’s decisions. In contrast, other kernels,
e.g., group G1, show regions of strong selectivity for some
classes, telling that their features are meaningful enough to
help the model’s decision. We proceed by removing kernels
we found as not useful for the reasons stated above. These
correspond to the last three rows in Figs. 2 and 4 (left).
Also, we group kernels with strong similarity in the AOMs
(kernel groups correspond to red triangles in Fig. 2) and keep
a single representative of each group in the model (we delete
the others). The kept kernel is the one with the highest kernel
selectivity (see Sec. IVD) for a given group.

After keeping only the chosen five kernels in the 1st layer
of the model, we freeze the weights of this layer and retrain
the model from the second layer onward. This way, we ensure
that our model cannot modify the features learned by those five
kernels and thus has to use only these features (and whatever
more abstract features it builds in deeper layers) to perform the
prediction. With just one retraining epoch, our model achieves
96.93% accuracy, virtually the same it had with all 16 kernels
in the 1st layer. This shows that the five chosen kernels cover
enough features to achieve the same classification capability
we had with 16 kernels.

We repeat the process in the second convolutional layer of
our MNIST model. The AOMs for this layer (Fig. 2 right),
tell us that its kernels are much more diverse concerning the
features they recognize than kernels in layer 1. Often, they
learn particular features that appear in some writing styles. For
instance, the kernel on groups H8 recognizes digits written in a
‘rounded’ way, while kernel on row H7 recognizes digits from
a ‘flatter’ writing. Also, Figs. 2 and 4 (right) help us recognize
kernels that are redundant or not selective enough to help our
model. Red triangles in Fig. 2 (right) shows the found kernel
groups. We perform a similar edit to layer 1, freeze weights
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Fig. 6. AOMs for the 64 kernels in the 1st and 6th layers of the CIFAR10 model. Kernels are sorted by the similarity tree computed by aggregative clustering
the AOM rows. The 1st layer cannot learn features discriminative enough to each class, which denotes the need for more layers in the model. Note that
while kernels in the 1st layer may produce positive activations for several classes, such activations tend to appear in different regions of the output image for
different pairs kernel x class. If this behavior is not present, the next layers cannot use these features to build more discriminative ones, which indicates a need
for more kernels in the layer. Finally, the 6th layer provides much more discriminative kernels, often activating positive values for just one class, indicating
that the model is unlikely to improve performance if more layers are added.

in layer 2, retrain, and obtain an accuracy of 97.69%. So, our
approach allowed us to not only simplify the model but also
improve its accuracy. Note that this accuracy was obtained
only by retraining the weights in the hidden fully-connected
layer and the output layer of the model, so this accuracy relies
solely on the features previously learned — before removal —
by the convolutional kernels we selected to keep.

B. Analysis and layer size reduction of CIFAR10 model

We repeat the previous experiment for the model trained
with the CIFAR10 dataset. Fig. 6 shows the AOMs for the
1st and the 6th convolutional layers in the model. Both views
give us interesting insights into the layers’ behaviors. First,
many kernels in both layers do not often activate for any class,
suggesting kernels that did not learn to recognize features
useful for classification. Secondly, kernels in the 1st layer that
activates often, usually do so to multiple classes. This tells that
this layer cannot learn features complex enough to distinguish
individual classes, suggesting that the model needs more layers
to perform the prediction task (Task 3, Sec. III).

Conversely, in the 6th layer, often only one class produces
positive activations in a given kernel. This tells that, at this
point, the model already separates classes as best as it can,
and more layers are unlikely to improve performance. Some
classes, e.g., cat and deer, do not achieve an occurrence close
to 100% in any kernel. This suggests that the features the
layer learned for these classes are not enough to cover all
their samples, indicating the need to learn more features about
them. Hence, we found that this or previous layers need more
kernels to discover more features (Task 2, Sec. III).

Figure 7 shows the CSMs of each of the 64 kernels in
the 1st and 6th layers of the CIFAR10 model. We see that
some kernels (or regions) with high occurrence values in the
corresponding AOMs (Fig. 6) are not very selective among
different classes, making them a poor choice to keep in the
network. In contrast, we see in layer kernels that are very
selective for subsets of classes (e.g., ship and truck). This
tells that, while this layer is not enough to find class-specific
features, it can find features that only appear in a small subset
of classes, thus easing the prediction task of the next layers.
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Fig. 7. CSMs for the 64 kernels in the 1st and 6th layers of the CIFAR10 model. Kernels follow the same order of Fig. 6. Notice that while several kernels
in the 1st layer show a high activation occurrence for all classes (see Fig. 6), they are usually much more selective to only a couple of classes. The CSMs
give more confidence to designer decisions, as it clearly states if a high occurrence pattern in AOMs indeed indicates selectivity.

Due to the width and depth of this model, we only reduce
the size of the 1st and 6th convolutional layers. As for the
MNIST model, we spot and remove kernels that are not
selective for any class, and simplify groups of redundant
kernels (details omitted for brevity). With our VA tools, we
reduced the 1st layer’ size to 20 kernels. After retraining the
rest of the model for one epoch, and freezing the weights in
the 1st layer —, our reduced model achieved 81.20% test-set
accuracy, even higher than the initial 80.54% accuracy.

Following our VA approach, we reduced the size of the 6th

layer from 64 to 35 kernels achieving a test set accuracy of
80.43% after retraining only the weights in the fully-connected
layers for one epoch. This accuracy is marginally below the
original one. We see here a trade-off between network size and
performance: At some point, the network simplification has to
stop as the accuracy will inherently drop. As stated earlier, an
alternative is to reinitialize the kernels selected for removal
(instead of removing them) to achieve higher accuracy.

C. Kernel Selectivity Experiment
To show how our kernel selectivity method indeed captures

the overall selectivity of a kernel, we run the following
experiment: For each pair of kernel k and class c in the

network, we compute the average of the pair’s class selectivity
map Sk,c, denoted sk,c. Then, for each class ci, we remove
the kernels with skj ,ci ≤ 0, and compute the accuracy of the
resulting network only for test-set elements of class ci. Next,
we do the opposite: For each class ci, we remove the kernels
with skj ,ci > 0 and compute the accuracy of the network
without such kernels for test-set elements of class ci.

We did these experiments for the 6th CIFAR10 model layer
(CSMs shown in Fig. 7 right). Fig. 8 (top) shows the number
of kernels kept in each case. Fig. 8 (bottom) compares the test-
set accuracy for elements of each class ci and considering all
kernels, kernels not selective for ci, and kernels selective for ci.
In all cases, the number of selective kernels for a given class is
much smaller than the number of non-selective kernels. In all
cases, the test-set accuracy drops significantly for the chosen
class when we remove highly selective kernels for that class
and increases when we only keep selective kernels. Hence,
our selectivity metric indeed captures well how much a kernel
contributes to the separation of a given class.

VI. CONCLUSION

In this work, we present a visual analytics set of tools, and
associated workflow, that helps machine learning designers in
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Fig. 8. Selective Experiment on 6th layer CIFAR model. Top figure displays
the number of kernels considered to be selective (green) and not-selective
(red) for each class. Bottom figure displays how much the class accuracy
changes when we keep only the kernels from each one of these groups.

their deep learning architectural decisions. We define three
tasks related to such decisions and show how our techniques
support them. We show how our toolset and workflow can
be used in practice to considerably reduce the sizes of two
trained deep-learning models for non-trivial classification tasks
while keeping, or even increasing, classification performance.
Our work opens multiple future work possibilities. While
our method is readily adaptable for fully-connected neurons,
recurrent layers such as LSTMs are much more challenging.
Such layers contain hidden internal states that modify their
values at every input timestep. Analyzing how the AOMs
of such hidden states change over time is an interesting
direction. Separately, our visualizations do not scale well for
large networks of tens of layers and thousands of neurons. We
plan next to study how high-dimensional data visualization,
well studied in the visual analytics community [35], could be
applied to improve the scalability of our method.
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